https://li01.tci-thaijo.org/index.php/Itech/issue/feedWittayasara: Integration Apply Engineering and Industrial Technology2025-06-28T15:29:28+07:00Asst.Prof.Jakkit Hunyalajournalitech@gmail.comOpen Journal Systems<p>ITECH New : แจ้งการเปลี่ยนชื่อวารสารและเลขมาตรฐานสากลประจำวารสาร (ISSN)</p> <p><strong>การเปลี่ยนชื่อวารสาร</strong></p> <p>ขอเรียนแจ้งให้ทราบว่า วารสารวิชาการคณะเทคโนโลยีอุตสาหกรรม มหาวิทยาลัยราชภัฏลำปาง ได้เปลี่ยนชื่อวารสารเป็น "วารสารวิชาการวิทยสารบูรณาการเทคโนโลยีอุตสาหกรรมและวิศวกรรมประยุกต์" ชื่อภาาษาอังกฤษ "Wittayasara: Integration Apply Engineering and Industrial Technology" <strong>เริ่มตั้งแต่ พ.ศ.2567 ปีที่ 17 ฉบับที่ 1 มกราคม - มิถุนายน 2567 เป็นต้นไป</strong> เพื่อให้สื่อถึงขอบเขตเนื้อหาของวารสาร และความเป็นสากลมากขึ้น และยังคงใช้เว็บไซต์เดิมในการเผยแพร่บทความที่ตีพิมพ์ในวารสาร</p> <p><strong>การปรับเปลี่ยนเลขมาตรฐานสากล</strong></p> <p>วารสารได้ดำเนินการยกเลิกการใช้เลขมาตรฐานสากลเดิม ISSN 1906-5337 (Print) และ ISSN: 2672-9539 (Online) ทั้งนี้ได้ดำเนินการขอเลข ISSN ใหม่ คือ ISSN 3027-8376 (Print) และ ISSN: 3056-9559 (Online) </p> <p> </p> <p><strong>ISSN 3027-8376 (Print)</strong><br /><strong>ISSN 3056-9559 (Online)</strong></p> <p>วารสารวิชาการ คณะเทคโนโลยีอุตสาหกรรม มหาวิทยาลัยราชภัฏ ลำปางจัดทำขึ้น เพื่อเผยแพร่และประชาสัมพันธ์ผลงานวิชาการ ด้าน วิทยาศาสตร์และเทคโนโลยีอุตสาหกรรม โดยทำการตีพิมพ์บทความวิจัย และบทความวิชาการทั่วไป สิ่งประดิษฐ์และนวัตกรรม สาขาวิชาเทคโนโลยี วิศวกรรมศาสตร์ และสหวิทยาการด้านวิทยาศาสตร์และเทคโนโลยี</p>https://li01.tci-thaijo.org/index.php/Itech/article/view/265384Energy, Life Cycle, and Energy Cost Analysis from Waste Heat Recovery of Crude Oil Wells using Organic Rankine Cycle (ORC) 2025-01-08T16:39:28+07:00Puchit Pengsiribenz178tii@gmail.comNattaporn Chaiyatbenz178tii@hotmail.com<p>This research presents a power generation system for waste heat recovery from crude oil wells. The system employed a 10-kW<sub>e</sub> organic Rankine cycle (ORC) with an R-245fa refrigerant as the working fluid and an air-cooled system. A geofluid temperature range of 84.00 – 101.50 °C and a mass flow rate of 2.91 L/s were used to generate power from the ORC system. Test results revealed a net power output of 4.95 kW<sub>e</sub> and a system efficiency of 3.20% from the heat-to-power system. The life cycle assessment (LCA) revealed highly significant midpoint effects under human toxicity of 9.06E+04 kg 1,4-DB eq and climate change of 2.49E+05 kg CO<sub>2</sub> eq. <br />The endpoint impact values encompassed a human health of 8.35E-02 DALY, an ecosystem quality of 2.27E-02 Species·y, and natural resources of 1.71E+03 USD. <br />The LCA single score was approximately 0.00047 Pt. All of these impacts were associated with the use of copper and steel. The economic analysis indicates <br />a levelized energy cost of 0.064 USD/kWh under an investment cost of 1,100,000 Baht.</p>2025-06-28T00:00:00+07:00Copyright (c) 2025 Wittayasara: Integration Apply Engineering and Industrial Technologyhttps://li01.tci-thaijo.org/index.php/Itech/article/view/265212Improving Efficiency of the Picking and Disbursement Process in the Retail Department using the SAP Program: Case Study of Retail and Wholesale Companies Bang Yai District, Nonthaburi2025-01-17T17:12:57+07:00Worathep Treewichitworathep_rru@hotmail.comSomjin Aksornthamworathep_rru@hotmail.comThaloeng Poljaroenworathep_rru@hotmail.comPornthep Kaewchurworathep_rru@hotmail.com<p>The objective of this research was to reduce the steps and time required for product disbursement in the retail department. Based on the data collected, it was found that the disbursement process involved manual document recording, multiple steps, and a lengthy processing time, resulting in work delays. The researcher analyzed the root causes of the problem using a process flow chart and proposed using the SAP program to enhance the efficiency of product disbursement. This approach was based on the "Why-Why Analysis" method. The research results showed that before the improvement, there were 27 steps involved in the disbursement process. After implementing the SAP program, the steps were reduced to 17, a decrease of 10 steps or 37.03%. Additionally, the time required for product disbursement decreased from 2,635 seconds to 1,725 seconds, reducing the time <br />by 910 seconds or 34.53%.</p>2025-06-28T00:00:00+07:00Copyright (c) 2025 Wittayasara: Integration Apply Engineering and Industrial Technologyhttps://li01.tci-thaijo.org/index.php/Itech/article/view/266387Comparative Accuracy and Precision Assessment of Survey Instruments for Teak Tree Height Measurement and Carbon Sequestration Estimation2025-04-09T13:51:04+07:00Sarayut Malailamay@lpru.ac.thDonrudee Sookjailamay@lpru.ac.thThiranan Sonkaewlamay@lpru.ac.thLamay Junthakhaolamay@lpru.ac.thPincha Torkittikullamay@lpru.ac.th<p>This study comparatively evaluated the accuracy and precision of three tree height measurement instruments: a Laser Rangefinder, a Total Station in Remote Elevation Measurement (REM) mode, and a Total Station in Coordinate mode. The research also compared their operational efficiency for teak tree height measurement and demonstrated their application in estimating carbon sequestration. This novel field-based validation offers a comparative analysis for commercially and ecologically significant teak (Tectona grandis), directly linking precise height measurements to carbon stock estimation and addressing the practical need for reliable, efficient survey methodologies in tropical forestry. Height measurements were conducted against a precisely determined reference under controlled offset conditions (-0.50, -0.25, 0.00, +0.25, +0.50 m from true vertical). Results indicated the Total Station (Coordinate mode) yielded the highest accuracy, precision, and overall efficiency, considering acceptable error margins. The Laser Rangefinder was the most rapid but exhibited lower accuracy and efficiency. Field measurements of 93 teak heights across all three instruments showed no statistically significant differences at the 95% confidence level, a consistency observed in repeated and inter-user measurements. Carbon dioxide equivalent calculations of 76,554.19 kg revealed Coordinate mode estimates differed by only 1.29% from the Laser Rangefinder and 4.20% from the REM mode.</p>2025-06-28T00:00:00+07:00Copyright (c) 2025 Wittayasara: Integration Apply Engineering and Industrial Technologyhttps://li01.tci-thaijo.org/index.php/Itech/article/view/265172Analysis of Steel Pipe Conveyance using Star Wheel Mechanism for Energy Efficiency2024-12-09T17:57:02+07:00Sarun Tuedicsaruntuedic@gmail.comJirath Promployjirath.promploy@gmail.comRachata Tobias BaurTobibkk75@gmail.comKeerati Kirasamutranonkeerati.k@cit.kmutnb.ac.th<p>Efficient material handling systems are vital for minimizing energy consumption and enhancing operational efficiency. This study addresses the gap in optimizing Star Wheel mechanisms for steel pipe conveyance, focusing on energy-efficient operations. Specifically, it evaluates the effects of hopper angles (30°, 45°, 60°) and Star Wheel rotational speeds (6 - 18 rpm) on the efficiency of transporting 1-inch diameter, 0.7-meter-long steel pipes. Results reveal that a 30° hopper angle facilitates smooth loading, while rotational speeds of 6, 9, and 12 rpm provide optimal performance, achieving a transport rate of 2,880 pipes per hour and reducing energy consumption to 0.079 watt-hours per pipe. These insights contribute to improved industrial conveyance systems with enhanced energy efficiency.</p>2025-06-28T00:00:00+07:00Copyright (c) 2025 Wittayasara: Integration Apply Engineering and Industrial Technologyhttps://li01.tci-thaijo.org/index.php/Itech/article/view/265401AI-Driven Monitoring and Optimizing of Striko Aluminium Melting Furnace2025-01-08T16:56:41+07:00Teeraphat Intateerapat2543jame@gmail.comChoosak Pornsingpornsing_c@su.ac.thThanathorn Karotkarot_t@su.ac.th<p>This study focuses on optimizing the Striko Aluminium Melting Furnace by leveraging AI-driven predictive analytics to enhance operational efficiency and sustainability. Two machine learning models, Linear Regression (LR) and Radial Basis Function Network (RBFN), were developed to predict critical furnace parameters, including temperature, gas flow, and CO<sub>2</sub> emissions. These models were integrated into a real-time monitoring framework featuring a dashboard for live data visualization and automated alerts to notify deviations from optimal conditions. Comparative analysis revealed the superior performance of the RBFN model, achieving higher prediction accuracy and contributing significantly to operational improvements. <br />The results demonstrated a 21% reduction in energy consumption, an 18% decrease in CO<sub>2</sub> emissions, and a 4.35% increase in product yield. This study underscores the transformative potential of AI in driving energy-efficient, sustainable, and cost-effective industrial furnace operations.</p>2025-06-28T00:00:00+07:00Copyright (c) 2025 Wittayasara: Integration Apply Engineering and Industrial Technology