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ABSTRACT: The purpose of this study was to develop an artificial neural network system
model for flood forecasting in agricultural areas of the water intake zone community in Phra
Nakhon Si Ayutthaya. The Thap Nam-Ban Ma community was set as a study site. The collected
data were based on the water level and rainfall from the lower Chao Phraya Basin water level
measurement station and the Khlong Thap Nam. The data were used to create neural networks
for a time series forecasting model to predict water levels at daily, weekly, and monthly intervals.
The findings revealed that the efficiency of daily multi-layer artificial neural network forecasting
from the lower Chao Phraya Basin water level measurement station was good. The correlation
coefficient between the actual measured values and forecast results was within the acceptable
range (r = 0.9975 and 0.6843 for training and testing procedures, respectively) and the data
could be learned accurately. The root mean square error (RMSE) was the lowest (0.2783 and
0.1394 for the respective training and testing procedures) compared to weekly and monthly
forecast results. For Khlong Thap Nam, the daily forecast was effective at a good level. The
correlation coefficient between the actual measured values and forecast results was within the
acceptable range (r = 0.9975 and 0.6754 for training and testing procedures, respectively) and
the data could be learned accurately with the lowest RMSE (0.1841 and 0.1041 for the respective
training and testing procedures). Weekly and monthly water level forecast sections produced
less accurate forecasts over a longer period with the correlation coefficient of 0.6531-0.9508
and RMSE of 0.4570-0.8639. These results revealed that the artificial neural network model can
provide reliable forecast results and can be applied in forecasting to support the actual operation
effectively.
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Table 1 Forecast performance for each period

Training procedure’

Testing procedure’

Period
r RMSE r RMSE
Station C.7A
Daily 0.9975 0.2783 0.6843 0.1394
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Monthly 0.8814 0.8542 0.6531 0.8639
Khlong Thap Nam
Daily 0.9975 0.1841 0.6754 0.1041
Weekly 0.9508 0.4702 0.6616 0.4570
Monthly 0.8785 0.6357 0.6894 0.6636

' The set of data which enables the training,

The set of data which enables the testing,

r = correlation coefficient, RMSE = root mean square error
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