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Abstract 
 

Nitric oxide (NO) has multiple physiologic functions and its decrease or 
increase is associated with pathophysiology of diseases. NO is produced by nitric 
oxide synthase (NOS)-dependent and NOS-independent pathways. The NO 
concentrations and rate of production from different pathways are determinants of 
its biological functions. NO at low levels produced by constitutive NOS maintains 
adequate blood flow and inhibits platelets in normal situation, while NO at high 
levels produced by inducible NOS plays role in pathophysiologic process. In NOS-
independent pathway, NO is produced from nitrite by the nitrite reductase activity 
of deoxyhemoglobin. In thalassemia, iron overload and oxidative stress lead to 
endothelial dysfunction and decreased NO, which are associated with platelet 
hyperactivity and pulmonary hypertension. Here, the preclinical and clinical studies 
of NO-related and nitrite therapy in β-thalassemia are reviewed. 
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บทคัดยอ 
 

ไนตริกออกไซดมีหนาที่หลายอยางในทางสรีรวิทยา การลดหรือเพิ่มของไนตริกออกไซด
เกี่ยวของกับสรีรพยาธิวิทยาของโรคตาง ๆ    ไนตริกออกไซดถูกสังเคราะหจากวิถีที่อาศัยเอนไซม 
nitric oxide synthase (NOS) และวิถีที่ไมอาศัย NOS   ความเขมขนและอัตราการสังเคราะห
ไนตริกออกไซดเปนปจจัยที่กําหนดหนาที่ในทางชีววิทยา  ไนตริกออกไซดที่ความเขมขนต่ําซึ่งถูก
สังเคราะหจาก NOS ที่ทํางานตอเนื่องทําใหคงการไหลของเลือดและยับยั้งเกล็ดเลือดในภาวะ
ปกติ ในขณะที่ไนตริกไซดที่ความเขมขนสูงถูกสังเคราะหจากเอนไซม inducible NOS มีบทบาท
ในกระบวนการพยาธิสรีรวิทยา  ในวิถีที่ไมอาศัย NOS ไนตริกออกไซดถูกผลิตจากไนไตรทโดยการ
ทํางานของ nitrite reductase ของฮีโมโกลบินที่ปราศจากออกซิเจน  ในโรคธาลัสซีเมีย ภาวะ
เหล็กเกินและ oxidative stress ทําใหเกิดความผิดปกติในการทํางานของเซลลเยื่อบุหลอดเลือด
และลดไนตริกออกไซด ซึ่งมีความเกี่ยวของกับภาวะเกล็ดเลือดไวเกินและความดันของหลอดเลือด
สูงในปอด บทความนี้เปนการทบทวนการศึกษาที่เกี่ยวของกับไนตริกออกไซดและไนไตรทในการ
รักษาโรคธาลัสซีเมีย 
 
คําสําคัญ: ไนตริกออกไซด, โรคธาลัสซีเมีย, ไนไตรท 
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Nitric oxide 
 

Nitric oxide (NO) is a gaseous molecule previously thought to be an air 
pollutant as a product of fossil fuel combustion. The discovery of endothelial derived 
relaxing factor in 1980 has discovered the physiologic roles of NO. From many 
decades of NO study, NO is acknowledged as a key essential molecule in physiology 
and pathophysiology of many human organ systems. Because of its short half-life, 
NO reaches and activates targets in paracrine manner. More recently, there are 
increasing evidences of endocrine activity of NO. NO is converted to more stable 
forms such as nitrite anion (NO2

-) and nitrosated proteins which are transported 
in blood to distant targets. At targets, nitrite can be reduced to NO under     
acidotic hypoxic conditions through a reaction catalyzed by reductase activity of 
deoxygenated heme proteins, including deoxyhemoglobin.1 

 
Synthesis of nitric oxide 

Two major types of NO biosynthesis are NOS-dependent pathway and 
NOS-independent pathway. NOS enzymes are family of enzymes catalyzing the 
production of NO from L-arginine. There are 3 isoforms of NOS: neuronal NOS 
(nNOS or NOS1), inducible NOS (iNOS or NOS2) and endothelial NOS (eNOS or 
NOS3). nNOS and eNOS are constitutive NOS (cNOS) enzymes which produce NO 
continuously at low physiologic concentrations to maintain vascular homeostasis. In 
NOS-independent pathway, NO is produced from nitrite2 and through the entero-
salivary nitrate-nitrite-NO pathway.3 Regarding the bioactivation of nitrite to NO, 
nitrite is reduced to NO by many heme-containing proteins and molybdenum-
containing proteins under hypoxia (Table 1).  

For example, deoxyhemoglobin in RBC can reduce nitrite to NO under 
hypoxia, contributing to hypoxic vasodilation phenomenon and platelet inhibition.1,4 
In addition, xanthine oxidase in hypoxic tissues is also able to convert nitrite to NO. 
During ischemia, NO inhibits cellular respiration in mitochondria.5,6 The latter 
suggests the protective effect of NO and nitrite in ischemic-reperfusion injury. In the 
enterosalivary nitrate-nitrite-NO pathway, nitrate in blood is secreted into saliva.7,8 
Nitrate in saliva is reduced to nitrite by nitrate reductase of oral commensal bacteria 
located in deep crypts of the posterior part of tongue. Thereafter, salivary nitrite is 
swallowed and absorbed at duodenum into blood.  
 
Biological functions of nitric oxide 

NO regulates many physiological processes; for example, the cardiovascular 
homeostasis, neurotransmission, cell proliferation, immune response9, and 
apoptosis10 (Table 2). NO is constitutively produced by eNOS and nNOS. NO from 
nNOS is involved in learning, memory and neurogenesis. NO synthesized in the 
central and peripheral nervous system by nNOS acts as a neurotransmitter that 
stimulates guanylyl cyclase pathway and results in vascular smooth muscle 
relaxation.11,12 NO produced by eNOS in endothelial cells maintains adequate tissue 
perfusion by induction of vasorelaxation, inhibition of platelet aggregation, and 
inhibition of neutrophil and platelet adhesion to endothelial cells. On the other hand, 
iNOS is an inducible enzyme found primarily in inflammatory cells. The expression 
of iNOS is induced by bacterial lipopolysaccharide, cytokines and many agents.                 
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In contrast to low nanomolar concentrations of NO produced by eNOS and nNOS, 
NO is produced by iNOS at high concentrations and rapid rate, leading to 
cytotoxicity to microorganism and tumor cells. 
 
 
 
Table 1.  Nitrite conversion to NO by proteins and enzymes. 
 

Proteins Cellular or tissue 
location 

Reaction rate 
constant 
(M-1.s-1) 

Optimal 
condition(s) 

Heme proteins    

Deoxyhemoglobin13-15  Red blood cells 1.23104  Hypoxia 

Deoxymyoglobin16 
 

Skeletal and cardiac 
muscles  

12.4 Hypoxia 

Deoxyneuroglobin17 Neurons of both the 
peripheral and central 
nervous system 

0.12 Hypoxia 

Cytochrome c oxidase18 Intermembrane space of 
mitochondria in many 
tissues 

NA Hypoxia, 
pH ≤ 6 

eNOS19-21  Endothelial cells  NA Hypoxia 

Molybdenum-containing proteins 

Xanthine 
oxidoreductase22 

Cytosolic enzyme in 
many tissues 

22.910-3 Hypoxia, 
pH ≤ 6 

Aldehyde oxidase23 Cytosolic enzyme in 
many tissues 

2.710-3 Hypoxia, 
pH = 6.0 

Mitochondrial 
amidoxime-reducing 
component (mARC)24 

Mitochondria in many 
tissues 

mARC-1: 0.6 
mARC-2: 0.2 

Hypoxia, 
pH = 6.4 

NA = No available data 
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Table 2.   Signaling and functions of NO produced from different sources. 
 

Sources NO or NOx levels signaling Function and effects 

NOS-dependent 

nNOS Low levels,  
12 nM/µg protein 
in supernatant of 
central catechol-
aminergic 
neuronal cell line25 

sGC-cGMP-PKG  Long term regulation of synaptic 
transmission 

 Involved in memory function26 
 Central regulation of blood pressure 
 Regulation of smooth muscles, 

including blood vessel, 
gastrointestinal tract27, and penile 
corpus cavernosum24,28 

iNOS High levels,  
40 µM nitrite in 
tumor cell lysis29, 
1.45 µg/mL nitrate 
in squamous cell 
carcinoma tissue30 

Peroxynitrite 
production31 

 Cytostatic and cytotoxic to cells 
including parasitic microorganism32 
and tumor cells29 

 Cause DNA strand breaks and 
fragmentation33 

 Inhibition of DNA repair in tumor 
cells34 

eNOS Low levels,  
50-300 nM nitrite 
in blood 

sGC-cGMP-PKG   Vasodilation35,36 
 Inhibition of platelet aggregation and 

adhesion  
 Inhibition of leucocyte adhesion and 

vascular inflammation37 
 Inhibition of smooth vascular muscle 

proliferation38,39 
 Promotion of angiogenesis40 

NOS-independent 

Nitrite reduction to NO sGC-cGMP-PKG  Hemoglobin-derived NO 
 A major pool of NO, responsible for 

hypoxic vasodilation1 
 Prevention of hypertension41 

Myoglobin-derived NO 
 Downregulation of cardiac energy 

status42 
 Protection against myocardial 

infarction by inhibition of cellular 
respiration, limitation of ROS 
generation and inhibition of 
mitochondrial enzymes43 

Dietary nitrate  Nitrate is reduced 
to nitrite by oral 
bacterial nitrate 
reductase 

 sGC-cGMP-PKG  

 Gastroprotective effect by increasing 
gastric mucosal blood flow and 
mucus production44 

 Lowering blood pressure and 
inhibition of platelet aggregation45-47 

Abbreviations: cGMP, cyclic guanosine monophosphate; NOS, nitric oxide synthase; PKG, protein 
kinase G; ROS, reactive oxygen species; sGC, soluble guanylyl cyclase  
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Fate and metabolism of NO 
After produced in endothelial cells, NO diffuses to vascular smooth muscle 

cells. NO binds and stimulates soluble guanylyl cyclase (sGC), an enzyme recognized 
as NO receptor (Figure 1). sGC is a heme-containing protein that converts guanosine 
triphosphate (GTP) into cyclic guanosine monophosphate (cGMP), a second messenger 
that causes activation of protein kinase G (PKG). Activation of PKG induces 
downstream cascades leading to inhibition of inositol trisphosphate (IP3)-mediated 
release of calcium from sarcoplasmic reticulum (SR). PKG phosphorylates the 
voltage-gated calcium channels, causing the channel inhibition. Phosphorylation of 
phospholamban by PKG disinhibits the calcium-ATPase, allowing sequestration of 
cytosolic calcium into SR. Altogether, the processes result in a decrease in cytosolic 
calcium and smooth muscle relaxation. In normoxia, NO is oxidized rapidly by 
oxyhemoglobin, yielding nitrate and methemoglobin with the rate constant close to 
diffusion limit (6–8×107 M−1s−1). In contrast to normoxic condition, NO reacts with 
deoxyhemoglobin, yielding iron-nitrosyl hemoglobin (an NO adduct with hemo-
globin) under hypoxia. S-nitroso hemoglobin (SNO-Hb) is also generated from the 
interactions between NO and thiol group of cysteine-93 of β-globin.48 

 
 

 
 
Figure 1.   Fate and metabolism of NO. The most sensitive target of NO for 

biological actions is soluble guanylyl cyclase (sGC). NO at physiologic 
concentrations (low nM) activates sGC, resulting in vasodilation and 
platelet inhibition. NO also binds to ferrous ion (Fe2+) in deoxygenated 
heme proteins such as deoxyhemoglobin (deoxyHb) to form iron-
nitrosyl hemoglobin (HbNO). NO interacts with sulhydryl group (R-SH) 
of protein to form S-nitroso adduct (R-S-NO). Because HbNO and R-S-
NO can release NO, they are considered as NO carriers. NO can be 
oxidized by oxygen (O2) to be nitrite anion (NO2

-), by superoxide anion 
(O2

-) to form peroxynitrite (ONOO-), and by oxyhemoglobin (oxyHb) to 
form nitrate (NO3

-). The reaction of NO with oxyHb yields nitrate and 
methemoglobin (metHb). Nitrate is biologically inactive because there is 
no human enzyme that can reduce it to nitrite and NO, while nitrite can 
be converted to NO by the nitrite reductase of heme proteins.  
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Thalassemia 
 

Thalassemia is an inherited disorder of hemoglobin synthesis. Hemoglobin 
is an iron-rich protein in RBC which works as an oxygen carrier from lungs to other 
tissues. Thalassemia patients carry a defective globin gene associated with inability 
to produce normal hemoglobin or reduction in synthesis of hemoglobin. RBC of 
thalassemia patients are destroyed early by the reticuloendothelial system. 

Chromosome 11 contains genes for β-globin synthesis. β-thalassemia minor 
or β-thalassemia traits have one abnormal β-globin gene. Normal hemoglobin or 
hemoglobin A contains 2 α- and 2 β-globin chains. In β-thalassemia, the insufficient 
or absent production of β-globin chain leads to the decrease of hemoglobin A levels. 
From the recently large cohort study49, the prevalence of β-thalassemia in Thailand 
is 12.5%. β-Thalassemia is classified into 2 types, including thalassemia major 
(Cooley’s anemia) and thalassemia intermediate. 

The clinical severity of β-thalassemia ranges from mild or non-transfusion-
dependent thalassemia to severe or transfusion-dependent thalassemia. Hemolysis, 
ineffective erythropoiesis and reduction in hemoglobin synthesis result in anemia in 
β-thalassemia. Ineffective erythropoiesis causes bone marrow expansion. Marrow 
expansion results in deformities of skeletal bones and a variety of growth and 
metabolic abnormalities.50 Extramedullary hematopoiesis in β-thalassemia patient 
results in enlargement of spleen and liver. The major cause of death is from cardiac 
disorders. From a retrospective study in 447 transfusion-dependent β-thalassemia 
patients51, the most common morbidities were endocrinologic (44.7%) and cardio-
vascular (41.3%). The 20-year survival rate is 85-88%. The 40- and 60-year survival 
rates are 63 and 54%, respectively.52,53 
 
Pathophysiology 

The decrease in β-globin in β-thalassemia results in excessive α-globin 
accumulation in RBC. The excessive α-globin chain is destroyed by specific erythroid 
protease.54 The excessive α-globin chains are unable to form tetramer, but precipitated 
in the RBC precursors in bone marrow as inclusion bodies.55 Ineffective erythro-
poiesis and shortened RBC lifespan result in anemia in these patients. Iron overload 
occurs because of blood transfusions and increased intestinal iron absorption. 
Increased levels of heme, hemichrome and iron are responsible for reactive oxygen 
species (ROS) generation which causes damages to lipids and proteins through 
oxidative stress.54 Oxidation of RBC membrane by ROS causes membrane rigidity 
and loss of deformability. Defective RBCs are destroyed by reticuloendothelial 
system more easily than normal RBC. 
 
Cardiovascular complications in β-thalassemia 

Heart diseases  The most common complications in β-thalassemia are cardio-
vascular disorders. Cardiac complications are the primary causes of death and the major 
causes of morbidity in thalassemia. Cardiomyopathy in thalassemia is categorized 
into 2 phenotypes: dilated left ventricular cardiomyopathy and restrictive left 
ventricular filling.56 β-Thalassemia patients have an increased risk of arrhythmia, 
including premature atrial contractions, premature ventricular contractions and atrial 
fibrillation. In 47 β-thalassemia major patients with preserved left ventricular function57, 
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abnormal ventricular depolarization and repolarization were observed. From a cross-
sectional study in 120 patients with β-thalassemia intermedia and major58, both atrial 
and ventricular arrhythmias were detected. Premature atrial contractions were found 
in 23.3% and 36.6% of β-thalassemia intermedia and major, respectively. The 
prevalence of atrial fibrillation ranges from 14 to 20% in β-thalassemia major 
patients, depending on the detection method.59,60 Acute pericarditis and myocarditis 
may develop and lead to systolic heart failure in these patients.61 

Hypercoagulable stage There are case reports of ischemic stroke, deep vein 
thrombosis and pulmonary embolism in β-thalassemia.62 There are many possible 
mechanisms of hypercoagulability in thalassemia.63 Increased platelet aggregation64,65 
and increased expression P-selectin and CD6366 (surface markers of platelet 
activation) were reported. The levels of anticoagulant proteins (protein C, protein S, 
D-dimer and fibrinogen) and antithrombin III decrease in β-thalassemia.67,68 
Microparticles could induce platelet activation in thalassemia69. Microparticles from 
splenectomized hemoglobin E/β-thalassemia (HbE/β-thal) patients enhances platelet 
activation by increasing P-selectin expression and induction of platelet-neutrophil 
aggregation. 

Pulmonary hypertension (PH) PH is a serious vascular complication with 
poor prognosis, which eventually causes right-sided heart failure in -thalassemia.70 
By using echocardiography as a screening tool, elevated tricuspid regurgitant velocity 
(TRV) was found in 50% of -thalassemia patients.71 Although the echocardio-
graphy is used to identify patients at risk of PH, this technique may report a false 
positive error in patients who have high cardiac output.72 Thus, the right heart 
catheterization should be used to diagnose PH. By right heart catheterization, the 
prevalence of PH was reported to be 1.1% and 4.8% in -thalassemia major and 
intermedia, respectively.73 PH in thalassemia and other hemolytic diseases is classified 
to Group 5 PH (PH with unclear multifactorial mechanisms).74 Splenectomy, advanced 
age, hemolysis, and hypercoagulability are risk factors for PH in β-thalassemia.75 
Time after splenectomy has positive correlation with increased TRV in -thalassemia 
patients.76 Hypercoagulability and thrombosis which are found after splenectomy 
play roles in the development of PH.77,78 In the absence of spleen, there is an increase 
in activated thrombin which activates platelets and coagulation cascade, leading to 
thrombosis (Figure 2).79,80 In splenectomized patients, platelet activation correlated 
with TRV and cell-free hemoglobin.81,82  
 
Medications for -thalassemia  

The hemoglobin concentrations in thalassemia are therapeutically maintained 
at 7 to 10 g/dL. In -thalassemia intermedia, blood transfusion may be unnecessary 
while it is required in -thalassemia major.83 Repeated transfusion leads to iron 
overload and organ dysfunction, including diabetes mellitus, cardiomyopathy and 
liver disease. Iron chelator therapy with parenteral drug (deferoxamine) or oral 
drugs (deferiprone and deferaxirox) is necessary.84,85 Additionally, hydroxyurea is 
used for induction of -globin (to increase fetal hemoglobin) in -thalassemia.86 
Hydroxyurea can cause 1 to 5 g/dL increase in hemoglobin.87 However, the response 
to hydroxyurea varies in these patients. The adverse effects of hydroxyurea are 
cytopenia, opportunistic infection, azoospermia, and hypomagnesemia.88 For treatment 
and prevention of thrombosis, aspirin is generally prescribed as anti-platelet drug.62 
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Recently, hematopoietic stem cell transplantation is a curative treatment for thalas-
semia.89 The success rate of transplantation is 80-90%; however, the transplantation 
therapy is successful in young children (≤14 year of age90) with HLA-identical 
sibling donor. The availability of HLA-matched donors, patient’s age, risk of 
graft rejection, and graft-versus host disease are limitations of transplantation in 
thalassemia.91 

Nowadays, gene therapy is a strategy to overcome the lack of HLA-match 
donor using transduced autologous hematopoietic stem cells.92 The β-globin-
expressing lentivirus is transduced into autologous CD34+ cells. Patients undergo 
myeloablation before infusion of -globin-expressing cells. Although the long-term 
efficacy and safety has not been documented, gene therapy has shown promising 
data. This therapy eliminates the need of blood transfusion in 22 patients with severe 
-thalassemia without serious adverse effects.92  
 

 
 
Figure 2.  Proposed pathophysiology of pulmonary hypertension in β-thalassemia. 

After splenectomy, β-thalassemia patients have increased levels of 
phosphatidylserine (PS)-exposed red blood cells (RBCs), platelets and 
cell-free hemoglobin (Hb). PS-exposed RBC activates thrombin. 
Intravascular hemolysis is present after splenectomy, allowing the 
release of hemoglobin and arginase from RBC. Plasma arginase and cell-
free hemoglobin decrease NO availability. Increased thrombin and 
platelet activity are factors leading to increased pulmonary vascular 
resistance and pulmonary hypertension. Hemodynamic changes due to 
anemia such as increases in heart rate (HR), stroke volume (SV) and 
cardiac output (CO) produce adverse effects on the heart and pulmonary 
vessels.   
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NO in thalassemia  
Because NO has short half-life (milliseconds) in blood, nitrite as stable NO 

derivative is measured as a marker of endothelial function. Approximately 70% of 
plasma nitrite is from NO produced by eNOS in endothelial cells.93 Even if the 
endothelial dysfunction has been reported in -thalassemia94,95, the NO level is 
controversial due to different methods of measurement. The blood nitrite levels 
are 176±17 nM (mean±SD) in healthy volunteers when measured by chemi-
luminescence NO analyzer.96 Although most studies reported a decrease in blood 
nitrite levels in -thalassemia (Table 3), its levels are different. For example, the 
nitrite levels measured by Griess assay was in micromolar ranges97 whereas those 
measured by chemiluminescence method was in nanomolar ranges. By 
chemiluminescence method, we found a decrease of nitrite in RBC and correlation 
of nitrite with severity of pediatric HbE/-thal.98 The nitrite levels exhibited negative 
correlations with hemolytic and oxidative stress markers. In contrast to most studies, 
increased nitrite was reported in RBC of adult HbE/-thal99,100, which could be 
explained by medications. Deferiprone can increase blood nitrite in healthy 
volunteers and HbE/-thal patients. The patients who had chronic deferiprone 
therapy had increased nitrite levels in RBC. In vitro experiment demonstrated that 
deferiprone increased eNOS activity by inducing phosphorylation of eNOS at 
Ser1177 in primary human pulmonary artery endothelial cells.99 In addition, 
hydroxyurea and deferoxamine also increase eNOS phosphorylation.101,102 Increased 
iNOS expression due to chronic inflammation is another possible cause of increased 
nitrite in blood of adult HbE/-thal. NOx levels were reported in many studies.103-106 

 
Table 3.  Changes in NOx (nitritenitrate), nitrite and nitrate levels in β-thalassemia. 
 

 Healthy β-thal Method 

NOx level (µM)    

Kukongviriyapan et al.95 31.6±16.9 35.0±23.4 Griess assay with NR 

El-Hady et al.105 33.0±8.9 12.1±5.1* Griess assay with NR 

Singer et al.81 7.2±2.0 9.1±12.0 Chemiluminescence 

Satitthummanid et al.104  117.2±27.3 135.8±11.3 Griess assay with NR 

Uaprasert et al.106   178.2±17.6 132.4±32.5* Griess assay with NR 

Nitrite level (nM)    

Suvachananonda et al98 RBC:  331.0±21.1  

Plasma:  67.2±8.1  

  154.3±21.8* 

 82.9±11.1  

Chemiluminescence 

Sriwantana et al. 99 RBC:  112.2±12.4  

Plasma:  63.9±12.6   

 179.2±27.4* 

 98.0±12.5  

Chemiluminescence 

Chamchoi et al.100 WB:   163.6±40.9   217.8±95.8* Chemiluminescence 

Nitrate level (µM)    

Suvachananonda et al98 Plasma: 18.8±1.2   22.2±2.0  Chemiluminescence 

Sriwantana et al.99 Plasma:  24.2±2.4   28.5±2.8  Chemiluminescence 

Values are expressed as mean±SE *Significant differences (p<0.05) compared to healthy groups.             
NR, nitrate reductase; RBC, red blood cell; WB, whole blood.  
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Role of NO and development of PH in -thalassemia   NO is an essential 
molecule that regulates vascular homeostasis. Despite unexpected elevated nitrite 
found in adult patients, reduced NO bioavailability and endothelial dysfunction is 
well documented in thalassemia.94,95 Both extravascular hemolysis and intravascular 
hemolysis are present after spleen removal.107 Cell-free hemoglobin can scavenge 
NO at 1000-fold faster rate than hemoglobin inside RBC.108 Hemolytic markers such 
as cell-free hemoglobin and lactate dehydrogenase (LDH) had positive correlations 
with TRV, suggesting the contribution of hemolysis on development of PH. 
Moreover, arginase from lysed RBC degrades L-arginine, leading to decreased NO 
bioavailability.109 In -thalassemia patients with elevated TRV, L-arginine in plasma 
decreased and had negative correlation with TRV. In HbE/β-thal, decreased nitrite 
reductase (NR) activity of HbE were associated with PH.100 Due to the difference in 
redox properties between HbE and hemoglobin A (HbA), the rate of NO generated 
by NR of HbE decreases about 2.5 folds compared to HbA in vitro.110 In HbE/β-thal, 
NO generation from NR of deoxyhemoglobin dialysate decreased in HbE/β-thal.100 
The NR activity showed negative correlation with TRV of HbE/β-thal patients.  

Potential therapeutic use of NO in thalassemia Because cyclic guanosine 
monophosphate (cGMP) is a messenger for vasodilatory effect of NO, inhibition of 
phosphodiesterase-5 (PDE-5) by sildenafil is used for PH in thalassemia. The 
efficacy of sildenafil for PH in thalassemia has been demonstrated in several case 
reports and small open-label trials. Improved PH symptoms and echocardiographic 
parameters were reported in 2 -thalassemia patients undergoing 15- and 24-months 
treatment with sildenafil.111,112 An open-label trial of sildenafil in 7 -thalassemia 
patients showed the improvement of New York Heart Association Functional 
(NYHA) class, echocardiographic parameters and 6-minute walk distance.113 In 
other study, sildenafil caused improvement of NYHA and echocardiographic 
parameters in 10 -thalassemia patients without improvement in 6-minute walking 
distances.114 Up to date, there is no randomized control trials of sildenafil for PH in 
thalassemia. 

NO can induce pulmonary vasodilation. However, the use of NO gas is 
limited by difficulty in method of delivery.115 The local delivery of nitrite by 
inhalation is a promising approach for PH in -thalassemia. Inhaled nitrite is 
converted to NO in lungs with small systemic effect. Inhaled nebulized nitrite was 
investigated in 5 HbE/-thal patients with PH. Inhalation of nitrite (15 and 40 mg) 
immediately decreased pulmonary artery pressure as measured by right heart 
catheterization and echocardiography.116 The effect of inhaled nitrite disappeared 
after end of inhalation. The increase in exhaled NO after nitrite inhalation indicated 
the local conversion of nitrite to NO in lungs of HbE/-thal patients. Moreover, 
inhaled nitrite inhibited platelet activity and increased the phosphorylated vasodilator- 
stimulated phosphoprotein in platelets.117 Long-term trial of inhaled nebulize nitrite 
are under investigation in -thalassemia patients with PH. 

 
Conclusion 

  
NO is essential to maintain vascular homeostasis and enough perfusion. NO 

is synthesized constitutively from eNOS to serve these functions. Because the 
activity of eNOS is decreased during hypoxia, NO is instead produced from nitrite 
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via the nitrite reduction catalyzed by deoxyhemoglobin. In thalassemia, the presence 
of endothelial dysfunction and possible impaired eNOS activity are believed to 
cause a decrease in NO bioavailability, contributing to platelet hyperactivity and 
pulmonary hypertension. Considering the protective effects of NO on vasculature 
and decreased NO in thalassemia, NO or nitrite therapy is promising strategy to treat 
vascular complications in thalassemia.  
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