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Stomatal and Photosynthetic Responses to NaCl-induced Salt Stress of
Thai Jasmine Rice (Oryza sativa L. ssp. indica cv. KDML105) during
Tillering Stage
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ABSTRACT: The objective of this research was to investigate the effects of NaCl-induced salt
stress on stomatal opening, carboxylation, and photochemical processes in Thai jasmine rice
(KDML105) at tillering stage. Rice plants were grown in half-strength Yoshida’s solution for 55
days before subjected to salt stress by adding NaCl in three stress levels at 0 (control), 60 (mild
stress) and 120 mM (severe stress) for 28 days. Light response curve, maximal quantum efficiency
of photosystem II, photosynthetic pigments content and nutrient concentrations were measured
on leaves of non-stressed and stressed plants. The increasing salt stress levels had definite
effect in reducing stomatal conductance (gs), which then reduced photosynthetic rate and
transpiration rate. Under mild salt stress, stomatal opening was limited to light intensity (PPF)
in the range of 0-800 umolPPF m*s™, and no further opening at increasing PPF. When the salt
stress progressed to severe level, stomatal opening was limited to narrow PPF range of 0-600
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pUmolPPF m?s’ and g, decreased at PPF above 2,000 umolPPF m?st Subsequently, detrimental
effects on carboxylation efficiency and photochemical efficiency occurred under severe salt
stress. The salt stress did not affect the light reaction of photosynthesis, because the maximum
quantum efficiency of PSIl and photosynthetic pigments content of salt-stressed plants were
still unaffected. Salt-stressed rice leaves had high leaf Na concentration and low K/Na ratio.
The parameters for the evaluation of salt stress levels are g, instantaneous carboxylation
efficiency (Pn/Ci), electron transport rate (ETR), and the ratio of electron transport rate to net
photosynthetic rate (ETR/P ).

Keywords: Khao Dawk Mali 105, salt stress, stomatal conductance, carboxylation efficiency,

photochemical efficiency
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bl usrasdiiednwinisaeu
auevesUinlu n1snsearsuaulaaanled
wazUAse191NLaIYIU1IU1IN0NNLE 105
(KOML105) Tuszezunnnanielian1islasenain
indefitnihdeluAueaslsd (NaCl) Tasugndu
P13luasarategns 1/2 Yoshida ausud1iiien
55 Ju (svpzunnne) Jadheasgnluasazanesig
ot liAnannziedoaanindosenis
i NaCl imnsidiudu 3 sedfu Ae 0 (naumuaw)
60 (AraneSEmsEAUA") wag 120 (ANLATeRTEAU
Juis9) Tadluans 1unan 28 u Indumauaues
Aauas UsgAnsnmnislouatasanvadssuumas
g09 Usunausendngluly wazanutudunedsy
ownsiusngluludng wuin anniseienan
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ALTLUAIGAUAY 2,000 pmol PPF m? s
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posruLsuLawesludn Ineauseansnannisld
WANEINUDITTULLAIER AT S UTIRTRgURY
Tudndseglussiuland uenaind Tudndléasy
anmueSonanndedidinnududuvedlefioud
Usnglulugeaty wasdndunnududusening
Tnunalsunazlofotanasing wisfwmesaild
unvflszyanugulsIvesEn1zAsenNNGe
19 A Arnstnuinsitatatinlu Auseandam
msnsansueulneenleidives (P /C) ¥
waouieBiEnnsau (ETR) wasdnadiuuednsnis
indouinedinaseusiodnnmdaianeiuagns
(ETR/PH)
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AdIfgY: 119U1I8NNEE 105, AIULATEADIN
a8, AIN15TNUINISIUAUAUNNTY,
Usgdnsnmnisnssansueulasenlan,
Usgdnsamnislauas

NI

NM3ANEITRINIIROUALRINETTING
vosduNsneldanziAIenInnGe (Salt stress)
ot fuszuuiafegiioslulsemalne 1iesan
nalnmsmevauesiamududounazifeulemans
nszvrumsludufiondoudu fddyfedivdnig
USuiild annzeiennnindedaiithiodesyey
LALAZILAUAIIUTULIIVBIAIIUATEALTIL
Lﬁm‘ﬁaﬂﬁ’m (Kaewneramit and Wutipraditkul,
2014) mnnsenwiveuafidniay msdiwes
nsaiTineildansoldidugudmiudageon
ameiudfivnudy uazlfosuiedeslosnalnnis
vhauLazMILARINvesTuNinTUANAN WY
i ieUszgndldlunuuiuy sl fusded

179717999nUzd 105 (Khao Dawk Mali
105; KDML105) Wuiuginveniinuminsilon
Ugninnfigelutszimauazfuiifesnisvesnain
walunazsnsuszma Toaldiduneusiiugluns
U¥uUgstusdnamonvesing fudiugndin
KDML105 dlvgjegluniany Tuesnideanile
Faduiluiinusuandu 17.8 §1uls wazanufy
vosrududladuddyfidmasenisifulnuaznns
asmandnvostnlueegnauin (Hoang et al,
2016) \flosanisearuindnaiug KDML105
Juiugiounereaniziedeaainindedilaisu
(Pongprayoon et al., 2019) dwmsuiuandulve)
Fnuludszmalnowasluiuiinanz Susenides
wilatinainnisazanvsnielaiisunaslsa
(NaC) Tuudiszsumnandudugs danlngidadu
Auduledn (Saline sodic soil) (Kheoruenromne,

ansn.n. e

2007) Fadupuiitindoazansiinlaluusunamnn
wazdlloifonfivaniudenldgs (Weil and Brady,
2016) auihlminaniziasenanindenaziluy
dunsigransiAulaveiy dmsudeyanisneu
AuBIazNSUSUAIMNETINY W81 KDML105
soanneiAtsnnindedfiogegnadain Snis
wisrfiwesfimuzauiiasldvivansyfuainy
JULSIURIaNIzASEANINAedlidalau
nsAnwindeauladnuidnsnaves
ANNIELASEANNEBABNTEUIUNTALATIE LA
va3luY1? KDML105 Tuszezuanne (Tillering
stage) Fuduthanaluszegnisaiyivlnves
FfifimsAnwmnalnnisrevauemETIese
anmuAsEnnndelddnediios uasidutiinis
\3euAulavnaddu (Vegetative growth) fidiudng
FounTnuasusuimnieldannziufulviedsen
TuannsssurfAdeagausaasnwananta lag
msAnu ik lvgjaiufnudnluszey
Aunan (Seedling stage) uagszozduiug
(Reproductive stage) Ing@nwinalnn1smeuaues
299 3 AszUIUMIuan laun nalnnsitalUnues
Urnlu nszuaunisessatsveulneeanlan
(Carboxylation) uwazUjisenainues
(Photochemical reaction) Agn15IALEURBU
aupsialad (Light response curve) Useansnin
nslduasaegaueeTEuuLatans (Maximal
quantum efficiency of PSI) uazUSinaisaning
Tulutm Teednassdwaudin KOML105 Tusves
wnnelesuanmzesennndsluiuivniee
NaCl Aszfuanuguissinaiuegissoidondy
wawu 28 Ju wielidudnadenalnnisneu
auswioanzLARERNIndeflasy doyamsneu
auasiildavanunsaadreseudlasenalnuesnis
nuAuludT KOML105 uazanunsaszymines
mazﬁf‘mmﬁﬁwaﬂigé’ummgmmLLazmmLﬁa
weseanzasennnge et llduselyw
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NMSLAIBUAUTIILAZINADIANIZIASIAINNED
L‘W%muﬂmm'gwuﬁ KDML105 Tunsza
YA UAUSNANS 12 i fussgAumiemiin
6 Alansu Iukmaummamsﬂ,ugumwuaz
WAUINTRNLIATOU RTINS ULAYATANERNS
gAY FinuasUsy auAuUnan
91y 30 Tu Jrenszarsigninasluanin
(Acclimation) luteduusdifiansazanysine1ms
1/2 Yoshida @sfinnudududu 1/2 whweadu
gns (Yoshida et al., 1976) U3u1ms 600 &3 10U
va 20 Tu lneshwnseduvesansaranglvieginile
NAAUUTENN 10 LWURLIAT AABALIA"
INUHUNITNAB DI UUFUANY T
(Completely randomized design; CRD) Haduil
AN AID TEAUAINUTULIIVIANILATEADN
\nde 3 sy edudniieny 50 $u Feegluszey
unnne (Tillering stage) F9LAn NaCl aslu
asazaesIe v TilednilfiAnan1iziaien
nndeutadu 3 mnududu fis 0 (nquAIUAw)
60 (ALASEASEAUAY) waz 120 fiadluans
(ANLLATEATLAUTULTY) wnzdsdutluane
wIumannindslunsazsesuifunaniiomn 28 Yu
AIUANTEAU pH vasansavaelviogluyie 4.5-5.0
LLauLﬂaﬂua’]iaumEJﬁ’]G]EJ”Wi’]im%LW%La’ENGﬂ‘LJ“ZJ”l’J
Tuuaﬁumumiwmqﬂaﬂmm Andaanifionnia
(WatchDog Mini-weather Stations 2475,
Spectrum Technologies Inc., USA) Lﬁmﬁusﬁaa&a
anmernianielulsadeunasaiaiiviinis
nARBY Raudifeudaneufisgatny w.e. 2561
Tnsgumaiitadsnelulsasoudianarsiuiia
31.7 perwalded pnudusadlutieiifiuasade

80  Agricultural Sci. J. 2022 Vol. 53 (1)

625.5 pmolPPF m? s Anuaiudunvslug9nand
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nsAnEIENUANILANYD IR
\AusegrsAuiildugndudimdanin
dnihliinannzinsenannindeluniayseaudu
A 28 Ju ’gmsﬁmmmﬂgﬂsmmu (pH) mm
TWihwesansazansfuiiafnainauduiagaeii
(Electrical conductivity of soil saturation
extract; ECe) Aanududutmunveddeiion
wailey waznuniifeuitavanelutiile 91nendi
TalaAwuadnsidiugadulaifes (Sodium
adsorption ratio; SAR) ®1835n15U89
Chanchareonsook (1993) lagAuiaimAIUinie
Tosfeufinandauls (Exchangeable sodium
percentage; ESP) @13135n15U99 Levy and
Shainberg (2005) ANLIUATILATIZALABIIURDS
U015 aardumalulagnszaeuindann
yvnsa1anszds WMNVATLNSLUATYANANA

L UnDUAUDIABLES

TaldunOUAUDIsBIAY (Photosynthetic
light-response curve) WioUszdunsiudsuuas
yassnsuanasunialagldwaadusdni Ty
imstadlesudnlifuannesesenanindely
upazsEAULILAT 28 Ju Turaaan 08:00-12:00 w.
Tnadaninlunsniindosniiiuiisoiniesinsns
nswandsuniaszuula MHaTauuy leaf
chamber fluorometer (LI-6400-40, Licor Inc.,
USA) mwumm’mmmu Co, 400 pmol mol™
AT UELNS 70-75% ammmaﬂm%uvmia
lu 28 esrlwaldesa LLazmmLiwaqmmﬂwlua
Wulu 400 pmol s BudiuuSuauduuas (LED
source) AN 2,500 pmolPPF m? s wén
anANUdLLasaLdudduaunT 0 umolPPF m?s
M1NITN15V89 Laywisadkul and Yingjajaval



(2011) 1n3eailoliiAndnsnsdaungiiuaans
(Net photosynthetic rate; Pn) 5@151?}73?}1851
(Transpiration rate; E) Ann13gnuinisiatauin
lu (Stomatal conductance; g) wazgaumilly
(T f)mmmmﬂswammwmﬂﬂm (Water use
efﬁoency, WUE = P /E) wazAUTEaNSAINNIg
p3aansuaulnoenluditaivns (Instantaneous
carboxylation efficiency; P /C) uaﬂmﬂu \A389
fodainmnsiinesildussidiuUseans nmnsl
LENYDITZUUTULENED (Photosystem II; PSI) 270
mﬂimmaaWaaaLiaL%umiuﬁumymiulmiULm
suzuuuu (Steady-state fluorescence; FS) 1H]
YSuasedvigeasaivudigegaluny flulasu
ﬂ’J']iJL‘U@JLmeaJ’m(Mammum fluorescence; F )
FuraiUsEansamnislduasnsiluldsy
(Light-adapted quantum efficiency of
photosystem II; (I) ) 1971 d) (F > —F)F "~
LAy mmmamﬂmaaumamaﬂmau (ELectron
transport rate; ETR) 141 ETR = (I) - f X | x
OLL fl,a,Jafﬂa ammu%ummmmﬂaﬂ% PSI|
merun‘u PSI (mm‘uwm C, A1 0.5) | fiw ALY
LLawmmauawwmimLﬂm Ra
(Photosynthetic photo flux; PPF) finnasuuly
way oL ﬂ@ amﬂiuawﬁmmmﬂauLLawaﬂuum
0.85 (Schrelber et al., 1998) ) Adilaldeun
é’md’;uﬁuaaé’mflmﬁlaumaaLaﬂmsaumaamw
dunsevievd (ETR/P)

AMUFUNUTTEMINIDNTIAUATIENULES
gusiuaduidusasaglusaunis non-
rectangular hyperbola (Thornley and Johnson,
1990) fail

Ol + P, = o/l + P P 4600lP,

20
Ty o A UsgdnSaimnislduas (Quantum
efficiency) 1uaranudulugisanudunassn

P =

n

_Rd

ansn.n. e
)

(0-100 pmolPPF m?s™) O Aa FnAuANAIULAS
YoadunsIv (Curvature factor) R, Gh) amwmsﬂ,ﬁ]
Tufisla (Dark respiration) ua P Ao dn51
delAsgiuasgagn (Maximum gross
photosynthetic rate) JUaun15v04e1 ETR AU | 8
ANUENTUSANYUZIRYINURUANLEIRUSTE NI
P il fNLmiﬂamﬂﬁmmﬁlmmﬂuimaLmum P
mamamflmaaumaaLaﬂmau uag Pmax
maamwaaammﬂﬁmaaumaJaLaﬂmaummu
(Maximum rate of linear whole-chain electron
transport; ETR ) AMuinimnsiiinesising o vos
AUNTVNAUAIETD non-linear regression el
solver “UENI‘UiLLﬂSlI Microsoft Excel AMuI0UA"
AuduLasdus (Light saturation point; L 10y
Amumdumanuduuanile P =085P 90
FoLgelay (Light compensa‘uon pomt L 1y
smunduranuduuanie P =0 iomsiUiou
Wiy lﬂmmmmmwﬂmmiwmﬂmmﬂ%aaam
g )LLaymamqmamaqaﬂ E Immaaam E
uaE g V]VLWV]ﬂ’JWfHL‘UﬂJLLﬁQﬁx‘lﬂ’J’]ﬂWﬂ’NNL‘ZJZJLLﬁQ’eJ@J
6 (I > 1,200 umolPPF m?s™)

SLﬁﬂmauﬁLﬁﬂﬁugﬂiﬁ’ﬂumimﬂm‘%ﬂ
uas (Photorespiration) Faduraannnisiiveules]
sfialn (RuBIsCO) anunsnvhufisenlaany o,
(Carboxylation) wazAu O, (Oxygenation) N3
melagias R) Usziliunuisues Valentini
et al. (1995) fail

ETR - 4(P, +R,)

R=
12

UszAnSamnslduasgean
Tarseansannislduasgeanvesssuy
Fukasass (Maximum quantum yield; F /F ) Tu
TR 13871 04:00-05:00 U. LNBAANANTENU
vasruduLasaraungaluainaeuen fag
\A3eq pulse amplitude-modulation fluorometer
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(PAM 2100, Heinz Walz GmbH, Germany) Wag
nilulumay leaf-clip holder (20308, Heinz Walz)
Tneldishegsludieniufuiiindunauaussouas
A F /F Auanlld wall

F.. —Fy

F /P =—
vV m=
F

m

lng F Ao Avigeaisalausimaniiinld (Minimum
fluorescence yield) uaz F_ Ao AvlgealsaLsun
qazjmﬁ’?miﬁ (Maximum total fluorescence yield)

n5nszivsnusadngluly
NAINTALEUNBUAUDIRDUAILAY
Usgansamnislduasgeanvedduwds Jufu
Fragrslurieafuriioturadaniusuiw
paslsiiaauazualsiuonlulume 80% acetone
’J’m']ms@@ﬂﬁul,mﬁamﬂ%m spectrophotometer
fimnue1IPdY 440, 645 waz 663 UNWUAT
AuUsIuAaslsiad 1o (Chl a) Aaslsilas O
(Chl b) paslsiladavua (Total Chl) dndues
Aaolsilaa 1o sio maslsilad O (Chl a/b) uag
uAlsyiuess (Car) MUELN1SYBS Arnon (1949)

nsinszianududurassinemnsiiusng
Tulu

iushegnsluvesduiaiileuaniag
P3EAAINLNEDUAATIZRY YN1SOURKT 70
paradud aunNIawTTIRaT Wisegnsluwi
hwiin 1.0 n3u Wlensimanududuressg
Tulasiau (N) Woaveda (P) Tnunaidou (K)
upadeu (Ca) uunil@eon (Mg) Tuifaw (Na) wan
(Fe) wnsnila (Mn) nosuas (Cu) dned (Zn) way
Tuseu (B) 1¥3%n1sanmlulasiaudlenisndu
(Micro-Kjeldahl) @wm¥usinermsfiviiinde
Tsnstoalunsa (Mixed-acid digestion) azin
mnudiduessIReIILazdafeITos ICP-
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OES (Perkin Elmer Avio500) Aiiunsiasgs
laguuinisvealuiinis andunalulad
NITIDUNAANNMITAIANTEUY INSWNVRAYUNT
LunTgauAnA

NM5IATIZANANIGED

Wpsideyamelusunsudniagy IBM
SPSS Statistics 17 1ngALATIZ DN NAVDIANIZ
LATUAAINLINABAIETS one-way analysis of
variance (ANOVA) nagauseutiuddaymnsadai
P < 0.05 uaziU3BuisuauLANA1aYaIALREe
#2875 Duncan’s new multiple range test
(DMRT)

NANISNAABILAZ 5]

A15ABUAUDINIETTINYIRDANIIZLATEAINN
1NABYUIU17? KDML105 luszeziuanne
auuAnIAdivesiu
Sefinsanteyaauinaaivesiuiily
Ugndutn KOML105 SsrunsdniliiAnanne
\3enanndede Nacl sia 2 sesfulunan 28
S wut fumeldmnupseaannindeis 2 seey
JadupuAuladn (Saline sodic soil) Tneilaiin
TWivesansazarsiuiiatnainfudusadaeti
(EC) wasdugandt 4 Ardnsrdugaduliieon
(SAR) @andn 13 uavASegazvesluifvufiuan
Wasuldl (ESP) gandn 15 (Table 1; Department
of Soil Science, 2005; Waskom et al., 2007) %ﬂ
funmeldaninziaioaanindeiissiugunss (120
MM NaCl) fienududurimmnvedaiionfiazane
Tudlfuasen SAR genhivlunduaniiziaion
PnndediszAusi (60 mM NaCl; Table 1) wans
Tiiuin Ssedunnuhuvesfiugendnifeg wenain
i shognarunelianneirionaninderi 2 seau
fanududuvesundifeunazuaadouiiazay



ludhlegeninguatuauegreivdrAgynieaia
(Table 1) uidtegluszAumnududuinmunzay

&
a.nn.n. . am .
(S’“

sensiulanazlaifuiuresuiiy (Kelling et al,,
1999)

Table 1 Analysis of soil samples from control (0 mM NaCl) and salt-stress (Mild stress: 60 mM
NaCl and severe stress: 120 mM NaCl) plants of KDML105 rice under NaCl treatments
for 28 days. Parameters include potential of hydrogen (pH), electrical conductivity of

soil saturation extract (ECe), sodium (Na), calcium (Ca), magnesium (Mg) in the water

extract from saturated soil paste, sodium adsorption ratio (SAR) and exchangeable

sodium percentage (ESP)

Parameters Control Mild stress Severe stress P-value
pH 6.79 + 0.13 6.77 + 0.12 6.74 + 0.06 ns
ECe (dSm™) 4.19 + 0.42° 15.71 + 0.97° 20.14 + 2.26° wx
[Na] (meq L™ 11.71 + 1.11° 75.49 + 9.79" 115.41 + 14.03° *%
[Mg] (meq L) 6.46 + 0.61° 10.02 + 0.42° 9.11 + 1.10® wx
[Cal (meq L™ 20.18 + 2.64° 38.08 + 1.83° 36.47 + 5.10° **
SAR 3.23 + 0.34° 1551 + 2.42° 24.89 + 4.68° *%
ESP 3.39 + 0.46" 17.64 + 2.35° 25.81 + 3.65° wx

Values are mean + standard error (n=3). Means within a row followed by the different letters

are significantly different according to Duncan’s new multiple range test. ** Statistically significant

difference at P < 0.01, ns = non-significant difference

AsnavaussvasUInluLazansLan

WasuwAavaslu

PMNNTHAMUTALEUNDUAUDIN DAV
Tud1 KDML105 Tussezunnnadildsuanioe
wiganndeunaiuiu 28 Yu wuln A1AS
Fnun1sitatalanly (g) AMstnuINIeUn
Umhnlugegn (g, ) Shsrduasisiuaegys (P)
5@13’15&%13‘15&3&806@ P ) 801351115A1811 (E)
uay amwmamma@ (E ) dAanaInIusEau
m’mmmmmm@@mmmu (Flgures 1A-C; Table 2)

#udn KDML105 fmnzidesluaniog
m‘umﬁhﬂm‘uamavLmammmﬂaa (0 mM NaCl)
fifng, P uayE WisFununuLERae AT
Fiwaadiniy Immmmeuaawiamsﬂuﬁm
ANTILES 0-1,000 molPPF m? 5™ udaisug
L%ﬂdmmmﬁlﬁammLsﬁuLLaaﬁaaﬂéuﬁaLLaa (9]
(Figures 1A-B) 1U61m'1uam’;m'mﬂmm g o
il 545 0 mmolH O m™* s A1 P 31 4 pmoLCO
m? s’ uazAn E asm 8.80 mmoLH O m?

(Table 2)
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Table 2 Summary of parameters of light response curves of control (0 mM NaCl) and salt-stress
(Mild stress: 60 mM NaCl and severe stress: 120 mM NaCl) plants of KDML105 rice.

Maximum gross photosynthetic rate (P

_)» light compensation point (1), light saturation

point (IS), quantum efficiency (Q), curvature factor (0), dark resplratlon (Rd), maximum

rate of linear whole-chain electron transport (ETRma

), maximum of stomatal conductance
X

(g, ), and maximum transpiration rate (E_ )

Parameter Control Mild stress Severe stress P-value
P (umolCO, m*s™) 31.4 £ 2.6° 232 +2.4° 138 + 1.3° **
| (umolPPF m™s™) 171+1.2 211+ 31 29.6 £ 3.9 ns
| (umolPPF m*s™) 1,026.6 + 28.5% 834.3 + 74.9° 526.6 + 58.4° **
Ol (molCO, mol'PPF) 0.038 + 0.006 0.044 + 0.004 0.038 + 0.004 ns
0 0.87 + 0.04 0.76 + 0.06 0.86 + 0.06 ns
R, (HMolCO, m?s?) 0.65 + 0.11 0.89 + 0.08 1.09 + 0.11 ns
ETR _ (umole m?s?) 189.5 + 233 166.9 + 13.2 139.4 + 109 ns
g (mmolH O m?s”) 545.0 + 35.9° 2133 + 18.9° 95.1 + 10.6° **
E_ (mmolH 0O m?*s") 8.80 + 0.44° 5.39 + 0.37° 3.03 + 0.33° %

Values are mean + standard error (n=4). Means within a row followed by the different letters

are significantly different according to Duncan’s new multiple range test. ** Statistically significant

difference at P < 0.01, ns = non-significant difference
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Tudnanasmailusne (Figures 18-C) Tawdn P
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Fdunansvia wu a‘um (Silva et ol 2011) 1GH]
{18 (Meloni et al., 2003) uaﬂmﬂu dlofiansan
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Tudmmelianiizinioaanindefiszdusiien
P /C In&feaiunguenuauitlalliiuanioziaien
nnde (Figure 1E) wamsliliiuan nsyuIung
m34 CO_vailudng KOML105 dapssiniiuldloens
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Light response curves of (A) stomatal conductance (g), (B) net photosynthetic rate (P ),
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efficiency (P /C) and (F) leaf temperature (T _ ) in control (0 mM NaCl) and salt-stress
(Mild stress: 60 mM NaCl and severe stress: 120 mM NaCl) plants of KDML105 rice.

Values are means + standard error (n=4).
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dlefiansannisnevausswasdinlunay
sfiwesveinszuIunswaniUdsuniavedly
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Figure 2 Light response curves of (A) quantum efficiency of PSII ((I)PSH), (B) electron transport rate

(ETR), (C) photorespiration rate (R) and (D) ratio of apparent electron transport rate to
net photosynthetic rate (ETR/P ) in control (0 mM NaCl) and salt-stressed (Mild stress:
60 mM NaCl and severe stress: 120 mM NaCl) plants of KDML105 rice. Values are means

+ standard error (n=4).
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417 KDML105 Tuszezuannalaiduagied
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UseanSnwnislduasgegn (F /F ) vedludna
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SEAY fAliwansnInNguAIuAN Tnefinade
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an wusn@ (Bjorkman and Demmig, 1987) 210
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Table 3 Effect of salt stress on minimal fluorescence (FO), maximal fluorescence (

Aussuvsusasans (PSI) veslu lagludin
KDML105 lusszumnnedilasuaniiziedenain
AYULALTULSIMAZEIUIY Siasaunsadne
LENYTAINUDITTUULEIEBY (Photosystem |
stability) @ 3le wudendufinulunisvaaewes
Mishra et al. (1991) Fswuinan1izasenainnde
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Fm) and

maximum quantum efficiency of PSIH(F /F ) in control (0 mM NaCl) and salt-stress (Mild
stress: 60 mM NaCl and severe stress: 120 mM NaCl) plants of KDML105 rice

Parameter Control Mild stress Severe stress P-value
FO 0.043 + 0.002 0.044 + 0.002 0.044 + 0.002 ns

. 0.337 + 0.004 0.327 + 0.008 0.322 + 0.005 ns
FV/F 0.872 = 0.007 0.867 + 0.009 0.865 + 0.006 ns

Values are mean + standard error (n=4). ns = non-significant difference
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(Table 4) uansliiiiudn annzwesenanindelyl
nalyinanudeneiuseainguan (Primary
pigments) ¥8sszULTULABIlY donAdBsiU
Joyanisidsuuvasvesdn F /F vasludn

%

asn.n. e

i??%f

KDML105 #19ale @evsvaninlufimnuidsnng

WNRTURUSTUUSUaIasbudMnglaanieesen
INAMULANTT 2 AU

Table 4 Effect of salt stress on chlorophyll a content (Chl a), chlorophyll b content (Chl b),
total chlorophyll content (Total Chl), ratio of chlorophyll a to chlorophyll b (Chl a/b)
and carotenoid content (Car) in control and salt-stressed plants of KDML105 rice

Parameter Control Mild stress Severe stress P-value
Chla (mg g'FW) 3.07 + 0.06 301 +0.21 2.74 + 0.25 ns
Chlb (mgg' FW) 1.17 + 0.04 1.19 + 0.10 1.04 + 0.07 ns
Total Chl (mg g* FW) 4.23 + 0.09 4.20 + 0.31 3.78 + 0.32 ns
Chla/b 2.63 +0.08 2.56 £ 0.08 2.62 +0.07 ns
Car (mg ¢' FW) 7.12 £ 0.66 6.75 + 0.69 533 +0.77 ns

Values are mean + standard error (n=4). ns = non-significant difference

anuidiuduvassmamsiiusnglulu

dlefinnsananutuduvessine1nis
wiagvdiafiusingluludng KOML105 AldFuanme
w3epanindea 2 sedu wud Tudndlds
anmeaTeannindedimududuues Na fiusng
geninguauauetaiidedfamaadn Tnowlo
SEAUANTUUTITBSAN MIZLATAT NN AR LTI
asfinmsavanmos Na Tulugaunnailushe (Table 5)
Psiiitudn sutmlaifnalnlumsdostunsiedoud
294 Na gauiianiusn uaziinn1suuss Na I
Auagaulily wufsaduifinssmeanuluiy
waevila W e (Guo et al., 2020) uazaym
(Silva et al., 2011) uanand Tudmldsuanne
wIeaNndedadianuiutuves B asnitludn
UsnilunquajuauegaiitdudAynisaindnsie
dmsuanududuressinemsuiaduiinnis
AAs1edi lown N, P, K, Ca, Mg, Fe, Mn, Cu uag
Zn wun lfanuwsnsiunnsatifseringddut

Tungueunuuaznguilléiuanniziaenaininde
(Table 5)

nsazauves Na sgululudnnield
anmueienainnde dwasededidndiuniy
WNTUTENINE K wag Na (K/Na ratio) dimanasniu
TUge (Table 5) F9n15anaUaIdRAIUTTNING
At K/Na Tuluiiwaunsalddusii
UIUDNAIANUTULIIVOIEN1ILATEAINING DAY
Aauldaunavainisshwsedulessu (lonic
homeostasis) luaguaslufivnelagnizinsen
nndelmduegnsd (Hnilickova et al., 2019;
Guo et al., 2020) UBNIINE N13AAAIVEY
Usgandnmnismnieasueulaeanlanvesluiiv
meldannginsenaininde dniinatugiunis
avau Na funniulureagaslunaznisanaves
dadiuanuutu K/Na vesludnsie (Netondo
et al., 2004; Lopez-Climent et al., 2008; Silva
et al, 2011; Bose et al., 2017)
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Table 5 Nutrient concentration and K/Na ratio of leaves in control (0 mM NaCl) and salt-stress
(Mild stress: 60 mM NaCl and severe stress: 120 mM NaCl) plants of KDML105 rice

Concentration Control Mild stress Severe stress P-value
N (% dry mass) 3.19 + 0.06 2.47 +0.49 3.20 + 0.02 ns
P (% dry mass) 0.49 + 0.08 0.47 + 0.02 0.39 £ 0.01 ns
K (% dry mass) 2.82 +0.52 211 £0.12 2.30 £ 0.10 ns
Ca (% dry mass) 0.47 = 0.07 0.48 + 0.04 0.49 + 0.02 ns
Mg (% dry mass) 0.34 + 0.04 0.38 £ 0.03 0.39 £ 0.02 ns
Na (% dry mass) 0.13 £ 0.01° 0.28 + 0.01° 0.62 + 0.07° *x
Fe (mg ¢ dry mass) 412.07 + 140.05 287.29 + 80.07 155.18 + 25.27 ns
Mn (mg g dry mass) 570.05 + 105.35 424.96 + 58.25 481.95 + 68.72 ns
Cu (mg ¢* dry mass) 4.25+0.78 3.40 + 0.44 4.07 + 0.24 ns
Zn (mg ¢ dry mass) 2327 £7.33 14.78 + 1.95 12.75 + 2.77 ns
B (mg g dry mass) 5.82 + 0.81° 19.79 + 2.64° 19.27 + 0.80° *%
K/Na ratio 22.35 + 4.89° 7.73 £ 0.38° 3.78 + 0.28° *x

Values are mean + standard error (n=4). Means within a row followed by the different letters

are significantly different according to Duncan’s new multiple range test. ** Statistically significant

difference at P < 0.01, ns = non-significant difference
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