



# Thai Journal of Pharmacology

www.pharterst.or.th

วารสารเภสัชวิทยา

Official Publication of  
Pharmacological and Therapeutic Society of Thailand

## Editorial

## Letter to editors

## Research articles

Protein kinase C isozymes antagonize arginine vasopressin-induced increase in  $IP_3$  and intracellular calcium concentration in IN-R1-G9 hamster glucagonoma cell line

The inhibition of cyclooxygenase-2 expressed in endotoxin-treated endothelial cells by prostaglandin  $E_2$  is mediated through cAMP

## Reviews

The comparative study of tacrolimus and cyclosporin used in renal transplantation

Toxicity of appetite suppressants : fenfluramine and PPA

## New drugs

Sultamicillin, sulbactam/ampicillin : a re-evaluation

Sibutramine : the novel anti-obesity drug for effective weight control

## Case report

Atenolol-related skin rash : a case report

## Pharmacological digest

## Contents

Jan-Apr 2002, Vol. 24, No. 1

ISSN 0125-3832

# Thai Journal of Pharmacology

is owned and published every four months by the Pharmacological and Therapeutic Society of Thailand.

## Board of Editors

**Editor** Supatra Srichairat

**Associate Editors** Laddawal Phivthong-ngam Suwat Wimolwattanapun  
Pravit Akarasereenont Supeecha Wittayalertpanya

**Website correspondent** Nisamanee Satyapan

## **Editorial Board**

|                            |                          |
|----------------------------|--------------------------|
| Adisak Wongkajornsilp      | Pornpen Pramyothin       |
| Amnuay Thithapandha        | Prasert Songkittiguna    |
| Borpit Klangkalya          | Sopit Thamaree           |
| Bunkerd Kongyingyoes       | Srichan Phornchirasilp   |
| Chaicharn Sangdee          | Siriporn Fungwithaya     |
| Chandhanee Itthipanichpong | Sirintorn Yibchok-anun   |
| Dhasanai Suriyachan        | Suree Jianmongkol        |
| Jintana Sattayasai         | Sumana Chompootaweeep    |
| Krongtong Yoovathaworn     | Veerapol Kukongviriyanan |
| Nisamanee Satyapan         | Watcharee Limpanasitikul |
| Nongluck Sookvanichsilp    | Yupin Sanvarinda         |

**Manager** Supeecha Wittayalertpanya

**Office** Department of Pharmacology  
Faculty of Medicine, Chulalongkorn University,  
Chulalongkorn Hospital, Rama 4 Road, Bangkok 10330,  
Thailand. Tel/Fax 2511965

**Notice** The opinions expressed herein are those of the authors and do not necessarily  
reflect the views of the editors or the publisher.

# Thai Journal of Pharmacology

Vol. 24, No. 1, Jan-Apr 2002

## CONTENTS

### 3 EDITORIAL

### 5 LETTER TO EDITORS

### RESEARCH ARTICLES

9 Protein kinase C isozymes antagonize arginine vasopressin-induced increase in IP<sub>3</sub> and intracellular calcium concentration in IN-R1-G9 hamster glucagonoma cell line  
*S Yibchok-anun, W H. Hsu*

21 The inhibition of cyclooxygenase-2 expressed in endotoxin-treated endothelial cells by prostaglandin E<sub>2</sub> is mediated through cAMP  
*P Akarasereenont, K Techatisak, S Chotewuttakorn, A Thaworn*

### REVIEWS

31 The comparative study of tacrolimus and cyclosporin used in renal transplantation  
*C Boontharikssiri*

45 Toxicity of appetite suppressants : fenfluramine and PPA  
*V Lekskulchai*

### NEW DRUGS

55 Sultamicillin, sulbactam/ampicillin : a re-evaluation  
*N Satyapan*

65 Sibutramine : the novel anti-obesity drug for effective weight control  
*T Suansanae, C Suthisisang*

### CASE REPORT

77 Atenolol-related skin rash : a case report  
*V Wiwanitkit*

### 81 PHARMACOLOGICAL DIGEST

**Pharmacological and Therapeutic Society of Thailand  
Executive Committee  
2002 - 2004**

**Advisory Executive Committee**

Sunan Rojanavipat  
Amnuay Thithapandha  
Borpit Klangkalya  
Dhasanai Suriyachan  
Sumana Chompoothawee  
Udom Chantrarakrsri  
Methi Sanpanich  
Peerapol Euswas

**President**

Srichan Phornchirasilp

**Vice president**

Yupin Sanvarinda

**Pre-president**

Chaicharn Sangdee

**Secretary General**

Supeecha Wittayalertpanya

**Academy**

Supatra Srichairat

**Treasurer**

Chongkol Tiangda

**Hospitality**

Payong wanikiat

**Editors**

Supatra Srichairat

**Register**

Somjai Nakornchai

**Committee**

Khaisaeng Rojsathaporn  
Pravit Akarasereenont  
Prapawadee Puapairoj  
Mayuree Tantisira  
Laddawal Phivthong-ngam  
Warungkana Chidchuangchai

## EDITORIAL

Dear readers and members,

You are reading the first issue of the Thai Journal of Pharmacology of this year if we do not count for the Supplement Issue which is the proceeding of our Annual Meeting 2002. Actually, our members who missed the meeting would have received that issue within the past April. If you have not received it, you may ask for the issue from editorial team. We will send it to you as soon as possible. It's unfortunate that the Society's website is now in the process of renovation. So we can not see the content of the previous issues of the journal from our website as usual. It's also my regretful. Certainly, our mission to our society was constructed from good intention, voluntariness and the strong willingness to bring our society to be more recognized. This beautiful expectation and objective shall not come true if there is no cooperation of our members. Please share your opinion, give us any suggestion to the Pharmacological Society and Therapeutic of Thailand by passing through our journal. We will be very appreciated to be your media sending your opinion to the executive committee and other members. Letter to editor is not only for your knowledge exchange, it is also for expressing your idea in general, whatever concerning public health relating with drugs. The policy of 30 Baths for every diseases has shown something. It should be a point that we need to know what shall be affected to the overview of our public health system. The acute phase has been known to affect the practice. More or less, what will be going on in the next phase or in the future? Is there anyone who can share his or her informative experience?

Supatra Srichairat  
Editor

## บรรณาธิการແຄລງ

## เรียนท่านผู้อ่านและสมาชิกสมาคม

ฉบับที่ท่านกำลังอ่านอยู่นี้เป็นฉบับแรกของปีนี้ ถ้าไม่นับฉบับพิเศษที่เป็น proceeding ของการประชุมวิชาการประจำปี 2545 ของสมาคม GLES วิทยาแห่งประเทศไทย แน่นอนว่าสมาชิกที่ไม่ได้เข้าร่วมประชุมคงจะได้รับฉบับนั้นไปแล้วในเดือนเมษายนที่ผ่านมา ถ้ายังไม่ได้ก็ขอให้แจ้งมายังกองบรรณาธิการ เป็นที่น่าเสียดายว่าเว็บไซท์ของสมาคมกำลังอยู่ในระหว่างการปรับปรุง ท่านจึงยังไม่สามารถเปิดดูวารสารจากเว็บไซท์ของสมาคมได้ในระหว่างนี้ ต้องขออภัยเป็นอย่างสูง แน่นอนว่าการกิจของพวกราทีมีต่อสมาคมฯ เกิดจากความตั้งใจดี และเป็นความสมัครใจที่ต้องการให้สมาคมฯ เป็นที่ยอมรับจากลังค์คุณทั้งภายในและภายนอกประเทศไทยมากขึ้น ความมุ่งมั่น และจุดประสงค์ที่ดีเช่นนี้คงไม่เกิดขึ้นแน่ๆ ถ้าขาดความร่วมมือร่วมใจกันจากพวกราทว่า GLES วิทยา ช่วยกันแสดงความคิดเห็น และให้ข้อเสนอแนะแก่สมาคมฯ โดยผ่านมาทางวารสารสาร GLES วิทยานี้ เรายินดีเป็นสือกกลางที่จะส่งผ่านความคิดเห็นของท่านไปยังกรรมการบริหารสมาคมฯ และสมาชิกท่านอื่นๆ โดยส่งจดหมายถึงบรรณาธิการ ซึ่งนอกจากเป็นเวทีแลกเปลี่ยนความรู้แล้ว ยังช่วยถ่ายทอดความคิดเห็นทั่วๆไปของสมาชิก ไม่ว่าจะเป็นเรื่องอะไรก็ตามที่เกี่ยวกับสุขภาพทั่วไป ที่มีญาติโยม โดยเฉพาะขณะนี้มีนโยบาย 30 นาทรักษาทุกโรคที่ส่งผลปฏิบัติออกมานแล้ว ก็น่าจะเป็นประเด็นหนึ่งที่เรออย่างทราบว่ามีผลอย่างไรบ้างกับระบบสาธารณสุขของประเทศไทยรวม ผลกระทบสั้นที่ออกมานอาจกระทบต่อการปฏิบัติบ้างไม่มากก็น้อย แล้วระยะต่อไปหรืออนาคตจะเป็นอย่างไร น่าจะมีใครที่มีประสบการณ์เขียนมาแลกเปลี่ยนข้อมูลกันบ้าง

## สุพัตรา ศรีไชยรัตน์ บรรณาธิการสาร

## LETTER TO EDITORS

## เรื่อง Role of COX-2 in cancer-induced angiogenesis

## เรียน บรรณาธิการ

Cyclooxygenase (COX) เป็นเอนไซม์ที่มีความสำคัญทั้งในภาวะที่ร่างกายเป็นปกติและในขณะที่มีพยาธิสภาพ ปัจจุบันพบว่าเกี่ยวข้องกับการเกิดมะเร็งด้วย โดยเฉพาะ cancer-induced angiogenesis ปัจจุบัน COX มีอย่างน้อย 2 ชนิด โดยแตกต่างกันตาม induction pattern, gene sequence expression และ protein structure<sup>1</sup> คือ constitutive isoform (COX-1) ซึ่งสร้างขึ้นในภาวะที่ร่างกายเป็นปกติ และ inducible isoform (COX-2) ซึ่งสร้างขึ้นเมื่อร่างกายเกิดพยาธิสภาพ หรือเกิดขึ้นในสภาวะ physiological stress or pathological defenses เช่น การอักเสบ, มะเร็ง, atherosclerosis และ wound healing เป็นต้น<sup>2</sup> ในสภาวะที่มีเนื้อเยื่อมะเร็งเกิดขึ้น จะสามารถตรวจพบ COX-2 ในลักษณะที่เรียกว่า over-expression ได้ทั้งที่ neoplastic cells, microvascular endothelial cells และ stroma fibroblasts ของเนื้อเยื่อมะเร็งหลายชนิด เช่น human colon carcinoma<sup>3</sup>, squamous cell carcinoma of esophagus<sup>4</sup>, lung cancer<sup>5</sup>, prostate cancer<sup>6</sup>, retinoblastoma<sup>7</sup> เป็นต้น COX-2 over-expression นี้มีบทบาทต่อการเปลี่ยน procarcinogen เป็น carcinogen, การอักเสบ และระบบภูมิคุ้มกัน<sup>8,9</sup>, การกลับเป็นอีกของ

โรค (tumor recurrence) และบทบาทสำคัญที่จะกล่าวถึง คือ เนี่ยวนำการเกิด angiogenesis<sup>10</sup> โดย COX-2 expression มีความสัมพันธ์ (correlation) อย่างมีนัยสำคัญกับ tumor vascularization<sup>11</sup> และ micro-vascular density (MVD) จากการศึกษาพบว่า high MVD เกี่ยวข้องกับ cancer invasion และ metastasis ของ breast, prostate, lung, esophagus, colorectal, endometrial และ cervical cancers<sup>12</sup>

Angiogenesis เกิดขึ้นเมื่อมี positive balance ของ endogenous pro-angiogenic factors<sup>12,13</sup> การทำงานของ COX-2 ซึ่งเกี่ยวข้องกับสภาวะ angiogenesis นั้น มีปัจจัยหลายอย่างเช่นมาเกี่ยวข้องทั้งทางบวกและทางลบ การทดลองต่อเนื่องถึงปัจจุบันทำให้เราทราบถึงปัจจัยหลายชนิด ได้แก่

1. Vascular endothelial growth factor (VEGF) ซึ่งถือเป็น major factor ของ angiogenesis initiation ที่เนี่ยวนำโดย COX-2 expression. VEGF เกี่ยวข้องกับ endothelial cell proliferation และ remodelling ตลอดจนป้องกัน endothelial cell apoptosis<sup>14</sup> COX-2 เนี่ยวนำ VEGF ด้วย COX-2 metabolites ได้แก่ thromboxane A<sub>2</sub> (TXA<sub>2</sub>) และ PGs (PGE<sub>2</sub>, PGI<sub>2</sub>)<sup>15</sup> นอกจากนี้ PGE<sub>2</sub> ยังเนี่ยวนำ matrix metalloproteinase (MMP) โดยกระบวนการที่เกี่ยวข้องกับ NF-κB<sup>9</sup> MMP เป็นเอนไซม์ที่ทำให้เกิด proteolysis ของ extracellular matrix และ

degradation ของ basement membrane ซึ่ง จำเป็นต่อกระบวนการ penetration ของ endothelial cell ใน tumor invasion และ metastasis<sup>10,12,14</sup> และ PGE<sub>2</sub> ยังกระตุ้น bcl-2 เกิดผลยับยั้ง endothelial cell apoptosis อีกด้วย<sup>6</sup>

2. Transforming growth factor ทั้ง TGF- $\alpha^2$ , TGF- $\beta_1^{5,10}$ , TGF- $\beta_2$  และ TGF- $\beta_3$  ควบคุม COX-2 transcription แบบ cell specific และพบ TGF- $\beta$  สูงขึ้น 18 เท่า ใน colon cancer ที่มี metastasis<sup>5</sup> ส่วน epidermal growth factor (EGF) เที่ยวนำทั้ง COX-2 mRNA และ COX-2 protein ได้โดยตรง แต่ก็มีปัจจัยบางอย่างที่กระตุ้น COX-2 expression ทางอ้อมผ่าน EGF receptor เช่น Epstein-Barr virus และ progesterone (ซึ่งตรงข้ามกับ estrogen ที่ลด COX-2 mRNA และ PGE<sub>2</sub> level) ขณะที่ androgen เที่ยวนำ COX-2 expression ใน vas deferens<sup>10</sup>

3. Benzo[a]pyrene (B [a] P) เป็น polycyclic aromatic hydrocarbon พบใน ควันบุหรี่ มีฤทธิ์เพิ่ม COX-2 transcription และ PGE<sub>2</sub> synthesis ใน cultured oral epithelial cells<sup>10</sup>

4. ปัจจัยเที่ยวนำ COX-2 expression อื่นๆ ได้แก่ ภาวะ hypoxia<sup>5,10,14</sup>, insulin-like growth factor (IGF), hepatocyte growth factor (HGF), tumor necrosis growth factor (TNF), ras-oncogene, interleukin 1 (IL-1) และ oncostatin ในกลุ่ม IL-6 ซึ่ง oncostatin เป็น strong inducer ของ COX-2 expression ใน cultured human aortic

smooth muscle cells และการกระตุ้นนี้ สัมพันธ์กับ ระดับ VEGF ที่เพิ่มขึ้น<sup>10</sup>

5. Tumor suppressor protein p53 เป็นโปรตีนที่ยับยั้ง COX-2 expression ผลจากการทดลองใน mouse skin พบว่า ultraviolet B (UVB) กระตุ้น mutation ของโปรตีนชนิดนี้<sup>10</sup>

6. สารจำพวก antioxidants เช่น U74006, trolox ที่มีผลยับยั้ง COX-2 post-transcription level เช่นกัน<sup>10</sup>

เมื่อศึกษาความสัมพันธ์ของ angiogenesis และ COX-2 expression กับการใช้ยา พบว่า dexamethasone ยับยั้ง COX-2 expression ในกระบวนการที่เกี่ยวข้องกับ IL-1 $\beta$  และ TNF- $\alpha^5$  ยาในกลุ่ม classical NSAIDs เช่น aspirin, ibuprofen, naproxen, sulindac ที่สามารถควบคุมการเจริญของเนื้อเยื่ออมะเร็งแม้กระทั้งเมื่อมี low or non COX-2 expression ได้ แต่ข้อเสียในการใช้ยาเป็นเวลานาน คือ gastrointestinal bleeding และ ulceration และผลของยา yang ไม่จำเพาะต่อ COX-2 expression จึงมีการพัฒนา specific COX-2 inhibitors ขึ้น ได้แก่ celecoxib, rofecoxib, parecoxib, valdecoxib และ etoricoxib ยากกลุ่มนี้ celecoxib เป็นยาที่ Food and Drug Administration ของอเมริกา รับรองให้ใช้เป็น chemoprevention ในผู้ป่วย familial adenomatous polyposis (FAP)<sup>16</sup> เนื่องจากมีรายงานการศึกษาว่า celecoxib สามารถยับยั้งการเจริญของเซลล์มะเร็งที่กล้ายพันธุ์ มาจาก adenomatous polyps การศึกษาในปัจจุบันยังพบว่า celecoxib อาจนำไปใช้เป็น monotherapy, combination กับ

chemotherapy หรือ radiation therapy ซึ่งได้ผลดีกับมะเร็งอีกหลายชนิด โดยมีข้อดีคือการใช้ยากลุ่มนี้มีผลข้างเคียงจาก gastrointestinal effects น้อย<sup>17</sup> แต่ผลของการใช้ยาเป็นเวลานานยังต้องศึกษากันต่อไป

ดังนั้น COX-2 expression มีบทบาทหลักด้านต่อ cancer-induced angiogenesis โดยเห็นได้จาก new vessel formation และยับยั้ง endothelial cell apoptosis มีผลต่อ tumor size, recurrence และ invasiveness ตลอดจนเป็น prognostic factor ของโรคมะเร็งบางชนิด การศึกษาถึงวิธียับยั้ง COX-2 expression ในสภาวะ

ดังกล่าว จึงน่าจะเป็นประโยชน์ในการพัฒนาประสิทธิภาพการรักษาและป้องกันโรคมะเร็ง ยังเป็นสาเหตุสำคัญของการตายของประชากรทั่วโลกในปัจจุบัน

รศ.นพ.ดร.ประวิทย์ อัครเสรีนนท์,  
สุขุมทัย บุญมาใส่, สพบ.  
หน่วยเภสัชวิทยาการอักเสบ  
ภาควิชาเภสัชวิทยา  
คณะแพทยศาสตร์ศิริราชพยาบาล  
มหาวิทยาลัยมหิดล

## เอกสารอ้างอิง

1. Akarasereenont P. COX-2 history, concept and its inhibition. In: New trend in NSAIDs therapy: COX-2 inhibitors and classical NSAIDs. P. Akarasereenont and P Amnuaychai, editors. 1<sup>st</sup> edition, 2000, Roenkuang Printing Ltd.: Bangkok, Thailand, pp 3-17.
2. Akarasereenont P. COX-2 inhibitors in the next millennium: Understanding the new classification, potential promises and pitfalls. *Siriraj Hosp Gaz* 1999; 51: 907-910.
3. Gately S. The contribution of cyclooxygenase-2 to tumor angiogenesis. *Cancer Meta Rev* 2000; 19: 19-27.
4. Majima M, Isono M, Ikeda Y, et al. Significant roles of inducible cyclooxygenase (COX)-2 in angiogenesis in rat sponge implants. *Jpn J Pharmacol* 1997; 75: 105-114.
5. Fosslien E. Molecular pathology of cyclooxygenase-2 in neoplasia. *Ann Cli Lab Sci* 2000; 30: 3-21.
6. Uotila P, Valve E, Martikainen P, et al. Increased expression of cyclooxygenase-2 and nitric oxide synthase-2 in human prostate cancer. *Urol Res* 2001; 29: 23-28.
7. Karim MM, Hayashi Y, Inoue M, et al. COX-2 expression in retinoblastoma. *Am J Ophthalmol* 2000; 129: 398-401.
8. Xu XC. COX-2 inhibitors in cancer treatment and prevention, a recent development. *Anticancer Drugs* 2002; 12: 127-137.
9. Dempke W, Rie C, Grethey A, Scholl HJ. Cyclooxygenase-2: a novel target for cancer chemotherapy? *J Cancer Res Clin Oncol* 2001; 127: 411-417.
10. Fosslien E. Molecular pathology of cyclooxygenase-2 in cancer-induced angiogenesis. *Ann Cli Lab Sci* 2001; 31: 325-348.
11. Gallo O, Franchi A, Magnelli L, et al. Cyclooxygenase-2 pathway correlates with VEGF expression in head and neck cancer, implication for tumor angiogenesis and metastasis. *Neoplasia* 2001; 3: 53-61.
12. Rosen L. Antiangiogenic strategies and agents in clinical trials. *Oncologist* 2000; 5: 20-27.
13. Hayes AJ, Li LY, Lippman ME. Antivascular therapy: a new approach to cancer treatment. *BMJ* 1999; 318: 853-856.

14. Griffioen W, Molema G. Angiogenesis: potentials for a new approach to cancer treatment of cancer, cardiovascular diseases and chronic inflammation. *Pharmacol Rev* 2000; 52: 237-267.
15. Usefuji K, Ichikura T, Mochizuki H. Cyclooxygenase-2 expression is related to prostaglandin biosynthesis and angiogenesis in human gastric cancer. *Clin Cancer Res* 2000; 6: 135-138.
16. Thun MJ, Henley SJ, Patrono C. Nonsteroidal antiinflammatory drugs as anticancer agents: mechanistic, pharmacologic and clinical issues. *J Natl Cancer Inst* 2002; 94: 252-266.
17. Katori M, Majima M. Cyclooxygenase-2: its rich diversity of roles and possible application of its selective inhibitors. *Inflamm Res* 2000; 49: 367-392.

## RESEARCH ARTICLES

### PROTEIN KINASE C ISOZYMES ANTAGONIZE ARGinine VASOPRESSIN-INDUCED INCREASE IN IP<sub>3</sub> AND INTRACELLULAR CALCIUM CONCENTRATION IN IN-R1-G9 HAMSTER GLUCAGONOMA CELL LINE

Sirintorn Yibchok-anun<sup>1</sup> and Walter H. Hsu<sup>2</sup>

<sup>1</sup>Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; and <sup>2</sup>Department of Biomedical Science, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA

#### ABSTRACT

Arginine vasopressin (AVP, 100 nM) increased inositol 1,4,5 trisphosphate (IP<sub>3</sub>) production and [Ca<sup>2+</sup>]<sub>i</sub> in a clonal  $\alpha$ -cell line of hamster (glucagonoma cell line In-R1-G9). Ro 31-8220, a PKC blocker, potentiated, whereas PKC activators, phorbol 12-myristate 13-acetate (PMA) and 1-oleoyl-2-acetyl-sn-glycerol (OAG) antagonized AVP-induced increase in IP<sub>3</sub> production and [Ca<sup>2+</sup>]<sub>i</sub>. The potentiation by Ro 31-8220 was decreased by SKF 96365, a receptor-operated Ca<sup>2+</sup> channel (ROC) blocker, but not by nimodipine, a voltage-dependent Ca<sup>2+</sup> channel blocker. In addition, Ro 31-8220 dominated the effects of PMA and OAG on AVP-induced increases in IP<sub>3</sub> and [Ca<sup>2+</sup>]<sub>i</sub>. Down regulation of PKC by pretreatment with PMA for 72 h enhanced AVP-induced [Ca<sup>2+</sup>]<sub>i</sub> increase. We conclude that in In-R1-G9 cells, PKC exerts a negative feedback on AVP-induced increase in IP<sub>3</sub> production, causing a decrease in Ca<sup>2+</sup> release and influx; the latter is mediated by ROC.

**Key words :** IP<sub>3</sub>, AVP, PKC, intracellular calcium

## โปรตีนไคเนส ซี มีผลตระดับ $IP_3$ และแคลเซียมภายในเซลล์ที่ถูกกระตุ้นโดยฮอร์โมนอาร์จีนีน วาสโซเพรสซิน ใน IN-R1-G9 แยมสเตอร์กถูกคากโน-มาเซลล์ไลน์

ศิรินทร์ หยิบโชคอนันต์<sup>1</sup>, และ Walter H. Hsu<sup>2</sup>

<sup>1</sup> ภาควิชาเภสัชวิทยา คณะสัตวแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย กรุงเทพมหานคร 10330 และ <sup>2</sup> Department of Biomedical Science, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA

### บทคัดย่อ

ฮอร์โมนอาร์จีนีน วาสโซเพรสซิน (เอวีพี) ที่ระดับความเข้มข้น 100 นาโนโมลาร์ มีผลเพิ่มการสร้างอิโนซิทอล 1,4,5 ทริสฟอสเฟต ( $IP_3$ ) และเพิ่มระดับแคลเซียมภายในเซลล์ให้สูงขึ้นใน hamster glucagonoma cell line, In-R1-G9 สารเคมีที่ออกฤทธิ์ยับยั้งการทำงานของเอนไซม์ โปรตีนไคเนส ซี (PKC) คือ Ro 31-8220 มีผลเพิ่มฤทธิ์ของฮอร์โมนเอวีพี ในขณะที่ phorbol 12-myristate 13-acetate (PMA) และ 1-oleoyl-2-acetyl-sn-glycerol (OAG) ซึ่งเป็นสารเคมีที่ออกฤทธิ์กระตุ้นการทำงานของเอนไซม์ PKC มีผลยับยั้งการทำงานของฮอร์โมนเอวีพีในการกระตุ้นการสร้าง  $IP_3$  และการเพิ่มระดับแคลเซียมภายในเซลล์ให้สูงขึ้น SKF 96365 ซึ่งเป็น receptor-operated  $Ca^{2+}$  channel (ROC) blocker สามารถยับยั้งฤทธิ์ของ Ro 31-8220 แต่ nimodipine ซึ่งเป็น voltage-dependent  $Ca^{2+}$  channel (VDCC) blocker ไม่มีผลใด ๆ ต่อ Ro 31-8220 นอกจากนี้ Ro 31-8220 ยังสามารถยับยั้งฤทธิ์ของ PMA และ OAG ต่อการทำงานของฮอร์โมนเอวีพีในการกระตุ้นการสร้าง  $IP_3$  และการเพิ่มระดับแคลเซียมภายในเซลล์ให้สูงขึ้น ด้วย เซลล์ In-R1-G9 ที่ได้รับสาร PMA นาน 72 ชั่วโมงมีผลให้เอนไซม์ PKC ถูก down regulated ฮอร์โมนเอวีพีสามารถกระตุ้นการเพิ่มระดับแคลเซียมภายในเซลล์ให้สูงมากขึ้น จากผลการทดลองดังกล่าวข้างต้น สามารถสรุปได้ว่า เอนไซม์ PKC มีผลยับยั้งการทำงานของฮอร์โมนเอวีพีในการกระตุ้นการสร้าง  $IP_3$  ทำให้ปริมาณแคลเซียมที่ถูกหลั่งออกจากการแคลเซียมภายในเซลล์ และที่เคลื่อนเข้ามาน้าจากภายนอกเซลล์โดยผ่านทาง ROC ลดลง ส่งผลให้ระดับแคลเซียมภายในเซลล์ลดต่ำลงด้วย

คำสำคัญ :  $IP_3$ , ฮอร์โมนเอวีพี, เอนไซม์ PKC, ระดับแคลเซียมภายในเซลล์

## INTRODUCTION

PKC is a family of  $\text{Ca}^{2+}$ - and phospholipid-dependent enzymes that mediates a wide range of signal transduction processes. At least 11 PKC isozymes have been identified and divided into three classes based on different requirements for their activations<sup>1-4</sup>. The conventional isozymes (cPKCs)  $\alpha$ ,  $\beta$ I,  $\beta$ II,  $\gamma$  are activated by  $\text{Ca}^{2+}$ , negatively charged phospholipids, diacyl glycerol (DAG) or phorbol esters, whereas the novel isozymes (nPKCs)  $\delta$ ,  $\epsilon$ ,  $\eta$ ,  $\theta$ ,  $\mu$  are  $\text{Ca}^{2+}$ -independent<sup>5,6</sup>. The atypical isozymes (aPKCs)  $\lambda/\iota$  and  $\zeta$  are insensitive to stimulation by  $\text{Ca}^{2+}$ , DAG or phorbol esters; however, they are activated by phospholipid-derived second messengers, such as  $\text{IP}_3$ <sup>6,7</sup>, phosphatidyl serine<sup>8</sup> and phosphatidic acid<sup>9</sup>. Numerous PKC isozymes have been detected in pancreatic islets<sup>10</sup>. In addition, down-regulation of PKC by pretreating rat islets with PMA for 24 hr leads to impairment of arginine-induced glucagon release, which suggests that PKC is present in the  $\alpha$ -cells of the pancreatic islets<sup>11</sup>.

PKC is activated by DAG, which is generated via breakdown of phosphoinositides by  $\text{Ca}^{2+}$ -mobilizing neurotransmitters and hormones such as acetylcholine, vasopressin, oxytocin and bombesin<sup>12</sup>. There is an evidence that both  $\text{Ca}^{2+}$ <sup>13-15</sup> and activation of PKC<sup>11,16</sup> are important in the regulation of glucagon release from  $\alpha$ -cells of pancreatic islet. PMA, a synthetic analog of DAG capable of activating PKC, can increase glucagon release<sup>15,16</sup>, which suggests the participation of PKC in the regulation of glucagon release.

AVP physiologically regulates glucagon release from the rat pancreas by activating  $\text{V}_{1b}$  receptor<sup>17</sup>. The existence of high concentration of AVP in the pancreas<sup>18</sup> suggests a possible local action of this hormone. In addition, AVP induces an increase in  $[\text{Ca}^{2+}]_i$  in hamster glucagonoma In-R1-G9 cells in a biphasic pattern; a peak followed by a sustained phase<sup>19</sup>. This effect is mediated by  $\text{V}_{1b}$  receptors that couple to PTX-insensitive G protein, probably  $\text{G}_q$ . Activation of  $\text{G}_q$  catalyzes PLC- $\beta$  to increase the formation of DAG and  $\text{IP}_3$ . DAG activates PKC while  $\text{IP}_3$  promotes calcium release from the endoplasmic reticulum (ER), leading to an increase in  $[\text{Ca}^{2+}]_i$ , which stimulates glucagon release<sup>20</sup>. However, it is not known if PKC has an impact on AVP-induced increases in the production of  $\text{IP}_3$  and  $[\text{Ca}^{2+}]_i$  that finally lead to glucagon release.

It is a common practice to study the effect of enzymes by inhibiting or activating their activities. In the present study, we used Ro 31-8220, a bisindolmaleimide PKC-blocker, that is selective and specific for PKC isozymes<sup>21</sup> to elucidate the effect of PKC on AVP-induced increase in the production of  $\text{IP}_3$  and  $[\text{Ca}^{2+}]_i$  from In-R1-G9 cells. We also used PMA and OAG, a DAG analog, to activate PKC. In addition, we induced down-regulation of PKC by a long-term PMA treatment to probe the role of PKC on AVP-induced increase in  $[\text{Ca}^{2+}]_i$ .

AVP increases  $[\text{Ca}^{2+}]_i$  in a biphasic pattern, a peak followed by a sustained phase, and the latter suggests the involvement of  $\text{Ca}^{2+}$  influx<sup>19</sup>. Thus, we used SKF 96365, a receptor-operated  $\text{Ca}^{2+}$  channel (ROC) blocker<sup>22</sup> and nimodipine, a voltage-dependent  $\text{Ca}^{2+}$  channel (VDCC) blocker, to determine which type of  $\text{Ca}^{2+}$  channels contributes to the influx. Results of the present study suggest that PKC may exert a negative feedback on AVP-induced increase in  $\text{IP}_3$  production, leading to an attenuation of  $\text{Ca}^{2+}$  release and influx; the latter is mediated by ROC.

## MATERIALS AND METHODS

### Chemicals

RPMI, fetal bovine serum, ionomycin, OAG and PMA were purchased from Sigma (St. Louis, MO, USA). Fura-2 acetoxyethyl ester (fura-2AM) was purchased from Molecular Probes (Eugene, OR, USA). Ro 31-8220 was purchased from Roche Products Ltd. (Hertfordshire, UK). SKF 96365 was purchased from Biomol Research (Plymouth Meeting, PA, USA). Nimodipine was purchased from Research Biochemicals International (Natick, MA, USA).

### Cell culture

The hamster glucagonoma In-R1-G9 cells were maintained in RPMI 1640 with 10% fetal bovine serum and aerated with 5%  $\text{CO}_2$ /95% air at 37°C.

### Measurement of $[\text{Ca}^{2+}]_i$ in cell suspension

$20 \times 10^6$  cells were loaded with 2  $\mu\text{M}$  fura-2 AM in KRB containing (in mM): 136  $\text{NaCl}$ , 4.8  $\text{KCl}$ , 1.5  $\text{CaCl}_2$ , 1.2  $\text{KH}_2\text{PO}_4$ , 1.2  $\text{MgSO}_4$ , 10 Hepes, 1.67 glucose and 0.1% BSA for 30 min at 37°C. The cells were then centrifuged (300  $\times g$ , 2 min) and resuspended

at a concentration of  $2 \times 10^6$  cells/ml with KRB and kept at 24°C until use. Fluorescence ratios of 340/380 nm were monitored by a SLM-8000 spectrofluorometer (SLM Instruments, Urbana, IL). The  $\text{Ca}^{2+}$ -free environment was created by centrifugation (300  $\times g$ , 30 sec) and cell resuspension in  $\text{Ca}^{2+}$ -free KRB supplemented with 10  $\mu\text{M}$  EGTA. Cells were pretreated with Ro 31-8220 for 30 min, PMA or OAG for 10 min before the AVP or ionomycin application. Cells also were pretreated with SKF 96365 for 10 min or nimodipine for 5 min in the presence of Ro 31-8220 prior to the AVP application. For down regulation of PKC, cells were treated with 200 nM PMA in culture media for 72 h, and resuspended in KRB during the experiment. The  $[\text{Ca}^{2+}]_i$  was calibrated as previously described<sup>23</sup>.

#### *Measurement of $[\text{IP}_3]$*

Intracellular  $[\text{IP}_3]$  was measured using a competitive radioreceptor-binding assay kit (Dupont Co., Boston, MA).  $2 \times 10^6$  cells in 1 ml of KRB were placed in polypropylene tubes and equilibrated in a shaking water bath at 37°C for 15 min. The cells were pretreated with Ro 31-8220, OAG or PMA for 30, 10 and 10 min, respectively, before the application of AVP. Incubation with AVP was terminated by adding ice-cold 20% (w/v) trichloroacetic acid at 15 sec. The concentration of  $[\text{IP}_3]$  was determined according to the manufacturer instructions.

#### *Statistical analysis*

All values were presented as mean  $\pm$  S.E.M. Results were analyzed using ANOVA and individual mean comparisons were made using Least Significant Difference test. The significance level was set at  $P < 0.05$ .

## **RESULTS**

#### *Effects of Ro 31-8220, OAG or PMA on AVP-induced $[\text{IP}_3]$ production*

AVP (100 nM) increased  $[\text{IP}_3]$  content about 2 folds over the basal level. This concentration of AVP was used throughout the study. Ro 31-8220 (10  $\mu\text{M}$ ), a selective PKC blocker, significantly enhanced AVP-induced  $[\text{IP}_3]$  content. A membrane-permeable DAG analog, OAG (30  $\mu\text{M}$ ) totally abolished AVP-induced  $[\text{IP}_3]$  content. In addition, the phorbol ester PMA (100 nM) significantly reduced

AVP-induced  $[\text{IP}_3]$  content. Ro 31-8220, OAG or PMA alone did not significantly change the  $[\text{IP}_3]$  content (Fig. 1).

#### *Effects of Ro 31-8220 on AVP-induced $[\text{Ca}^{2+}]_i$ increase*

AVP increased  $[\text{Ca}^{2+}]_i$  in a biphasic pattern; a peak followed by a sustained phase in  $\text{Ca}^{2+}$ -containing medium. Ro 31-8220 (10  $\mu\text{M}$ ) alone did not change the basal  $[\text{Ca}^{2+}]_i$  (control =  $108.3 \pm 10.1$  nM; Ro 31-8220 =  $105.7 \pm 7.7$  nM,  $n = 11$ ). Pretreatment of the cells with Ro 31-8220 potentiated AVP-induced increases in both the maximal and sustained  $[\text{Ca}^{2+}]_i$  (Fig. 2A). In the absence of extracellular  $\text{Ca}^{2+}$ , AVP evoked only a peak increase of  $[\text{Ca}^{2+}]_i$  without the sustained phase which is due to the  $\text{Ca}^{2+}$  release from the ER<sup>19</sup>. Pretreatment with Ro 31-8220 (10  $\mu\text{M}$ ) failed to enhance AVP-induced  $[\text{Ca}^{2+}]_i$  increase (Fig. 2B).

In our previous report, the  $\text{Ca}^{2+}$  peak induced by AVP in In-R1-G9 cells was attributable to the release from ER and to the influx, whereas the sustained phase was attributable to  $\text{Ca}^{2+}$  influx through  $\text{Ca}^{2+}$  channels<sup>19</sup>. To determine whether the potentiation of AVP-induced  $[\text{Ca}^{2+}]_i$  increase by Ro 31-8220 was due to the sustained opening of  $\text{Ca}^{2+}$  channels and to determine which type of  $\text{Ca}^{2+}$  channels was involved, SKF 96365 (0.3-30  $\mu\text{M}$ ) or nimodipine (1  $\mu\text{M}$ ) was applied. SKF 96365, an ROC blocker, inhibited both peak and sustained  $\text{Ca}^{2+}$  phase potentiated by Ro 31-8220 in a concentration-dependent manner. Nimodipine, a VDCC blocker, did not significantly inhibit the Ro 31-8220-elicited potentiation (Table 1).

#### *Effects of OAG on AVP-induced $[\text{Ca}^{2+}]_i$ increase*

OAG (30  $\mu\text{M}$ ) alone did not change the basal  $[\text{Ca}^{2+}]_i$  (control =  $115.2 \pm 21.4$  nM; OAG =  $113.1 \pm 22.7$  nM,  $n = 4$ ). OAG pretreatment for 10 min significantly decreased AVP-induced  $[\text{Ca}^{2+}]_i$  increase. In addition, pretreatment with Ro 31-8220 (10  $\mu\text{M}$ ) for 30 min abolished the blocking effect of OAG on AVP-induced  $[\text{Ca}^{2+}]_i$  increase and further enhanced the AVP-induced sustained phase of  $[\text{Ca}^{2+}]_i$  increase (Fig. 3A).

In the  $\text{Ca}^{2+}$ -free medium, OAG significantly decreased AVP-induced  $[\text{Ca}^{2+}]_i$  increase (Fig. 3B). Although, Ro 31-8220 failed to enhance the effect of AVP in the

absence of extracellular  $\text{Ca}^{2+}$  (Fig. 2B), it was still able to reverse the blocking effect of OAG on AVP-induced  $[\text{Ca}^{2+}]_i$  increase (Fig. 3B).

#### *Effects of PMA on AVP-induced $[\text{Ca}^{2+}]_i$ increase*

AVP-induced  $[\text{Ca}^{2+}]_i$  increase was inhibited by a 10-min treatment with PMA (0.1-100 nM) in a concentration-dependent manner (Table 2). At the highest concentration studied (100 nM), PMA abolished AVP-induced  $[\text{Ca}^{2+}]_i$  increase both in the peak and sustained phase and this inhibitory effect was blocked by the pretreatment with Ro-31-8220 (10  $\mu\text{M}$ ) for 30 min (Fig. 4A).

In the  $\text{Ca}^{2+}$ -free medium, PMA (100 nM) still abolished the AVP-induced  $[\text{Ca}^{2+}]_i$  increase. Again, Ro 31-8220 attenuated the blocking effect of PMA on AVP (Fig. 4B).

#### *Effects of AVP, Ro 31-8220 and OAG on $[\text{Ca}^{2+}]_i$ in cells pretreated with PMA for 72 h*

After a 72-h PMA (200 nM) treatment, both the peak and sustained intracellular  $\text{Ca}^{2+}$  increases induced by AVP became larger and lasted longer compared to those in PMA-untreated cells (Fig. 5A). The AVP-induced  $[\text{Ca}^{2+}]_i$  increases in PMA-pretreated cells were not altered by pretreating the cells with 10  $\mu\text{M}$  Ro 31-8220 (Fig. 5B) or 30  $\mu\text{M}$  OAG (Fig. 5C). The basal  $[\text{Ca}^{2+}]_i$  were not different between the control and PMA-treated cells (control = 144.5  $\pm$  30.4 nM; PMA-treated cells = 148.1  $\pm$  32.4 nM, n = 4).

#### *Effects of Ro 31-8220, OAG and PMA on ionomycin-induced $[\text{Ca}^{2+}]_i$ increase*

To determine whether the effects of Ro 31-8220, OAG and PMA on PKC were specific to AVP-induced  $[\text{Ca}^{2+}]_i$  increase, we investigated their effects on ionomycin (300 nM)-induced  $[\text{Ca}^{2+}]_i$  increase. In  $\text{Ca}^{2+}$ -containing medium, ionomycin induced a biphasic elevation of  $[\text{Ca}^{2+}]_i$  with a pattern similar to that induced by AVP, but the sustained phase was greater than that induced by AVP. In addition, the sustained increase in  $[\text{Ca}^{2+}]_i$  induced by ionomycin disappeared in the absence of extracellular  $\text{Ca}^{2+}$  (data not shown). The pretreatment with 10  $\mu\text{M}$  Ro 31-8220 (Fig. 6A), 30  $\mu\text{M}$  OAG (Fig. 6B) or 100 nM PMA (Fig. 6C) did not affect ionomycin-induced  $[\text{Ca}^{2+}]_i$  increase. The basal  $[\text{Ca}^{2+}]_i$  after the pretreatments with the PKC blocker

or activators were not different from those of untreated cells (control = 107.6  $\pm$  11.4 nM; Ro 31-8220 = 101.8  $\pm$  9.9 nM; OAG = 104.5  $\pm$  12 nM; PMA = 118  $\pm$  16.9 nM, n = 5).

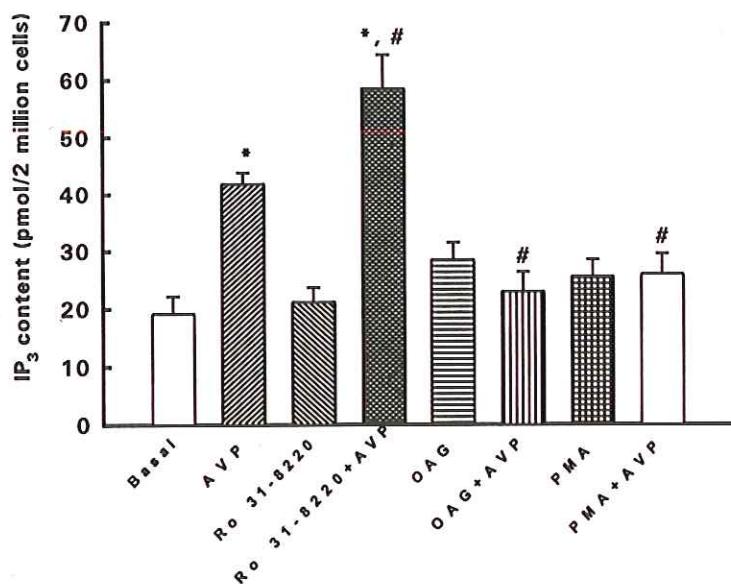
## DISCUSSION

The present results showed that AVP increased  $\text{IP}_3$  production and  $[\text{Ca}^{2+}]_i$  in a clonal  $\alpha$ -cell line In-R1-G9. This study explored the role of PKC on AVP increased  $\text{IP}_3$  production and  $[\text{Ca}^{2+}]_i$ , and the results suggested that AVP activated PKC via DAG, which attenuated the AVP-induced increases in  $\text{IP}_3$  production and  $[\text{Ca}^{2+}]_i$ . AVP induced a translocation of various PKC isozymes from cytosol to membrane in In-R1-G9 cells in the Western blot analysis (our unpublished data), which supported the notion that the AVP treatment activated PKC. In the present study, we demonstrated that the selective PKC blocker Ro 31-8220 potentiated AVP-induced  $\text{IP}_3$  production and  $[\text{Ca}^{2+}]_i$  increases. Ro 31-8220, which is a derivative of a non-specific PKC blocker staurosporine, has been developed as a potent and selective PKC blocker<sup>21</sup>, but much less potent blocker for cyclic AMP-dependent kinase (PKA) or  $\text{Ca}^{2+}$ /calmodulin-dependent kinase<sup>24</sup>. This compound has been widely used to inhibit a number of PKC isozymes, including conventional, novel and atypical in different systems<sup>9,24,25</sup>. Phorbol esters and DAG analogs have been used as tools to mimic the responses stimulated by physiological ligands, providing evidence to support the role of PKC in ligands-induced cellular responses<sup>26</sup>. Our results showed that both PMA and OAG, which activated cPKCs and nPKCs, attenuated AVP-induced  $\text{IP}_3$  production and  $[\text{Ca}^{2+}]_i$  increases. The effects of PMA and OAG were specific for PKC activation because they were blocked by the pretreatment with Ro 31-8220.

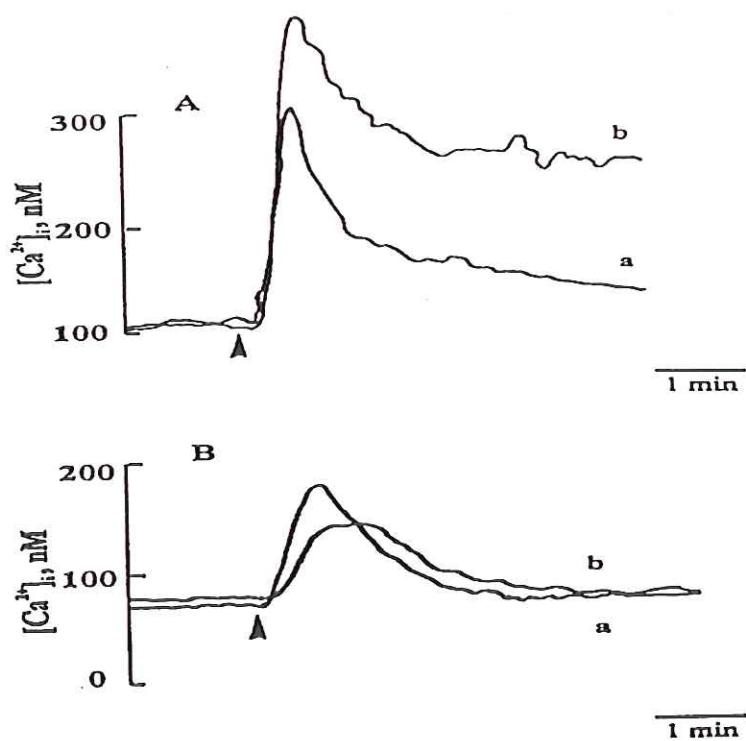
Since PMA may exert some effects which are not pertinent to PKC activation, such as the stimulation of insulin release via membrane depolarization and  $[\text{Ca}^{2+}]_i$  increase in rat insulinoma cell line RINm5F cells<sup>27</sup> and inhibition of phosphoinositide hydrolysis via targets other than PKC in the peripheral tissue of rat and chicken<sup>28</sup>, we investigated the role of PKC on AVP-induced  $[\text{Ca}^{2+}]_i$  increase after the down-regulation of PKC. A long-term treatment with PMA, leading to PKC down regulation, is mostly due to the degradation of membrane-bound activated PKC by the proteolytic enzymes, for example, calpain<sup>29,30</sup>. In this study, the intracellular  $\text{Ca}^{2+}$  response to

AVP was clearly enhanced after the PKC down-regulation, which is consistent with the result of the Ro 31-8220 experiment. This result can be explained by the elimination of the inhibitory effect of PKC on control cells. Ro 31-8220 and OAG failed to alter AVP-induced  $[Ca^{2+}]_i$  increase after the down-regulation of PKC, suggesting a deficiency of PKC in these cells after a long-term treatment with PMA.

The effects of Ro 31-8220, OAG and PMA were highly specific for the PLC-IP<sub>3</sub> system because they did not alter the ionomycin-induced  $[Ca^{2+}]_i$  increase. Ionomycin is a  $Ca^{2+}$ -ionophore that increases  $[Ca^{2+}]_i$  by promoting  $Ca^{2+}$  release and  $Ca^{2+}$  influx without coupling to a G protein or generating IP<sub>3</sub> production<sup>31-33</sup>. Our present findings strongly suggested that PKC negatively regulated AVP-induced IP<sub>3</sub> production and  $[Ca^{2+}]_i$  increases. Based on the specificity of OAG and PMA that can activate only cPKCs and nPKCs, it is likely that either or both groups of PKC isozymes may be involved in this aspect. Further studies are needed to determine which PKC isozymes are involved in the attenuation of these effects of AVP.


Our findings are consistent with those in rat glomerulosa cells<sup>34</sup> and vascular smooth muscle cells<sup>35</sup>, in which PKC plays a negative role in AVP-induced formation of IP<sub>3</sub> and  $[Ca^{2+}]_i$  increase. Activation of PKC blocks the AVP-induced formation of IP<sub>3</sub> in rat pancreatic  $\beta$ -cells<sup>36</sup> and  $[Ca^{2+}]_i$  increase in clonal  $\beta$ -cells HIT-T15<sup>37</sup>. PKC blocks the accumulation of inositol phosphate induced by high  $Ca^{2+}$  (3 mM) in bovine parathyroid cells<sup>38</sup> and inhibits parathyroid-induced IP<sub>3</sub> production and  $[Ca^{2+}]_i$  increase in rat osteoblastic cells<sup>39</sup>. In addition, PMA completely inhibits PIP<sub>2</sub> hydrolysis activated by carbachol in astrocytes from chicken embryo<sup>40</sup>. These results suggest that PKC inhibits the activation of PLC- $\beta$ . In addition, PKC might deplete the substrate supply of PIP<sub>2</sub> to decrease IP<sub>3</sub> formation, but there is no evidence to support this hypothesis. Further work is needed to determine if PKC indeed depletes the supply of PIP<sub>2</sub>.

Although Ro 31-8220 failed to potentiate AVP-induced  $[Ca^{2+}]_i$  increase in the absence of extracellular  $[Ca^{2+}]_e$ , it was still able to counteract the blocking effect of OAG and PMA on AVP-induced changes. However, Ro 31-8220 no longer enhanced AVP-induced sustained phase seen in the presence of extracellular  $[Ca^{2+}]_e$ . These results suggest that PKC reduces AVP-induced  $[Ca^{2+}]_i$  increase partly via an inhibition of  $Ca^{2+}$  influx. Activation of PKC also inhibits  $Ca^{2+}$  signaling by reducing influx of  $Ca^{2+}$  into the  $\beta$ -cells of pancreatic islets<sup>12</sup>. SKF 96365, an ROC blocker, but not nimodipine, a VDCC blocker, inhibited Ro 31-8220-potentiated AVP-induced  $Ca^{2+}$  influx in a concentration-dependent manner. SKF 96365 (30  $\mu$ M) did not affect AVP-induced  $[Ca^{2+}]_i$  increase in the absence of Ro 31-8220 (data not shown). These results suggest that the PKC-attenuation of AVP-induced  $Ca^{2+}$ -influx is mediated by the inactivation of ROCs, but not of VDCCs. This finding is different from that has been found in the mouse pancreatic  $\beta$ -cells, in which PKC inactivates VDCCs<sup>41</sup>.


Taken together, we conclude that PKC exhibits a negative feedback control via vasopressin receptors (V<sub>1b</sub>) that couple to PLC- $\beta$  to inhibit IP<sub>3</sub> production induced by AVP, attenuating AVP-induced increase in  $Ca^{2+}$  release and influx. The attenuation of  $Ca^{2+}$  influx is mediated by the closure of ROC. Since AVP physiologically regulates glucagon release from the rat pancreas<sup>17</sup>, this phenomenon might occur in  $\alpha$ -cells of the pancreatic islet. Further work in pancreatic islet is needed to prove or disprove this hypothesis.

#### ACKNOWLEDGEMENTS

We wish to thank Dr. Bruce Chertow of Marshall University, School of Medicine, Huntington, WV, for providing In-R1-G9 cells and Roche Products Ltd., Hertfordshire, U.K., for donating Ro 31-8220.



**Figure 1.** Effects of Ro 31-8220, OAG and PMA on AVP-induced IP<sub>3</sub> production. Ro 31-8220 was given 30 min and OAG or PMA was given 10 min before the administration of AVP (100 nM). Values are means  $\pm$  S.E.M. (n = 5). \*P < 0.05, compared to the basal control group; #P < 0.05, compared to the AVP alone group.

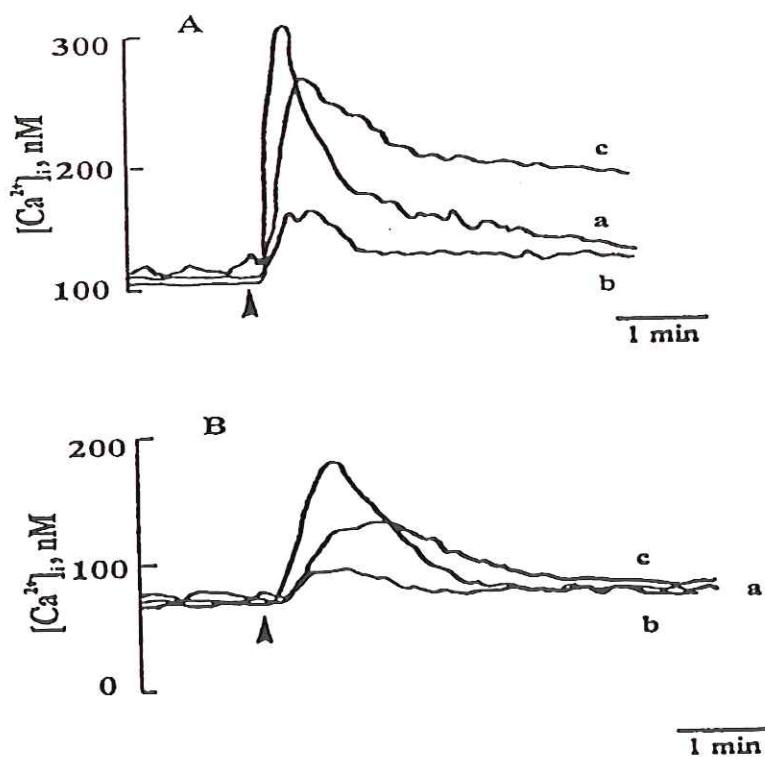


**Figure 2.** Effect of Ro 31-8220 on AVP-induced [Ca<sup>2+</sup>]<sub>i</sub> increase in the presence (A) and absence (B) of extracellular Ca<sup>2+</sup>. Curve a shows the data of AVP (100 nM) alone as a control; curve b shows the effect of Ro 31-8220 (10  $\mu$ M) pretreatment for 30 min before the AVP administration. Arrow indicates the AVP administration. Data shown are representative of 11 and 5 experiments for A and B, respectively.

**Table 1.** Effects of SKF 96365 and nimodipine on Ro 31-8220-elicited potentiation of AVP-induced  $[Ca^{2+}]_i$  increase.

| Treatment                                   | $[Ca^{2+}]_i$ , nM |                  |                               |                  |                             |
|---------------------------------------------|--------------------|------------------|-------------------------------|------------------|-----------------------------|
|                                             | Basal              | Peak             | $\Delta_1$                    | Sustained phase  | $\Delta_2$                  |
| 1. AVP                                      | 96 $\pm$ 1.7       | 183.2 $\pm$ 9.2  | 89.4 $\pm$ 10.2               | 97.6 $\pm$ 5.7   | 3.7 $\pm$ 4.8               |
| 2. Ro 31-8220 + AVP                         | 105.4 $\pm$ 3.5    | 245 $\pm$ 16.3   | 139.6 $\pm$ 21.3 <sup>a</sup> | 162.8 $\pm$ 2.5  | 57.3 $\pm$ 4.5 <sup>c</sup> |
| 3. Ro 31-8220+ 0.3 $\mu$ M<br>SKF 96365+AVP | 100.6 $\pm$ 7.2    | 205.3 $\pm$ 26.9 | 104.7 $\pm$ 22                | 155.5 $\pm$ 12.2 | 55 $\pm$ 6                  |
| 4. Ro 31-8220+ 3 $\mu$ M<br>SKF 96365+AVP   | 93.5 $\pm$ 6.5     | 184.1 $\pm$ 18.3 | 90.5 $\pm$ 15.3 <sup>b</sup>  | 142 $\pm$ 10.6   | 48.4 $\pm$ 7.1              |
| 5. Ro 31-8220+ 30 $\mu$ M<br>SKF 96365+AVP  | 114.2 $\pm$ 7.4    | 191.2 $\pm$ 17.1 | 77 $\pm$ 10.8 <sup>b</sup>    | 132.8 $\pm$ 12.7 | 18.6 $\pm$ 7 <sup>d</sup>   |
| 6. Ro 31-8220+ 1 $\mu$ M<br>nimodipine +AVP | 97.4 $\pm$ 6.7     | 205.4 $\pm$ 13.3 | 108 $\pm$ 8.4                 | 154 $\pm$ 6.8    | 46.6 $\pm$ 5.3              |

The values are means  $\pm$  S.E.M. (n = 4). The concentrations of AVP and Ro 31-8220 used were 100 nM and 10  $\mu$ M, respectively. Ro 31-8220, SKF 96365 or nimodipine was given 30, 10 and 5 min, respectively before AVP administration. The sustained phase of  $[Ca^{2+}]_i$  increase was measured at 120 sec post-AVP administration.


$\Delta_1$ : Peak – Basal;  $\Delta_2$ : Sustained phase – Basal.

<sup>a</sup> P < 0.05, compare with treatment 1 in the same column.

<sup>b</sup> P < 0.05, compare with treatment 2 in the same column.

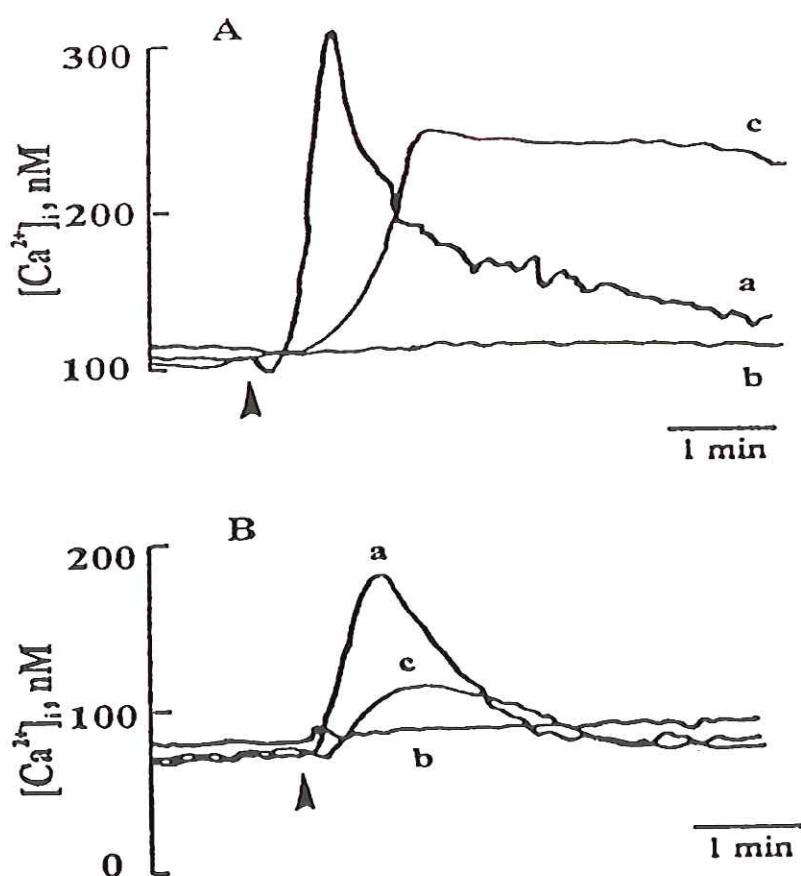
<sup>c</sup> P < 0.05, compare with treatment 1 in the same column.

<sup>d</sup> P < 0.05, compare with treatment 2 in the same column.

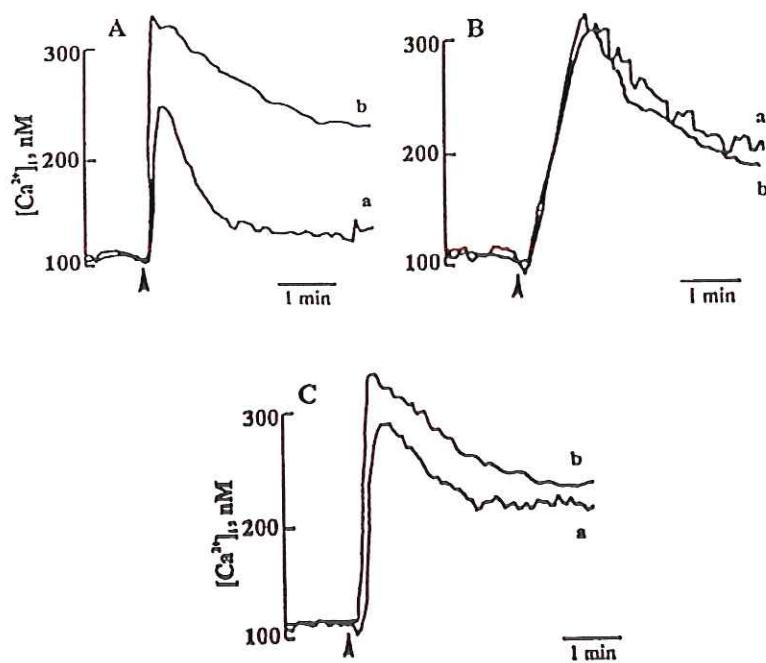


**Figure 3.** Effect of OAG on AVP-induced  $[Ca^{2+}]_i$  increase in the presence (A) and absence (B) of extracellular  $Ca^{2+}$ . Curve a shows the data of AVP (100 nM) alone as a control; curve b shows the effect of the OAG (30  $\mu$ M) pretreatment for 10 min before the AVP administration, and curve c shows the effect of Ro 31-8220 (10  $\mu$ M) pretreatment for 30 min before the AVP administration on OAG-treated cells. Arrow indicates the AVP administration. Data shown are representative of 5 experiments.

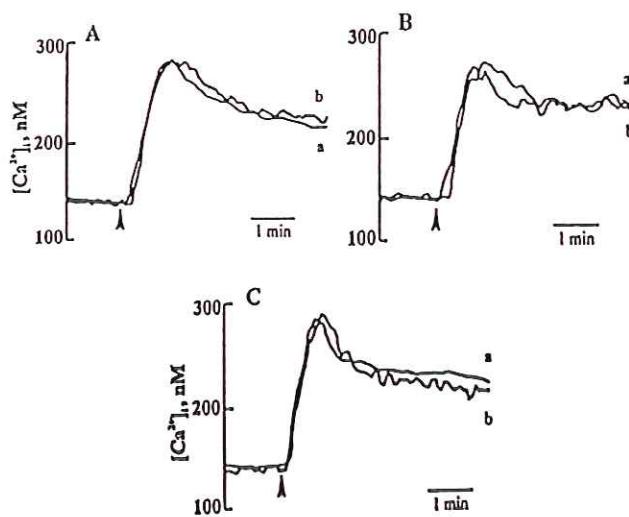
Table 2. Effects of PMA on AVP-induced  $[Ca^{2+}]_i$  increase.


| Treatment           | $[Ca^{2+}]_i$ , nM |                  |                             |                  |                          |
|---------------------|--------------------|------------------|-----------------------------|------------------|--------------------------|
|                     | Basal              | Peak             | $\Delta_1$                  | Sustained phase  | $\Delta_2$               |
| 1. AVP              | 100.4 $\pm$ 2.4    | 203.1 $\pm$ 24   | 102.7 $\pm$ 23              | 119.2 $\pm$ 3.7  | 18.8 $\pm$ 1.8           |
| 2. PMA (0.1 nM)+AVP | 106.4 $\pm$ 8.2    | 211 $\pm$ 24.5   | 104.6 $\pm$ 19.7            | 125.2 $\pm$ 13.6 | 18.8 $\pm$ 4.8           |
| 3. PMA (1 nM)+AVP   | 98.8 $\pm$ 2.4     | 144.5 $\pm$ 6.5  | 45.7 $\pm$ 6.4 <sup>a</sup> | 104.6 $\pm$ 4.4  | 5.8 $\pm$ 3 <sup>b</sup> |
| 4. PMA (10 nM)+AVP  | 109.3 $\pm$ 14.6   | 129.2 $\pm$ 19.5 | 19.9 $\pm$ 6.1 <sup>a</sup> | 116.3 $\pm$ 18.4 | 7.1 $\pm$ 4 <sup>b</sup> |
| 5. PMA (100 nM)+AVP | 109 $\pm$ 5.9      | 110.8 $\pm$ 5.3  | 1.9 $\pm$ 0.6 <sup>a</sup>  | 112 $\pm$ 5.2    | 3.1 $\pm$ 1 <sup>b</sup> |

The values are means  $\pm$  S.E.M. (n = 4). The concentration of AVP used was 100 nM. PMA was given 10 min before AVP administration. The sustained phase of  $[Ca^{2+}]_i$  increase was measured at 120 sec post-AVP administration.


$\Delta_1$ : Peak – Basal;  $\Delta_2$ : Sustained phase – Basal.

<sup>a</sup> P < 0.05, compare with treatment 1 in the same column.


<sup>b</sup> P < 0.05, compare with treatment 1 in the same column.



**Figure 4.** Effect of PMA on AVP-induced  $[Ca^{2+}]_i$  increase in the presence (A) and absence (B) of extracellular  $Ca^{2+}$ . Curve a shows the data of AVP (100 nM) alone as a control; curve b shows the effect of PMA (100 nM) pretreatment for 10 min before the AVP administration and curve c shows the effect of Ro 31-8220 (10  $\mu$ M) pretreatment for 30 min before the AVP administration on PMA-treated cells. Arrow indicates the AVP administration. Data shown are representative of 4 experiments.



**Figure 5.** Effect of PMA (200 nM) pretreatment for 72 h on AVP-induced  $[Ca^{2+}]_i$  increase (A). Curve a shows the data of AVP (100 nM) in normal cells as a control; curve b shows the data of AVP (100 nM) in the PMA-pretreated cells. Effects of Ro 31-8220 (B) and OAG (C) on AVP-induced  $[Ca^{2+}]_i$  increase in PMA-pretreated cells for 72 h. In panels B and C, curve a shows the data of AVP alone in PMA-pretreated cells as a control; curve b shows the effect of Ro 31-8220 (10  $\mu$ M) (B) or OAG (30  $\mu$ M) (C) pretreatment for 30 and 10 min, respectively, before the AVP administration in PMA-pretreated cells. Arrow indicates the AVP administration. Data shown are representative of 4 experiments.



**Figure 6.** Effects of Ro 31-8220 (A), OAG (B) and PMA (C) on ionomycin-induced  $[Ca^{2+}]_i$  increase. Curve a shows the data of AVP (100 nM) alone as a control; curve b shows the effect of Ro 31-8220 (10  $\mu$ M), OAG (30  $\mu$ M) or PMA (100 nM) pretreatment for 30 and 10 min, respectively, before the AVP administration. Arrow indicates the AVP administration. Data shown are representative of 4 experiments.

## REFERENCES

1. Nishizuka Y. Perspectives on the role of protein kinase C in stimulus-response coupling. *Science* 1986; 233: 305-312.
2. Nishizuka Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. *Nature* 1988; 334: 661-665.
3. Housey GM, Johnson MD, Hsiao WL, et al. Overproduction of protein kinase C causes disordered growth control in rat fibroblasts. *Cell* 1988; 52: 343-354.
4. Persons DA, Wilkison WO, Bell RM, et al. Altered growth regulation and enhanced tumorigenicity of NIH 3T3 fibroblasts transfected with protein kinase C-I cDNA. *Cell* 1988; 52: 447-458.
5. Hug H, Sarre TF. Protein kinase C isozymes: divergence in signal transduction? *Biochem J* 1993; 291: 329-343.
6. Jaken S. Protein kinase C isozymes and substrates. *Curr Opin Cell Biol* 1996; 8: 168-173.
7. Weinstein IB. The role of protein kinase C in growth control and the concept of carcinogenesis as a progressive disorder in signal transduction. *Adv Second Messenger Phosphoprotein Res* 1990; 26: 307-316.
8. Nishizuka Y. Intracellular signalling by hydrolysis of phospholipids and activation of protein kinase C. *Science* 1992; 258: 607-614.
9. Limatola C, Schaap D, Moolenaar WH, et al. Phosphatidic acid activation of protein kinase C- $\zeta$  overexpressed in COS cells: comparison with other protein kinase C isotypes and other acidic lipids. *Biochem J* 1994; 304: 1001-1008.
10. Knutson KL, Hoenig M. Identification and subcellular characterization of protein kinase-C isoforms in insulinoma  $\beta$ -cells and whole islets. *Endocrinology* 1994; 135: 881-886.
11. Bjaaland T, Hii CST, Jones PM, et al. Role of protein kinase C in arginine-induced glucagon secretion from isolated rat islets of Langerhans. *J Mol Endocrinol* 1988; 1: 105-110.
12. Ashcroft SJ. Protein phosphorylation and beta-cell function. *Diabetologia* 1994; 37 (Suppl. 2): S21-S29.
13. Pipeleers DG, Schuit FC, in't Veld PA, et al. Interplay of nutrients and hormones in the regulation of insulin release. *Endocrinology* 1985; 117: 824-833.
14. Charles ST, Hii CST, Howell SL. Role of second messengers in the regulation of glucagon secretion from isolated rat islets of Langerhans. *Mol Cell Endocrinol* 1987; 50: 37-44.
15. Niki I, Tamakawa T, Niki A, et al. Glucagon release dependent on and independent of changes in cytosolic  $Ca^{2+}$ : Studies using  $Ca^{2+}$ -clamped rat pancreatic islets. *Biomed Res* 1986; 7, 291-294.
16. Hii CST, Stutchfield J, Howell SL. Enhancement of glucagon secretion from isolated rat islets of Langerhans by phorbol-12-myristate 13-acetate. *Biochem J* 1986; 233: 287-289.
17. Yibchok-anun S, Cheng H, Heine PA, et al. Characterization of receptors mediating AVP- and OT-induced glucagon release from the rat pancreas. *Am J Physiol* 1999; 277:E56-E62.
18. Amico JA, Finn FM, Haldar J. Oxytocin and vasopressin are present in rat pancreas. *Am J Physiol* 1988; 296: 303-307.
19. Yibchok-anun S, Hsu WH. Effects of arginine vasopressin and oxytocin on glucagon release from clonal  $\alpha$ -cell line In-R1-G9: Involvement of  $V_1b$  receptors. *Life Sci* 1998; 63: 1821-1829.
20. Yibchok-anun S, Hsu WH. Arginine vasopressin-stimulated glucagon release from clonal  $\alpha$ -cell line In-R1-G9: involvement of phospholipase C-dependent and -independent pathways. *FASEB J* 1998; 12: 2505.
21. Davis PD, Hill CH, Reech E, et al. Potent selective blockers of protein kinase C. *FEBS Lett* 1989; 259: 61-63.
22. Li L, Kankaanrant H, Vaali K, et al. Econazole, miconazole and SK & F 96365 inhibit depolarization-induced and receptor-operated contraction of guinea-pig isolated trachea in vitro. *Eur J Pharmacol* 1997; 331: 221-225.
23. Hsu WH, Xiang H, Rajan AS, et al. Somatostatin inhibits insulin secretion by a G-protein-mediated decrease in  $Ca^{2+}$  entry through voltage-dependent  $Ca^{2+}$  channels in the beta cell. *J Biol Chem* 1991; 266: 837-843.
24. Minichiello J, Ben-Ya'acov A, Hearn CJ, et al. Induction of epithelial-mesenchymal transformation of quail embryonic neural cells by inhibition of atypical protein kinase-C. *Cell Tissue Res* 1999; 295: 195-206.

25. Ison AJ, Johnson MS, McEwan, DJ, et al. Biochemical characterisation of an apparently novel isoform of protein kinase C in pituitary. *Biochem Soc Trans* 1993; 21: 386S.
26. Wilkinson SE, Hallam TJ. Protein kinase C: Is its pivotal role in cellular activation over-stated? *Trends Pharmacol Sci* 1994; 15: 53-57.
27. Yada T, Russo LL, Sharp GWG. Phorbol ester-stimulated insulin secretion by RINm5F insulinoma cells is linked with membrane depolarization and an increase in cytosolic free  $Ca^{2+}$  concentration. *J Biol Chem* 1989; 264: 2455-2462.
28. Bhave SV, Malhotra, RK, Wakade TD, et al. Phosphoinositide hydrolysis is not negatively regulated by protein kinase C in the peripheral tissue of rat and chick. *J Physiol (Lond.)* 1990; 425: 335-346.
29. Kikkawa U, Kishimoto A, Nishizuka Y. The protein kinase C family: Heterogeneity and its implications. *Annu Rev Biochem* 1989; 58: 31-44.
30. Kishimoto A, Mikawa K, Hashimoto K, et al. Limited proteolysis of protein kinase C subspecies by calcium-dependent neutral protease (calpain). *J Biol Chem* 1989; 264: 4088-4092.
31. Swope SL, Schonbrunn A. The biphasic stimulation of insulin secretion by bombesin involves both cytosolic free calcium and protein kinase C. *Biochem J* 1988; 253: 193-202.
32. Yoshida S, Plant S. Mechanism of release of  $Ca^{2+}$  from intracellular stores in response to ionomycin in oocytes of the frog *Xenopus laevis*. *J Physiol (Lond.)* 1992; 458: 307-318.
33. Teitelbaum I, Berl T. Increased cytosolic  $Ca^{2+}$  inhibits AVP-stimulated adenyl cyclase activity in rat IMCT cells by activation of PKC. *Am J Physiol* 1994; 266: F486-490.
34. Gallo-Payet N, Chouinard L, Balestre MN, et al. Involvement of protein kinase C in the coupling between the  $V_1$  vasopressin receptor and phospholipase C in rat glomerulosa cells: effects on aldosterone secretion. *Endocrinology* 1991; 129: 623-634.
35. Stassen FL, Schmidt DB, Papadopoulos M, et al. Prolonged incubation with phorbol esters enhanced vasopressin-induced calcium mobilization and polyphosphatidylinositol hydrolysis of vascular smooth muscle cells. *J Biol Chem* 1989; 264: 4916-4923.
36. Gao ZY, Gilon P, Henquin JC. The role of protein kinase-C in signal transduction through vasopressin and acetylcholine receptors in pancreatic  $\beta$ -cells from normal mouse. *Endocrinology* 1994; 135: 191-199.
37. Hughes SJ, Carpinelli A, Niki I, et al. Stimulation of insulin release by vasopressin in the clonal  $\beta$ -cell line, HIT-T15: the role of protein kinase C. *J Mol Endocrin* 1992; 8: 145-153.
38. Kifor O, Congo D, Brown EM. Phorbol esters modulate the high  $Ca^{2+}$ -stimulated accumulation of inositol phosphates in bovine parathyroid cells. *J Bone Miner Res* 1990; 5: 1003-1011.
39. Babich M, Foti LR, Mathias KL. Protein kinase C modulator effects on parathyroid hormone-induced intracellular calcium and morphologic changes in UMR 106-H5 osteoblastic cells. *J Cell Biochem* 1997; 65: 276-285.
40. Mangoura D, Sogos V, Pelletiere C, et al. Differential regulation of phospholipases C and D by phorbol esters and the physiological activators carbachol and glutamate in astrocytes from chicken embryo cerebrum and cerebellum. *Brain Res Dev* 1995; 87: 12-21.
41. Arkhammar P, Juntti-Berggren L, Larsson O, et al. Protein kinase C modulates the insulin secretory process by maintaining a proper function of the  $\beta$ -cell voltage-activated  $Ca^{2+}$  channels. *J Biol Chem* 1994; 269: 2743-2749.

## THE INHIBITION OF CYCLOOXYGENASE-2 EXPRESSED IN ENDOTOXIN-TREATED ENDOTHELIAL CELLS BY PROSTAGLANDIN E<sub>2</sub> IS MEDIATED THROUGH cAMP

Pravit Akarasereenont<sup>1</sup>, Kitirat Techatisak<sup>2</sup>, Sirikul Chotewuttakorn<sup>1</sup>, Athiwat Thaworn<sup>1</sup>.

<sup>1</sup>Department of Pharmacology, <sup>2</sup>Department of Obstetrics and Gynaecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Prannok Rd., Bangkok 10700, Thailand.

### ABSTRACT

Prostaglandins (PGs) have numerous cardiovascular and inflammatory effects. Cyclooxygenase (COX), which exists as COX-1 and COX-2 isoforms, is the first enzyme in the pathway in which arachidonic acid is converted to PGs. PGE<sub>2</sub> exerts a variety of biological activities for the maintenance of local homeostasis in the body. Elucidation of PGE<sub>2</sub> involvement in the signalling molecules such as COX could lead to potential therapeutic interventions. Here, we have investigated the effects of PGE<sub>2</sub> on the induction of COX-2 in human umbilical vein endothelial cells (HUVEC) treated with endotoxin (1 µg/ml). COX activity was measured by the production of 6-keto-PGF<sub>1α</sub> in the presence of exogenous arachidonic acids (10 µM for 10 min) using enzyme immunoassay (EIA). COX-1 and COX-2 proteins were measured by immunoblotting using specific antibodies. Untreated HUVEC contained only COX-1 protein while endotoxin treated HUVEC contained COX-1 and COX-2 proteins. PGE<sub>2</sub> (3 µM for 24 hr) did not affect on COX activity and protein in untreated HUVEC. Interestingly, PGE<sub>2</sub> (3 µM for 24 hr) can inhibit COX-2 protein, but not COX-1 protein, expressed in HUVEC treated with endotoxin. This inhibition was reversed by coincubation with forskolin (100 µM). The increased COX activity in HUVEC treated with endotoxin was also inhibited by PGE<sub>2</sub> (0.03, 0.3 and 3 µM for 24 hr) in a dose dependent manner. Similarly, forskolin (10, 50 or 100 µM) could also reverse the inhibition of PGE<sub>2</sub> on increased COX activity in endotoxin treated HUVEC. The results suggest that i) PGE<sub>2</sub> can be negative feedback regulation in the induction of COX-2 elicited by endotoxin in endothelial cells, ii) the inhibition of PGE<sub>2</sub> on COX-2 protein and activity in endotoxin treated HUVEC is mediated by cAMP and iii) the uses of PGE<sub>2</sub> in the condition in which COX-2 has been involved may have therapeutic roles.

**Key words :** COX-2, PGs, endotoxin, cAMP, signalling pathway, endothelium

## โพรสต้าแแกลนдинอีทูบบยังเงอนใช้มีไซโคลออกซีเจเนสทูที่ถูกกระตุ้นการสร้างโดยเอนโดท็อกซินในเซลล์เยื่อบุผนังหลอดเลือดผ่านทางชั้นคลิกເອເອມพี

ประวิทย์ อัครเสรีนันท์<sup>1</sup>, กิติรัตน์ เทชะไตรทักษ์<sup>2</sup>, ศิริกุล ใจดิวพาการ<sup>1</sup>, อธิรัตน์ ดาวร<sup>1</sup>

<sup>1</sup>ภาควิชาเภสัชวิทยา, <sup>2</sup>ภาควิชาสูติศาสตร์และนรีเวชวิทยา คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล กรุงเทพฯ 10700

### บทคัดย่อ

โพรสต้าแแกลนдинส์ (prostaglandins, PGs) มีบทบาทมากมายในหลายสภาวะ เช่น การอักเสบ และระบบหัวใจและหลอดเลือด ไซโคลออกซีเจเนส (cyclooxygenase, COX) ซึ่งปัจจุบันมีอย่างน้อย 2 รูปแบบ (isoforms) ได้แก่ COX-1 และ COX-2 จัดเป็นเอนไซม์ที่สำคัญในกระบวนการสร้าง PGs โดยอาศัยกรดอะคิโนโนิก (arachidonic acid, AA) เป็นสารเริ่มต้น PGE<sub>2</sub> จัดเป็น PG ชนิดที่มีหน้าที่สำคัญหลายอย่างในร่างกาย ดังนั้นการเข้าใจถึงการควบคุมกลไกการสื่อ (signalling mechanism) และปฏิกิริยา กับตัว COX-2 เอง จะช่วยให้เข้าใจบทบาทของ PGE<sub>2</sub> และการควบคุมการทำงานของ COX-2 การศึกษานี้จะศึกษาผลของ PGE<sub>2</sub> ต่อการสร้าง COX-2 ในเซลล์เยื่อบุผนังหลอดเลือดของสายรक (human umbilical vein endothelial cells, HUVEC) ที่ถูกกระตุ้นด้วย เอนโดท็อกซิน (endotoxin, lipopolysaccharide, LPS) ในขนาด 1 ไมโครกรัมต่อมิลลิลิตร COX activity จะถูกวัดจากปริมาณของ 6-keto-PGF<sub>1α</sub> ในน้ำเลี้ยงเซลล์ที่ทำการศึกษาโดยวิธี enzyme immunoassay (EIA) COX-1 และ COX-2 proteins จะถูกวัดโดยวิธี immunoblotting พบว่า untreated HUVEC จะปราศแต่ COX-1 protein ในขณะที่ endotoxin treated HUVEC ปราศทั้ง COX-1 และ COX-2 proteins ส่วน PGE<sub>2</sub> (3 μM) ไม่มีผลต่อ COX activity และ protein ใน untreated HUVEC. ที่น่าสนใจคือ PGE<sub>2</sub> (3 μM) สามารถยับยั้งการกระตุ้นทั้ง COX activity และ protein ใน endotoxin activated HUVEC ยิ่งไปกว่านั้น foscilin (100 μM) สามารถต้านผลของ PGE<sub>2</sub> ต่อการปราศของ COX-2 ใน endotoxin activated HUVEC นั้นคือ 1) PGE<sub>2</sub> สามารถควบคุมย้อนกลับการทำงานของ COX-2 ใน endotoxin activated HUVEC, 2) PGE<sub>2</sub> ยับยั้งการสร้าง COX-2 ใน endotoxin activated HUVEC โดยผ่านทาง cAMP และ 3) PGE<sub>2</sub> อาจมีประโยชน์ทางคลินิกในการใช้ในสภาวะที่มี COX-2

คำสำคัญ : COX-2, PGs, endotoxin, cAMP, signalling pathway, endothelium

## INTRODUCTION

Prostaglandins (PGs) have numerous cardiovascular and inflammatory effects<sup>1</sup>. Cyclooxygenase (COX) is the first enzyme in the pathway in which arachidonic acid is converted to PGs<sup>1</sup>. COX exists in at least two isoforms. One is the constitutive enzyme, COX-1, producing regulatory prostanoids under physiological conditions<sup>2</sup>, whereas the other, COX-2, is induced by mitogens, and proinflammatory cytokines<sup>3</sup> during pathological states such as inflammation. However, COX-2 has been shown to be constitutively expressed in some cell types and tissues such as brain, spinal cord, kidneys, reproductive organs, some vascular endothelial cell types and species<sup>4</sup>, including human platelet<sup>5</sup>. COX-2 has also been shown to be upregulated in some conditions such as atherosclerosis<sup>6</sup> and gastric ulcer are associated with *Helicobacter pylori*<sup>7</sup>. These are thought to be physiological stress or pathological defense functions of COX-2 and raised to the hypothesis whether another isoform of COX, COX-3, may exist<sup>8</sup>. The main PGs produced in the body are prostacyclin (PGI<sub>2</sub>), PGE<sub>2</sub>, PGF<sub>2α</sub>, TXA<sub>2</sub> and PGD<sub>2</sub>. Each PG has different character and function. Among the PGs, PGE<sub>2</sub> is a potent lipid molecule with complex proinflammatory and immunoregulatory properties<sup>9</sup>. PGE<sub>2</sub> is considered a major contributor to the production and maintenance of immunosuppression after overwhelming injury<sup>10</sup>. PGE<sub>2</sub> is believed to modulate biochemical and immunological events leading to parturition<sup>11</sup>. PGE<sub>2</sub> also exerts a variety of biological activities for the maintenance of local homeostasis in the body<sup>12</sup>. Interestingly, we have shown in previous studies that the induction of COX-2 elicited by endotoxin (lipopolysaccharide, LPS) in endothelial cells is inhibited by PGE<sub>1</sub> and 13,14-dihydro PGE<sub>1</sub><sup>13</sup>. Elucidation of the effects of PGE<sub>2</sub> on the signalling molecule such as COX could lead to potential therapeutic interventions and understand the feedback regulation of COX in endothelial cells. Here, we have investigated the effects of PGE<sub>2</sub> on the induction of COX-2 in human umbilical vein endothelial cells (HUVEC) treated with endotoxin (1 µg/ml).

## MATERIALS AND METHODS

### Materials

DMSO, endotoxin (lipopolysaccharide, LPS), phosphate buffered saline

(PBS; pH 7.4), Trizma base, EDTA, triton X-100, phenylmethylsulphonyl fluoride (PMSF), pepstatin A, leupeptin, glycerol, bromphenol blue, 2-mercaptoethanol, sodium dodecyl sulphate (SDS), foscilin, anti-rabbit IgG antibody, goat IgG, premixed BCIP/NBT solution, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), penicillin G sodium and streptomycin were supplied by Sigma Chemical Company (USA). Human Endothelial-SFM Basal Growth Medium and foetal calf serum were obtained from GibThai (Thailand). Pure nitrocellulose membrane (0.45 micron) and filter paper were purchased from BIO-RAD (USA).

### Cell culture

Human umbilical vein endothelial cells (HUVEC) were obtained from babies born to normal pregnant women (HUVEC) as previously described<sup>14</sup> and cultured in 96-well plates with Human Endothelial-SFM Basal Growth Medium (Gibco) containing 10% foetal calf serum (Gibco), 100 units/ml penicillin G sodium and 100 µg/ml streptomycin. Cells were incubated at 37°C in a humidified incubator and grown to confluence before use.

### Measurement of COX activity

Confluent HUVEC were gently washed two times with PBS and replaced with fresh medium (200 µl/well) before use. Cells were treated with no addition, endotoxin (1 µg/ml), endotoxin (1 µg/ml) plus PGE<sub>2</sub> (0.03, 0.3 or 3 µM) or PGE<sub>2</sub> (3 µM) alone for 24 hr. After which time the medium was removed and washed twice with PBS. COX activity was measured by the production of 6-keto-PGF<sub>1α</sub> (a stable metabolite of PGI<sub>2</sub>) in the replaced fresh medium containing exogenous arachidonic acid (10 µM for 10 min) using enzyme immunoassay (EIA).

### Immunoblot (Western blot) analysis

HUVEC which were untreated, treated with endotoxin (1 µg/ml), endotoxin (1 µg/ml) plus PGE<sub>2</sub> (0.03, 0.3 and 3 µM), or PGE<sub>2</sub> (3 µM) alone were cultured in 6-well culture plates (37°C; for 24 hr). After 24 hr incubation, cells were extracted and analysed by immunoblotting using specific antibodies for COX-1 and COX-2 proteins as previously described<sup>15</sup>.

The other experiment was performed to study the signalling molecule in the effects of PGE<sub>2</sub> on COX expression by using forskolin (cAMP activator). HUVEC were treated with no addition, endotoxin (1 µg/ml), endotoxin (1 µg/ml) plus PGE<sub>2</sub> (3 µM), endotoxin (1 µg/ml) plus PGE<sub>2</sub> (3 µM) with forskolin (10, 50 and 100 µM), endotoxin (1 µg/ml) plus forskolin (100 µM), PGE<sub>2</sub> (3 µM) plus forskolin (100 µM), forskolin (100 µM) alone, or PGE<sub>2</sub> (3 µM) alone for 24 hr. After which time, the medium was removed and replaced with fresh medium containing exogenous arachidonic acid (10 µM for 10 min). The medium was then removed to measure COX activity by 6-keto-PGF<sub>1α</sub> production. The remained cells were extracted and analysed by immunoblotting using specific antibodies for COX-1 and COX-2 proteins.

#### **Measurement of cell viability**

Cell respiration, an indicator of cell viability, was assessed by the mitochondrial dependent reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) to formazan<sup>16</sup>. At the end of each experiment, cells in 96-well plates were incubated (37°C; 1 hr) with MTT (0.2 mg/ml) dissolved in culture medium. After which time, the medium was removed by aspiration and cells were solubilized in DMSO (200 µl each well). The extent of reduction of MTT to formazan within cells was quantitated by the measurement of optical density at 650 nm (OD<sub>650</sub>) using a microplate reader (BIORAD, USA).

#### **Statistical analysis**

The results are shown as mean ± SEM of triplicate determinations (wells) from at least four separate experimental days (n=12). Student's paired or unpaired *t*-test, as appropriate, was used for the determination of significance of differences between means and a *p*-value of less than 0.05 was taken as statistically significant.

#### **RESULTS**

##### ***The effect of PGE<sub>2</sub> on COX activity as measured by the production of 6-keto-PGF<sub>1α</sub> in HUVEC treated with endotoxin (1 µg/ml)***

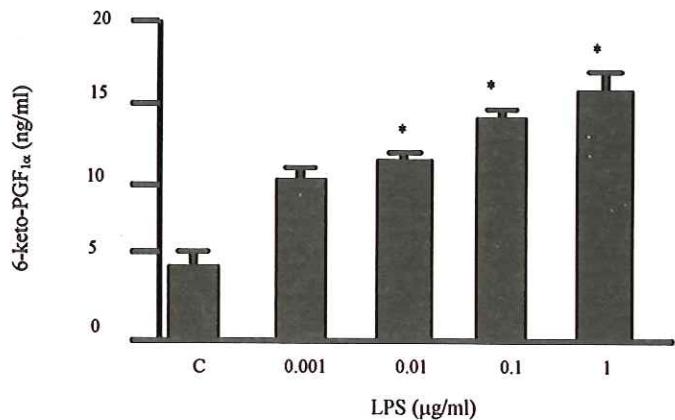
Untreated HUVEC in the presence of arachidonic acid (10 µM for 10 min) released lower amount of 6-keto-PGF<sub>1α</sub> (3.36 ± 0.1

ng/ml). In endotoxin (0.001, 0.01, 0.1 and 1 µg/ml) treated HUVEC, COX activity as measured by the production of 6-keto-PGF<sub>1α</sub> were increased (Figure 1). The production of 6-keto-PGF<sub>1α</sub> in HUVEC treated with endotoxin (0.01, 0.1 and 1 µg/ml) was increased significantly in a dose dependent manner (Figure 1). This increase was significant at 0.01 ng/ml of endotoxin. In HUVEC treated with PGE<sub>2</sub> (3 µM) alone, COX activity did not change significantly when compared to untreated HUVEC (Figure 2). Interestingly, the increased COX activity in endotoxin (1 µg/ml) treated HUVEC was significantly inhibited by PGE<sub>2</sub> (0.03, 0.3 or 3 µM) in a dose dependent manner (Figure 2). This inhibition was significant at 0.3 µM of PGE<sub>2</sub>.

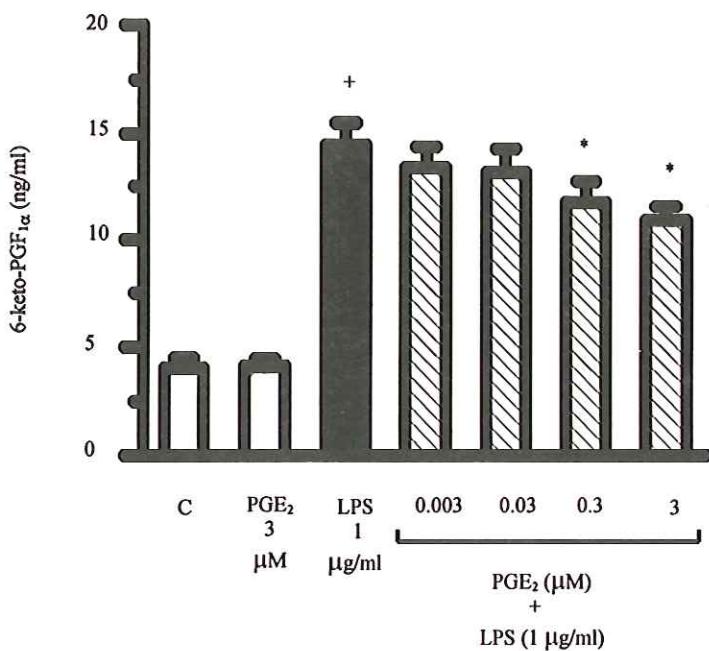
Endotoxin alone, PGE<sub>2</sub> alone, and endotoxin plus PGE<sub>2</sub> did not affect on cells viability (99 ± 0.1, 98 ± 0.2 and 98 ± 0.2 %, respectively) when compared to the control untreated cells over a 24 h incubation period.

The stability of PGE<sub>2</sub> (3 µM) in cultured medium upto 24 hr was also tested and was not changed significantly between 3 (2.97 ± 0.2), 6 (2.98 ± 0.1), 12 (2.95 ± 0.2) and 24 (2.97 ± 0.2) hours incubation of PGE<sub>2</sub>.

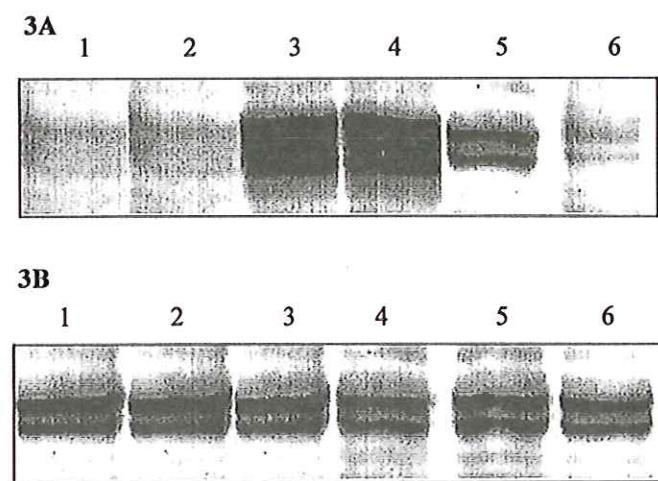
##### ***The effect of PGE<sub>2</sub> on COX isoform expressed in HUVEC treated with endotoxin***


Untreated HUVEC contained no COX-2 protein (Figure 3A). COX-2 protein was expressed in HUVEC treated with endotoxin (1 µg/ml; Figure 3A) for 24 h. Interestingly, this induction of COX-2 in HUVEC treated by endotoxin (1 µg/ml) was inhibited by PGE<sub>2</sub> (0.03, 0.3 or 3 µM) in a dose dependent manner (Figure 3A). The amount of COX-1 protein expressed in HUVEC treated with endotoxin (1 µg/ml), endotoxin (1 µg/ml) plus PGE<sub>2</sub> (3 µM), or PGE<sub>2</sub> (3 µM) alone was not changed when compared to untreated HUVEC (Figure 3B).

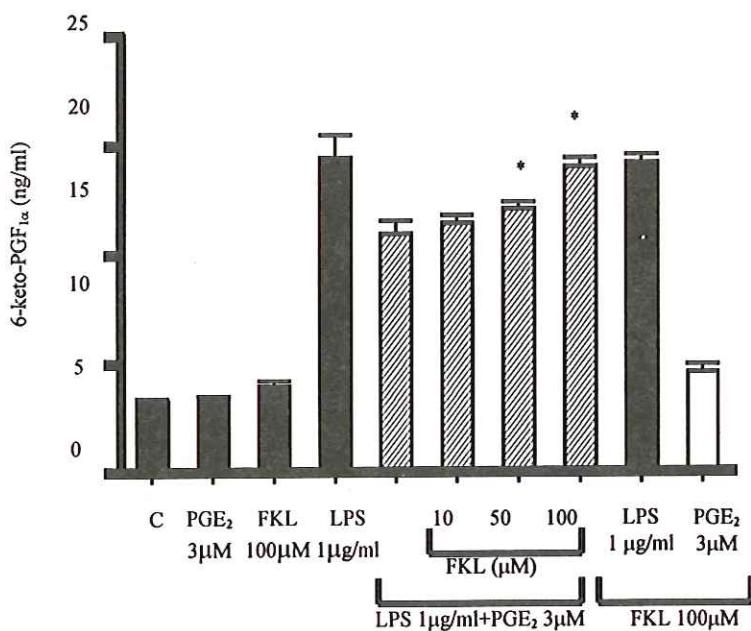
##### ***The effect of forskolin on COX activity in HUVEC treated with endotoxin plus PGE<sub>2</sub>***


The COX activity (as measured by 6-keto-PGF<sub>1α</sub> production) in HUVEC treated with forskolin (100 µM) plus PGE<sub>2</sub> (3 µM) or forskolin (100 µM) alone was not changed in comparison with untreated HUVEC (Figure 4). Interestingly, the inhibition of increased COX activity in endotoxin (1 µg/ml) treated HUVEC by PGE<sub>2</sub> was reversed in a dose

dependent manner when cells were coincubated with forskolin (10, 50 or 100  $\mu$ M; Figure 4). The increased COX activity in endotoxin (1  $\mu$ g/ml) treated HUVEC was not affected when cells were coincubated with forskolin (100  $\mu$ M; Figure 4).


Forskolin alone, forskolin plus LPS, forskolin plus PGE<sub>2</sub>, and forskolin plus LPS with PGE<sub>2</sub> did not affect on cells viability (99  $\pm$  0.1, 98  $\pm$  0.2, 98  $\pm$  0.2 and 99  $\pm$  0.1%, respectively) when compared to the control untreated cells over a 24 hr incubation period.



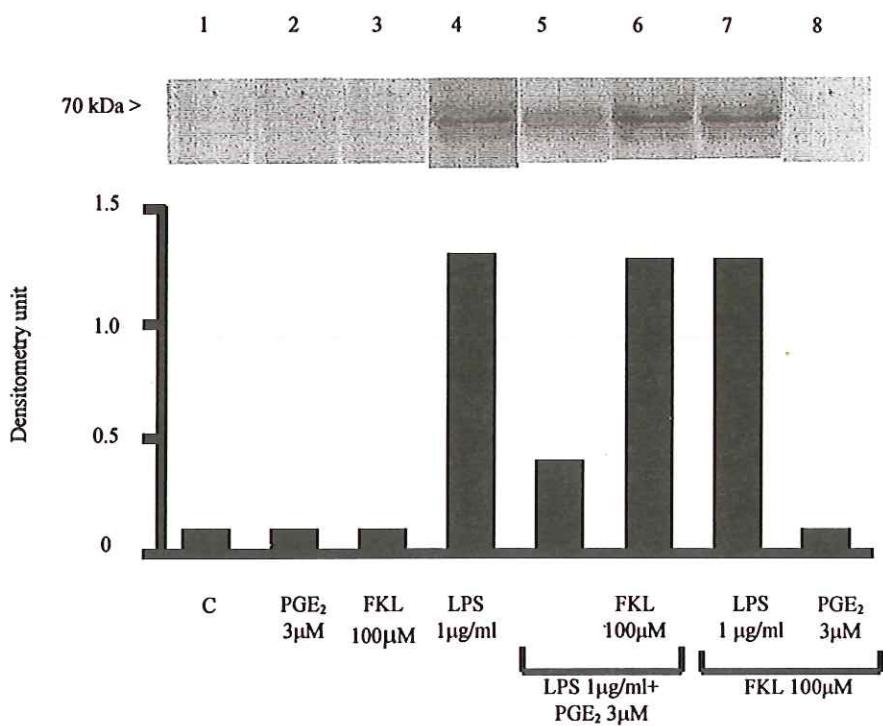

**Figure 1.** Dose dependent effects of endotoxin (1  $\mu$ g/ml) on COX activity in HUVEC. COX activity was measured by the formation of 6-keto-PGF<sub>1 $\alpha$</sub>  in the presence of exogenous arachidonic acid (10  $\mu$ M; 10 min). Data are expressed as mean  $\pm$  SEM of twelve determinations from at least four separate experimental days. \* $p$ <0.05 when compared to untreated HUVEC at 24 hr (C).



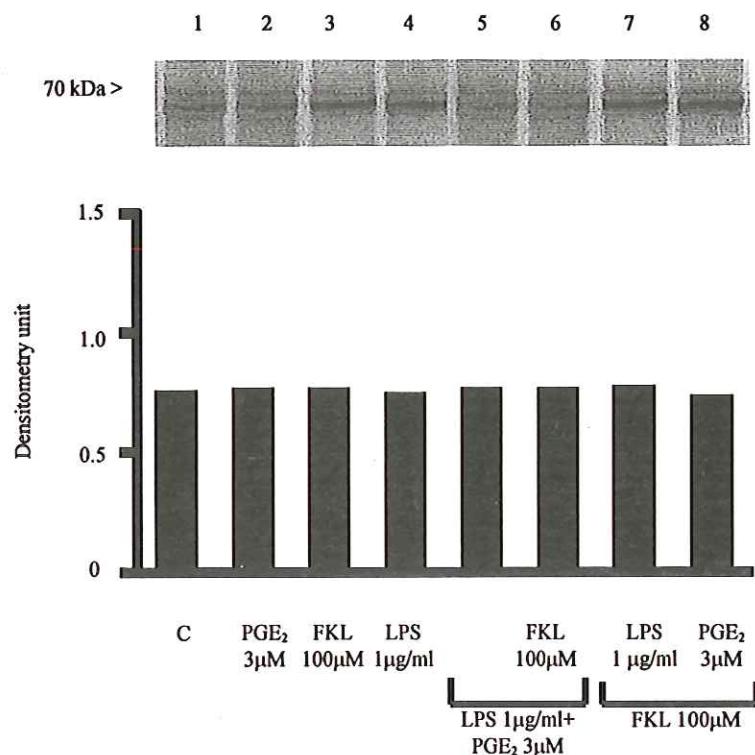
**Figure 2.** The effects of PGE<sub>2</sub> (0.003, 0.03, 0.3 or 3  $\mu$ M) on COX activity in endotoxin (1  $\mu$ g/ml) treated HUVEC. COX activity was measured by the formation of 6-keto-PGF<sub>1 $\alpha$</sub>  in the presence of exogenous arachidonic acid (10  $\mu$ M; 10 min). Data are expressed as mean  $\pm$  SEM of twelve determinations from at least four separate experimental days. + $p$  < 0.05 when compared to untreated HUVEC at 24 hr (C). \* $p$  < 0.05 when compared to endotoxin treated HUVEC at 24 hr.



**Figure 3.** The effects of PGE<sub>2</sub> on COX isoform protein expressed in endotoxin (1  $\mu$ g/ml) treated HUVEC. COX-2 (panel 3A) and COX-1 (panel 3B) proteins were detected by Western blots using specific antibodies in cell extracts of HUVEC treated with no addition (lane 1), PGE<sub>2</sub> (3  $\mu$ M) alone (lane 2), endotoxin (1  $\mu$ g/ml) alone (lane 3), or endotoxin (1  $\mu$ g/ml) plus PGE<sub>2</sub> (0.03, 0.3 or 3  $\mu$ M; lane 4 to 6) for 24 h. Equal amount of protein (20  $\mu$ g/lane) was loaded in each lane. Similar results were obtained with cell extracts from 3 separate batches of cells.




**Figure 4.** The effects of forskolin (10, 50 or 100  $\mu$ M) on COX activity in endotoxin (1  $\mu$ g/ml) plus PGE<sub>2</sub> (3  $\mu$ M) treated HUVEC. COX activity was measured by the formation of 6-keto-PGF<sub>1 $\alpha$</sub>  in the presence of exogenous arachidonic acid (10  $\mu$ M; 10 min). Data are expressed as mean  $\pm$  SEM of twelve determinations from at least four separate experimental days. \* $p$  < 0.05 when compared to LPS plus PGE<sub>2</sub> treated HUVEC at 24 hr.


**The effect of forskolin on COX isoform expressed in HUVEC treated with endotoxin plus PGE<sub>2</sub>**

HUVEC treated with forskolin (100  $\mu$ M) alone or forskolin (100  $\mu$ M) plus PGE<sub>2</sub> (3  $\mu$ M) contain no COX-2 protein (Figure 5; lane 3 and 8, respectively). Similar to COX activity, the inhibition of COX-2 induced in endotoxin (1  $\mu$ g/ml) treated HUVEC by PGE<sub>2</sub> was also reversed when cells were coincubated with forskolin (100  $\mu$ M; Figure 5; lane 4 to 6). Similar to COX activity, the amounts of COX-

2 protein induced in endotoxin (1  $\mu$ g/ml) treated HUVEC was also not affected when cells were coincubated with forskolin (100  $\mu$ M; Figure 5; lane 7). The amount of COX-1 protein expressed in HUVEC treated with forskolin (100  $\mu$ M) alone, endotoxin (1  $\mu$ g/ml) plus PGE<sub>2</sub> (3  $\mu$ M), endotoxin (1  $\mu$ g/ml) plus PGE<sub>2</sub> (3  $\mu$ M) with forskolin (100  $\mu$ M), endotoxin (1  $\mu$ g/ml) plus forskolin (100  $\mu$ M) or PGE<sub>2</sub> (3  $\mu$ M) plus forskolin (100  $\mu$ M) was not changed when compared to untreated HUVEC (Figure 6).



**Figure 5.** The effects of forskolin on COX-2 protein expressed in endotoxin (1  $\mu$ g/ml) plus PGE<sub>2</sub> (3  $\mu$ M) treated HUVEC. COX-2 protein was detected by Western blots using specific antibodies in cell extracts of HUVEC treated with no addition (lane 1), PGE<sub>2</sub> (3  $\mu$ M; lane 2) alone, forskolin (100  $\mu$ M; lane 3) alone, endotoxin (1  $\mu$ g/ml; lane 4) alone, endotoxin (1  $\mu$ g/ml) plus PGE<sub>2</sub> (3  $\mu$ M; lane 5), endotoxin (1  $\mu$ g/ml) plus PGE<sub>2</sub> (3  $\mu$ M) with forskolin (100  $\mu$ M; lane 6), endotoxin (1  $\mu$ g/ml) plus forskolin (100  $\mu$ M; lane 7) or PGE<sub>2</sub> (3  $\mu$ M) plus forskolin (100  $\mu$ M; lane 8) for 24 hr. Equal amount of protein (20  $\mu$ g/lane) was loaded in each lane. Similar results were obtained with cell extracts from 3 separate batches of cells. The significant differences between each band were compared by scanner densitometry using image 1D program (densitometry unit).



**Figure 6.** The effects of forskolin on COX-1 protein expressed in endotoxin (1  $\mu$ g/ml) plus PGE<sub>2</sub> (3  $\mu$ M) treated HUVEC. COX-1 protein was detected by Western blots using specific antibodies in cell extracts of HUVEC treated with no addition (lane 1), PGE<sub>2</sub> (3  $\mu$ M; lane 2) alone, forskolin (100  $\mu$ M; lane 3) alone, endotoxin (1  $\mu$ g/ml; lane 4) alone, endotoxin (1  $\mu$ g/ml) plus PGE<sub>2</sub> (3  $\mu$ M; lane 5), endotoxin (1  $\mu$ g/ml) plus PGE<sub>2</sub> (3  $\mu$ M) with forskolin (100  $\mu$ M; lane 6), endotoxin (1  $\mu$ g/ml) plus forskolin (100  $\mu$ M; lane 7), or PGE<sub>2</sub> (3  $\mu$ M) plus forskolin (100  $\mu$ M; lane 8) for 24 hr. Equal amount of protein (20  $\mu$ g/lane) was loaded in each lane. Similar results were obtained with cell extracts from 3 separate batches of cells. The significant differences between each band were compared by scanner densitometry using image 1D program (densitometry unit).

## DISCUSSION

Here, we showed that the induction of COX-2 elicited by endotoxin in HUVEC could be inhibited by PGE<sub>2</sub> in a dose dependent manner. Moreover, PGE<sub>2</sub> did not affect on COX-1 either protein or activity. Interestingly, forskolin (cAMP activator) could reverse this inhibition of PGE<sub>2</sub> on COX-2 protein and activity in endotoxin treated HUVEC. The results suggest that i) PGE<sub>2</sub> can be negative feedback regulation through cAMP in the induction of COX-2 elicited by endotoxin in endothelial cells, and ii) the uses of PGE<sub>2</sub> in the condition in which COX-2 has been involved may have therapeutic roles.

PGs induce a wide range of biological actions which are mediated by specific membrane-bound receptors. Among the PGs, PGE<sub>2</sub> is considered to exert a variety of biological activities such as the maintenance of

local homeostasis in the body<sup>12</sup>, a major contributor to the production and maintenance of immunosuppression after overwhelming injury<sup>10</sup> and an important factor for implantation and decidualization<sup>17</sup>. Therefore, PGE<sub>2</sub> is a lipid molecule with complex inflammatory modulation and immuno-regulatory properties. Our results have been supported that PGE<sub>2</sub> can act as antiinflammation and immunosuppression in the induction of COX-2 in endothelial cells by endotoxin.

The exact mechanisms by which PGE<sub>2</sub> inhibited COX-2 induction in endothelial cells activated with endotoxin are not known. These may involve binding to specific cell surface receptors and influencing second messenger systems through G-proteins. Indeed, these should be complexity because the effects of PGE<sub>2</sub> are exerted by a variety of PGE receptors which are different in their

signal transduction properties<sup>18</sup>. There are at least four subtypes of PGE receptors. The EP1 and EP3 receptors are coupled to  $\text{Ca}^{2+}$  mobilization and the inhibition of adenylate cyclase, respectively, and the EP2 and EP4 receptors are coupled to the same signal transduction pathway, stimulation of adenylate cyclase<sup>19</sup>. However, our studies showed that forskolin (cAMP activator) could reverse the inhibition of  $\text{PGE}_2$  on COX-2 induced in endotoxin treated HUVEC suggesting that  $\text{PGE}_2$  might inhibit COX-2 expressed in endotoxin treated HUVEC through cAMP inhibition via EP3 receptor.

For our studies, here, we showed that  $\text{PGE}_2$  was a negative feedback regulation of the induction of COX-2, but not COX-1, in endothelial cells activated with endotoxin. This result suggested that PGE series might have negative feedback regulation of COX-2

induction in endothelial cells as our previous study showed that  $\text{PGE}_1$  and  $\text{PGE}_0$  could inhibit the induction of COX-2 in endothelial cells activated with endotoxin<sup>13</sup>. PGE series have been used in clinical disorder such as peripheral vascular occlusive diseases<sup>21</sup>, NSAIDs-induced gastric ulcer<sup>22</sup>, abortion<sup>23</sup> and impotent<sup>24</sup>. Thus, we propose that the uses of  $\text{PGE}_2$  in the condition in which COX-2 has been involved may have therapeutic roles and the effects of other COX metabolites such as  $\text{PGI}_2$  or  $\text{PGF}_{2\alpha}$  on COX-2 expressed in different cells should be elucidated.

#### ACKNOWLEDGEMENTS

This work was supported by a Grant from Siriraj China Medical Board to Dr. P Akarasereenont.

#### REFERENCES

1. Vane JR, Botting RM. The prostaglandins. In: Vane JR, Botting RM, eds. Aspirin and Other Salicylates. London: Chapman & Hall Medical, 1992; 17-34.
2. Mitchell JA, Akarasereenont P, Thiemermann C, Vane JR. Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. *Proc Natl Acad Sci USA* 1993; 90: 11693-11697.
3. Akarasereenont P, Bakhle YS, Thiemermann C, Vane JR. Cytokines mediate the induction of cyclo-oxygenase-2 by activating tyrosine kinase in bovine aortic endothelial cells stimulated by bacterial lipopolysaccharide. *Br J Pharmacol* 1995; 115: 401-408.
4. Dubois RN, Abramson SB, Crofford L, et al. Cyclooxygenase in biology and disease. *FASEB J* 1999; 12: 1063-1073.
5. Weber AA, Zimmerman KC, Meyer-Kirchrath J, Schror K. Cyclooxygenase-2 in human platelets as a possible factor in aspirin resistance. *Lancet* 1999; 353: 900.
6. Schunbeck U, Sukhova GK, Gruber P, et al. Augmented expression of cyclooxygenase-2 in human atherosclerotic lesions. *Am J Pathol* 1999; 155: 1281-1291.
7. Franco L, Talamini G, Carra G, Doria D. Expression of COX-1, COX-2, and inducible nitric oxide synthase protein in human gastric antrum with *Helicobacter pylori* infection. *Prostaglandins Other Lipid Mediat* 1999; 58: 9-17.
8. Willoughby DA, Moore AR, Colville-Nash PR. COX-1, COX-2, and COX-3 and the future treatment of chronic inflammatory disease. *Lancet* 2000; 355: 646-648.
9. Fedyk ER, Phipps RP. Prostaglandins E<sub>2</sub> receptors of the EP2 and EP4 subtypes regulate activation and differentiation of mouse B lymphocytes to IgE-secreting cells. *Proc Natl Acad Sci USA* 1996; 90: 10978-10983.
10. Lo CJ, Cryer HG, Fu M, Lo FR. Regulation of macrophage eicosanoid generation is dependent on nuclear factor kappa B. *J Trauma* 1998; 45: 19-23.
11. Brown NL, Alvi SA, Elder MG, et al. Interleukin-1beta and bacterial endotoxin change the metabolism of prostaglandins E<sub>2</sub> and F<sub>2</sub><sub>a</sub> in intact term fetal membranes. *Placenta* 1998; 19: 625-630.
12. Ichikawa A, Sugimoto Y, Negishi M. Molecular aspects of the structures and functions of the prostaglandin E receptors. *J Lipid Mediat Cell Signal* 1996; 14: 83-87.
13. Akarasereenont P, Hide E, Ney P, et al. The induction of cyclooxygenase-2 elicited by endotoxin in endothelial cells and macrophages is inhibited by prostaglandin E<sub>1</sub> and 13,14-dihydro prostaglandin E<sub>1</sub>. *Agent Action* 1995; 45: 59-64.

14. Jaffe EA, Nachman RL, Becker CG, Minick CR. Culture of human endothelial cells derived from umbilical veins: identification by morphologic and immunologic criteria. *J Clin Invest* 1973; 52: 2745-2756.
15. Akarasereenont P, Mitchell JA, Appleton I, et al. Involvement of tyrosine kinase in the induction of cyclo-oxygenase and nitric oxide synthase by endotoxin in cultured cells. *Br J Pharmacol* 1994; 113: 1522-1528.
16. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. *J Immunol Meth* 1983; 65: 55-63.
17. Lim H, Dey SK. Prostaglandin E<sub>2</sub> receptor subtype EP2 gene expression in the mouse uterus coincides with differentiation of the luminal epithelium for implantation. *Endocrinology* 1997; 138: 4599-4606.
18. Woodward DF, Regan JW, Lake S, Ocklind A. The molecular biology and ocular distribution of prostanoid receptors. *Surv Ophthalmol* 1997; 41(suppl 2): S15-S21.
19. Nishigaki N, Negishi M, Ichikawa A. Two Gs-coupled prostaglandin E receptor subtypes, EP2 and EP4, differ in desensitization and sensitivity to the metabolic inactivation of the agonist. *Mol Pharmacol* 1996; 50: 1031-1037.
20. Akarasereenont P, Mitchell JA, Bakhle YS, et al. Comparison of the induction of cyclooxygenase and nitric oxide synthase by endotoxin in endothelial cells and macrophages. *Eur J Pharmacol* 1995; 273: 121-128.
21. Altstaedt HO, Berzewski B, Breddin HK, et al. Treatment of patients with peripheral arterial occlusive disease Fontaine stage IV with intravenous iloprost and PGE<sub>1</sub>: a randomized open controlled study. *Prostaglandins Leukot Essent Fatty Acids* 1993; 49: 573-578.
22. Ares JJ, Outt PE. Gastroprotective agents for the prevention of NSAID-induced gastropathy. *Curr Pharm Des* 1998; 4: 17-36.
23. Cabezas E. Medical versus surgical abortion. *Int J Gynaecol Obstet* 1998; 63 (Suppl 1): S141-S146.
24. Becker AJ, Stief CG, Schultheiss D, et al. Pharmacological therapy of erectile dysfunction. *Urologe A* 1998; 37: 503-508.

## REVIEWS

### THE COMPARATIVE STUDY OF TACROLIMUS AND CYCLOSPORIN USED IN RENAL TRANSPLANTATION

Chanokporn Boonthariksiri

*Department of Pharmacy Division, Pramongkutkla Hospital, Bangkok 10400, Thailand.*

#### ABSTRACT

Cyclosporin and tacrolimus both are calcineurin-calmodulin inhibitors that are used to suppress immune responses in organ transplantation. Patients who were treated with tacrolimus had significantly less graft rejections than patients who were treated with cyclosporin. However, there was no significant difference regarding patient and graft survivals. Tacrolimus also has a steroid sparing effect and can be combined with other immunosuppressive drugs to reduce the use of antithymocyte for acute rejection treatment. Both drugs can cause nephrotoxicity, infections and malignancies. Tacrolimus has more adverse effects, i.e., post-transplant diabetes mellitus and neurotoxicity while cyclosporin frequently causes hyperlipidemia and gingival hyperplasia. To compare about cost of therapy, tacrolimus is more expensive than cyclosporin in the short initial period, but in the long run it can save cost of rejection therapy and it makes more patients have a chance to get kidney transplantation. Nevertheless, appropriate immunosuppressive therapy should be based on individual patient's factors.

**Key words :** cyclosporin, tacrolimus, kidney transplantation

## การศึกษาเปรียบเทียบการใช้ Tacrolimus และ Cyclosporin ในผู้ป่วยผ่าตัดปลูกถ่ายไต

ชนกพร บุญทริกคิริ

กองเภสัชกรรม โรงพยาบาลพระมงกุฎเกล้า ถ.ราชวิถี เขตราชเทวี กรุงเทพฯ 10400

### บทคัดย่อ

cyclosporin และ tacrolimus จัดเป็นยาในกลุ่ม calcineurin-calmodulin inhibitor ใช้เป็นยา抗ดกภูมิคุ้มกันในผู้ป่วยผ่าตัดปลูกถ่ายอวัยวะ ซึ่งเป็นยาที่นิยมใช้ในผู้ป่วยผ่าตัดปลูกถ่ายไต จากการศึกษาเปรียบเทียบการใช้ cyclosporin กับ tacrolimus พบว่าผู้ใช้ tacrolimus มีอัตราการปฏิเสธอวัยวะต่ำกว่าผู้ใช้ cyclosporin อย่างมีนัยสำคัญ แต่ผลต่อการอยู่รอดของผู้ป่วยและอวัยวะไม่แตกต่างกันอย่างไม่มีนัยสำคัญ นอกจากนี้ tacrolimus ยังมี steroid sparing effect และสามารถลดการใช้ antithymocyte ที่ใช้เพื่อการรักษาการปฏิเสธอวัยวะเฉียบพลันได้ โดยใช้ร่วมกับยาอื่นๆ ในด้านความปลอดภัยของยานั้น ยาทั้งสองชนิดมีความเป็นพิษต่ำ ลดภูมิคุ้มกันของร่างกายทำให้เกิดการติดเชื้อได้ง่าย ตลอดจนเกิดมะเร็งได้คล้ายคลึงกัน ด้านผลข้างเคียง tacrolimus มีผลข้างเคียงที่มากกว่า cyclosporin ในแง่ของการทำให้ระดับน้ำตาลในเลือดสูงและเกิดภาวะเบาหวาน ตลอดจนความเป็นพิษต่อระบบประสาท ในขณะที่ cyclosporin มีผลข้างเคียงมากกว่าในแง่ของระดับไขมันในเลือดสูงและการเกิดภาวะเหื่อออกบวมหนา ด้านค่าใช้จ่ายระหว่างยาทั้งสองชนิด การใช้ tacrolimus มีค่าใช้จ่ายสำหรับการใช้ยาต่อวันแพงกว่า แต่เมื่อคิดในระยะยาวแล้วจะสามารถลดค่าใช้จ่ายได้มากกว่าการใช้ cyclosporin เนื่องจากสามารถลดอัตราการเกิดภาวะปฏิเสธอวัยวะเฉียบพลันได้มากกว่าและเพิ่มโอกาสในการได้รับการผ่าตัดปลูกถ่ายไตให้แก่ผู้ที่รอดอยู่อวัยวะ อย่างไรก็ตาม แพทย์ยังคงต้องพิจารณาปัจจัยต่างๆ และเลือกใช้ยาตามความเหมาะสมของผู้ป่วยแต่ละราย

คำสำคัญ : cyclosporin, tacrolimus, การผ่าตัดปลูกถ่ายไต

## บทนำ

การปลูกถ่ายไตเป็นวิธีการหนึ่งในการรักษาผู้ป่วย end stage renal disease (ESRD) สามารถยืดอายุและสร้างคุณภาพชีวิตที่ดีให้แก่ผู้ป่วย การผ่าตัดปลูกถ่ายไตสามารถทำได้สำเร็จเป็นครั้งแรกในปี ค.ศ. 1954 ซึ่งเป็นการผ่าตัดระหว่างฝาแฝดที่มหาวิทยาลัย Pittsburgh สหรัฐอเมริกา<sup>1</sup> ส่วนในประเทศไทยนั้นเกิดขึ้นแห่งแรกที่โรงพยาบาลจุฬาลงกรณ์ในปี พ.ศ. 2515<sup>2</sup> ปัญหาที่สำคัญของการผ่าตัดปลูกถ่ายอวัยวะ เป็นปัญหาที่เกี่ยวข้องกับระบบภูมิคุ้มกัน นั่นคือ ผู้ป่วยจะเกิดภาวะการปฏิเสธอวัยวะเฉียบพลัน (acute rejection) ภายในสัปดาห์แรกหลังการผ่าตัด ดังนั้นความสำเร็จของ การผ่าตัดปลูกถ่ายอวัยวะจึงขึ้นอยู่กับความรู้ และความก้าวหน้าทางวิทยาการของยาด ภูมิคุ้มกันเป็นอย่างมาก ดังจะเห็นได้จากการปฏิรูปการผ่าตัดปลูกถ่ายอวัยวะที่เกิดขึ้นหลังจากเริ่มมีการใช้ยา cyclosporin ในปี ค.ศ. 1983 ทำให้อัตราการอยู่รอด (survival rate) ภายใน 1 ปีแรกหลังการผ่าตัดปลูกถ่ายไตเพิ่มขึ้นจากเดิมร้อยละ 64 เป็นร้อยละ 78<sup>3</sup> อย่างไรก็ตาม ถึงแม้จะมีการใช้ยาดภูมิคุ้มกันกับผู้ป่วยที่ผ่าตัดปลูกถ่ายอวัยวะแล้วก็ตาม ยังคงมีสาเหตุอื่นอีกที่ทำให้เกิดการสูญเสียอวัยวะ (graft loss) ที่ทำการปลูกถ่ายไปแล้วนั้น ซึ่งส่วนใหญ่เกิดจากมีภาวะการปฏิเสธอวัยวะเรื้อรัง (chronic rejection) ซึ่งยังคงเป็นปัญหาที่สำคัญอยู่ในปัจจุบัน เพราะมีอัตราการสูญเสียอวัยวะประมาณร้อยละ 5 ต่อปีในปีที่ 2 และเพิ่มขึ้นในปีต่อๆ ไปหลังการผ่าตัด ทำให้มีค่าครึ่งชีวิตโดยประมาณของไตที่ผ่าตัดปลูกถ่ายเท่า

กับ 7.2 ปี<sup>4</sup> ยิ่งไปกว่านั้น ยาดภูมิคุ้มกันที่ใช้อยู่ในปัจจุบันส่วนมากจะมีความเป็นพิษอยู่ 2 ประการ ซึ่งสัมพันธ์กับขนาดของยาได้แก่ พิษที่เกี่ยวข้องกับการกดระบบภูมิคุ้มกันของร่างกายทำให้เกิดการติดเชื้อ หรือเกิดมะเร็ง และพิษที่มีต่อระบบต่างๆ ของร่างกาย เช่น พิษต่อไต ทำให้เกิดความดันโลหิตสูง หรือเกิดภาวะเม็ดเลือดขาวต่ำ เป็นต้น

## การใช้ยาสำหรับรักษาผู้ป่วยผ่าตัดปลูกถ่ายอวัยวะในปัจจุบัน

การใช้ยาดภูมิคุ้มกันสำหรับผู้ป่วยผ่าตัดปลูกถ่ายอวัยวะในปัจจุบันมี 2 ลักษณะ คือ<sup>5</sup>

- เพื่อป้องกันการปฏิเสธอวัยวะ (prophylactic therapy) เป็นการใช้ยาดภูมิคุ้มกันเพื่อลดอุบัติการณ์และความถี่ของ การเกิดภาวะการปฏิเสธอวัยวะอย่างเฉียบพลันและการปฏิเสธอวัยวะอย่างเรื้อรัง โดยจะให้ยาทันทีหลังการผ่าตัดและต้องให้ยาติดต่อกันไปตลอดชีวิตเพื่อรักษาอวัยวะไว้ โดยมากขนาดที่ใช้ในระยะแรกจะค่อนข้างสูงและลดขนาดลงในระยะต่อมา ยาดภูมิคุ้มกันที่ใช้ในลักษณะนี้ได้แก่ mycophenolate mofetil, cyclosporin, tacrolimus, azathioprine และ corticosteroids

- การรักษาแบบหนีเรียน (induction therapy) เป็นลักษณะหนึ่งของการป้องกัน การปฏิเสธอวัยวะโดยการใช้ยากลุ่ม anti-thymocyte globulin หรือ muromonab-CD3 เสริมกับยาดภูมิคุ้มกันที่กล่าวแล้วข้างต้น โดยจะใช้ยากลุ่ม anti-thymocyte globulin หรือ muromonab-CD3 ก่อนการ

ผ่าตัดและในวันแรกๆ หลังการผ่าตัด ได้มีการพิสูจน์แล้วว่าการใช้ยาลักษณะนี้สามารถช่วยลดการเกิดการปฏิเสธอวัยวะครั้งแรกให้เกิดขึ้นชั้ลง แต่ไม่สามารถป้องกันการเกิดได้ แต่ในบางกรณีทดลองก็แสดงให้เห็นว่า เกิด rebound rejection ขึ้นจากการใช้ยาลักษณะนี้ อย่างไรก็ตามประเทศต่างๆ ส่วนมากจะไม่อนุญาตให้ระบุการใช้ยาในลักษณะนี้ลงในข้อบ่งใช้ของยา การใช้ยาเพื่อการเห็นี่ยวนานนี้อาจมีการใช้เพื่อช่วยลดการใช้ cyclosporin ในผู้ป่วยที่เพิ่งได้รับการผ่าตัดปลูกถ่ายอวัยวะใหม่ๆ เพื่อป้องกันพิษของยาต่อไป

การใช้ยากดภูมิคุ้มกันเพื่อป้องกันการปฏิเสธอวัยวะในปัจจุบันที่ใช้กันมากที่สุด คือ การใช้ยา 3 ชนิดร่วมกัน ประกอบด้วย cyclosporin, azathioprine และ corticosteroids เพื่อลดความเป็นพิษของยา แต่ละตัว และเพื่อลดขนาดการใช้ของยา cyclosporin และลดพิษของ cyclosporin ต่อไป ต่อต้น การเกิดภาวะน้ำตาลในเลือดสูง ความผิดปกติของระบบประสาท และความเสี่ยงในการเกิดการติดเชื้อ และการเกิดมะเร็ง ซึ่งเป็นภาวะแทรกซ้อนที่สำคัญ ถึงแม้ว่าเมื่อพิจารณาผลในช่วง 1 ปี การใช้ยาในสูตรที่ประกอบด้วย cyclosporin จะสามารถให้ผลทางคลินิกด้านการรักษาอวัยวะได้ดีแต่ยังคงมีปัญหาในด้านการปฏิเสธอวัยวะ เรื่องที่ไม่สามารถแก้ไขได้ในกรณีที่เป็นการผ่าตัดปลูกถ่ายไต การใช้ยาในขนาดที่สูงขึ้น อาจให้ผลที่ดีขึ้น แต่ก็เพิ่มความเสี่ยงของ การเกิดผลข้างเคียงที่ไม่พึงประสงค์ต่างๆ จึงมักไม่ใช้ยาในขนาดสูงเช่นนั้น ผลทางคลินิกเมื่อเกิดการปฏิเสธอวัยวะนั้นมีมาก

น้อย เป็นผลต่อคุณภาพชีวิตของผู้ป่วย ซึ่งอาจต้องได้รับการผ่าตัดเปลี่ยนอวัยวะครั้งใหม่ หรืออาจเกิดความรุนแรงของภาวะนี้จนถึงแก่ชีวิต การที่ต้องมีการผ่าตัดปลูกถ่ายอวัยวะใหม่อีกครั้ง มีผลกระทบต่อจำนวนอวัยวะที่ได้รับบริจาคมา ทำให้มีผู้ป่วยได้รับการผ่าตัดปลูกถ่ายอวัยวะได้น้อยลง และระหว่างรอการผ่าตัดใหม่ผู้ป่วยอาจจำเป็นต้องอาศัยการฟอกเลือด ซึ่งทั้งการฟอกเลือดและการผ่าตัดใหม่มีผลกระทบทางด้านเศรษฐกิจต่อคนไข้

จากผลไม่พึงประสงค์ของการใช้ยา cyclosporin ทำให้มีความพยายามในการพัฒนายากดภูมิคุ้มกันใหม่ๆ ที่มีประสิทธิภาพดีขึ้นและปลอดภัย ซึ่งในปัจจุบันได้มีการนำมาใช้แล้ว นั่นก็คือ tacrolimus ซึ่งมีการทดลองมานานเป็น 10 ปีถึงประสิทธิภาพในทางคลินิก และมีการศึกษาเปรียบเทียบประสิทธิภาพและความปลอดภัยของ cyclosporin และ tacrolimus ดังรายละเอียดที่จะนำเสนอต่อไป นอกจากนี้ยังมีแนวทางใหม่อื่นๆ อีก ได้แก่ การใช้ยากลุ่มที่มีผลต่อ IL-2 pathway เช่น daclizumab, basiliximab และ leflunomide เป็นต้น

2. เพื่อการรักษาการปฏิเสธอวัยวะ อย่างเฉียบพลัน (rescue therapy) เป็นการใช้ยาเพื่อรักษาการปฏิเสธอวัยวะอย่างเฉียบพลันเป็นระยะเวลาสั้นๆ โดยการใช้ยาที่ได้รับการพิสูจน์แล้วว่าได้ผล โดยจะเพิ่มยาในกลุ่มนี้ตัวใดตัวหนึ่งร่วมไปกับการใช้ยาในการป้องกันเดิมจนกว่าจะแก้ไขภาวะปฏิเสธอวัยวะนั้นได้สำเร็จ ยาที่เลือกใช้เป็นอันดับแรก คือ corticosteroid นิดเข้าหลอดเลือดดำ ยาที่เลือกใช้เป็นอันดับสอง คือ

polyclonal antibodies เช่น anti-thymocyte globulin (ATG), anti-lymphocyte globulin (ALG), และ monoclonal antibody เช่น muromonab-CD3 ยานบางชนิดที่ใช้ในการป้องกันการปฏิเสธอวัยวะก็ยังสามารถใช้รักษาการปฏิเสธอวัยวะได้ด้วย เช่น cyclosporin และ tacrolimus

ประสิทธิผลของยา cyclosporin และ tacrolimus ในผู้ป่วยผ่าตัดปลูกถ่ายไต

### การใช้ยาเพื่อป้องกัน

ในปี ค.ศ. 1995 Gjerston และคณะ<sup>3</sup> ได้รายงานผลการศึกษาติดตามผู้ป่วยผ่าตัดปลูกถ่ายไตเป็นระยะเวลานาน พบว่า ครึ่งชีวิตของไตในกลุ่มผู้ป่วยที่ใช้ tacrolimus มีค่าเท่ากับ 13.8 ปี ในขณะที่ผู้ป่วยที่ใช้ cyclosporin มีค่าครึ่งชีวิตเป็น 8.8 ปี แต่ฐานข้อมูลชุดนี้ไม่สามารถยืนยันผลนี้ได้ นอกเหนือไปจากนี้ไม่มีการศึกษาแบบสุ่มใด ๆ ที่ศึกษาหลังการผ่าตัดแล้ว 1 ปี ที่แสดงให้เห็นว่าผู้ป่วยกลุ่มที่ใช้ tacrolimus มีการอยู่รอดของอวัยวะเพิ่มขึ้น ถึงแม้ว่าการศึกษาต่าง ๆ จะมีความขัดแย้งในผลการทดลอง แต่ก็มีแนวโน้มที่เห็นได้ชัดว่ามีการใช้ tacrolimus เพิ่มขึ้น Knoll และคณะ ทำการศึกษาแบบ meta-analysis<sup>6</sup> เพื่อเปรียบเทียบระหว่าง tacrolimus และ cyclosporin ใน การใช้เป็นยากดภูมิคุ้มกันในผู้ป่วยผ่าตัดปลูกถ่ายไตในช่วงปี ค.ศ. 1989-1998 พบว่าจากการศึกษาต่าง ๆ 499 แห่ง มีเพียงการศึกษา 4 แห่ง<sup>7-10</sup> ที่ศึกษาผู้ป่วยทั้งสิ้น 1,037 คนเท่านั้นที่มีความน่าเชื่อถือ เนื่องจากเป็นการทดลองแบบสุ่มที่มีตัวควบคุม

Knoll สรุปว่าการใช้ tacrolimus มีผลต่อการสูญเสียอวัยวะหลังผ่าตัด 1 ปี และ มีผลต่ออัตราตายของผู้ป่วย (ตารางที่ 3) อย่างไม่มีนัยสำคัญทางสถิติ (odds ratio 0.95, 95% CI 0.65-1.40; 1.07, 95% CI 0.47-2.48 ตามลำดับ)<sup>6</sup> และไม่แตกต่างกันในระหว่างการศึกษาทั้ง 4 แห่ง อุบัติการณ์ของการปฏิเสธอวัยวะเฉียบพลันภายใน 1 ปีหลังผ่าตัด (ตารางที่ 4) พบว่าการรักษาด้วย tacrolimus สัมพันธ์กับการลดลงของการเกิดการปฏิเสธอวัยวะเฉียบพลันอย่างมีนัยสำคัญ (0.52, 95% CI 0.36-0.75)<sup>6</sup> และการใช้ ALG เพื่อรักษาภาวะปฏิเสธอวัยวะเฉียบพลันลดลงอย่างมีนัยสำคัญ (0.37, 95% CI 0.25-0.56)<sup>6</sup>

อย่างไรก็ตามการทำ meta-analysis นี้ไม่อาจสรุปผลได้ดังกล่าวข้างต้น เนื่องจากลักษณะการใช้ยาของทั้ง 4 การศึกษานั้นไม่เป็นแบบเดียวกันทั้งหมด และบางการศึกษา ไม่ได้บ่งรายละเอียดของการใช้ยาอย่างครบถ้วน ดังนั้นจึงไม่สามารถนำผลการศึกษานี้มาเป็นแนวทางสำหรับการรักษาในปัจจุบันได้ นอกเหนือไปจากการใช้ยา cyclosporin ในแต่ละการศึกษายังเป็นการใช้ยาในรูปแบบเดิมที่ไม่ใช้แล้วในปัจจุบัน

มีผู้ทำการศึกษาเปรียบเทียบการใช้ tacrolimus กับ cyclosporin ที่เป็นรูปแบบ microemulsion ในระยะต่อมา เช่น การศึกษาของ Boots และคณะ<sup>11</sup> ในประเทศเนเธอร์แลนด์ โดยศึกษาในผู้ป่วยผ่าตัดปลูกถ่ายไตทั้งสิ้น 128 ราย เป็นผู้ป่วยที่ใช้ cyclosporin (Neoral) 74 ราย ผู้ป่วยที่ใช้ tacrolimus 54 ราย พบว่าผู้ป่วยกลุ่มที่ใช้ tacrolimus มี acute rejection free survival

ร้อยละ 82 ในขณะที่กลุ่มที่ใช้ Neoral มีค่า เป็นร้อยละ 40 ซึ่งแตกต่างกันอย่างมีนัย สำคัญทางสถิติ ( $p < 0.0001$ ) และเมื่อ เปรียบเทียบด้านผลข้างเคียง พบว่าค่าเฉลี่ย

ของความดันโลหิตหรือระดับไขมันในเลือด ในผู้ป่วยกลุ่มที่ใช้ tacrolimus น้อยกว่าหรือ ใกล้เคียงกับผู้ป่วยที่ใช้ Neoral

ตารางที่ 1 Baseline characteristics of studies included in analysis<sup>6</sup>.

| Characteristics      | Shapiro          | Vincenti  | Pirsch    | Mayer     |
|----------------------|------------------|-----------|-----------|-----------|
| Year                 | 1991             | 1996      | 1997      | 1997      |
| No of patients       | 28/29            | 92/28     | 205/207   | 303/145   |
| Mean age (years)     | 37/39            | 44/47     | 43/44     | 47/46     |
| Proportion male (%)  | NS               | 65/79     | 60/62     | 65/63     |
| Donor                | Cadaveric/living | Cadaveric | Cadaveric | Cadaveric |
| First transplant (%) | 100/100          | 100/100   | 87/87     | 90/90     |
| Diagnosis (%):       |                  |           |           |           |
| Hypertension         | NS               | 19/25     | 21/19     | 8/8       |
| Diabetes             | NS               | 26/25     | 19/19     | 5/4       |
| Glomerulonephritis   | NS               | 16/25     | 18/14     | 40/43     |
| Hereditary           | NS               | 15/14     | 11/8      | 15/14     |
| Other                | NS               | 24/11     | 31/40     | 32/31     |
| Quality score        | 1                | 2         | 2         | 2         |

NS = not specified, ค่าที่รายงานและใช้เครื่องหมาย/คั่น เป็นค่าในกลุ่ม tacrolimus/cyclosporin

ตารางที่ 2 สรุปแบบแผนการใช้ยากดภูมิคุ้มกันในการศึกษา<sup>6</sup>

| Characteristic                           | Shapiro            | Vincenti                                                    | Pirsch                                                      | Mayer                        |
|------------------------------------------|--------------------|-------------------------------------------------------------|-------------------------------------------------------------|------------------------------|
| Induction                                | NS                 | Antilymphocyte globulin                                     | Antithymocyte globulin or muromonab-CD3 monoclonal antibody | None                         |
| Tacrolimus (mg/kg/day)                   | 0.1 IV to 0.3 oral | 0.2, 0.3 or 0.4 oral                                        | 0.2 oral                                                    | 0.3 oral                     |
| Azathioprine (mg/kg/day)                 | NS                 | 1-4 IV then 1-1.5 oral                                      | 2-4 IV then 1.5 oral                                        | 2 IV then 1-2 oral           |
| Prednisone                               | NS                 | 2 mg/kg IV/oral; down to 0.5 mg/kg/day; then local protocol | 500 mg IV pre-op; then 5-0.5 mg/kg/day; taper to 10 mg/day  | 500 mg IV; taper 20-5 mg/day |
| Cyclosporin (mg/kg/day)                  | NS                 | 6-14 oral                                                   | 10 oral                                                     | 8 oral                       |
| Trough concentrations (ng/ml) at 1 week: |                    |                                                             |                                                             |                              |
| Tacrolimus                               | NS                 | NS                                                          | Median 11.3                                                 | Mean 13.9                    |
| Cyclosporin                              | NS                 | NS                                                          | Median 269                                                  | Mean 254                     |

NS = not specified.

ตารางที่ 3 Pooled analysis for graft loss and patient mortality คิดเป็นค่า odds ratios (95% CI)<sup>6</sup>

| Study                  | Graft loss          | Mortality           |
|------------------------|---------------------|---------------------|
| Shapiro                | 0.83 (0.22 to 3.12) | 0.32 (0.03 to 3.29) |
| Vincenti               | 0.58 (0.14 to 2.49) | 0.29 (0.04 to 2.15) |
| Pirsch                 | 0.70 (0.37 to 1.33) | 1.31 (0.48 to 3.59) |
| Mayer                  | 1.33 (0.76 to 2.31) | 2.09 (0.77 to 5.65) |
| Test for heterogeneity | P>0.40              | P>0.20              |
| Summary result         | 0.95 (0.65 to 1.40) | 1.07 (0.47 to 2.48) |

ตารางที่ 4 Pooled analysis of acute rejection, use of antilymphocyte antibodies, and post-transplant diabetes mellitus, คิดเป็นค่า odds ratios (95% CI)<sup>6</sup>

| Study                  | Acute rejection     | Antilymphocyte treatment for rejection | Post-transplant DM   |
|------------------------|---------------------|----------------------------------------|----------------------|
| Vincenti               | 1.02 (0.41 to 2.53) | NS                                     | 4.15 (0.5 to 34.04)  |
| Pirsch                 | 0.51 (0.34 to 0.77) | 0.36 (0.21 to 0.62)                    | 5.25 (1.94 to 14.20) |
| Mayer                  | 0.41 (0.27 to 0.63) | 0.39 (0.22 to 0.71)                    | NS                   |
| Test for heterogeneity | P>0.20              | P>0.80                                 | P>0.80               |
| Summary result         | 0.52 (0.36 to 0.75) | 0.37 (0.25 to 0.56)                    | 5.03 (2.04 to 12.36) |

NS = not specified.

### การศึกษาในเด็ก

ผลการศึกษาติดตามผู้ป่วยเด็กที่ผ่าตัดปลูกถ่ายไตเป็นเวลา 1 ปี<sup>12,13</sup> พบว่า อัตราการรอดชีวิตของผู้ป่วยและอัตราการอยู่รอดของอวัยวะเป็นร้อยละ 100 และมากกว่าร้อยละ 90 ในผู้ที่ใช้ tacrolimus ร่วมกับ corticosteroids โดยใช้หรือไม่ใช้ azathioprine (ตารางที่ 5) ซึ่งค่านี้ใกล้เคียงกับกลุ่มผู้ใช้ cyclosporin แต่กลุ่มผู้ใช้ tacrolimus มีการปฏิเสธอวัยวะเฉียบพลันสูงกว่า อายุ่รักษ์ตามผลการศึกษาของ Shapiro และคณะ<sup>14</sup> เมื่อเร็วๆ นี้ พบว่าอัตราการปฏิเสธอวัยวะเฉียบพลันลดลงตามประสบการณ์การใช้ tacrolimus ที่เพิ่มมากขึ้น จาก

ในช่วงธันวาคม 1989 ถึง ธันวาคม 1993 ที่มีอัตราการปฏิเสธอวัยวะเฉียบพลันร้อยละ 63 ลดลงเป็นร้อยละ 27 ในช่วงมกราคม 1994 ถึง มิถุนายน 1995 นอกจากนี้ยังพบว่าผู้ป่วยที่ผ่าตัดแบบ cadaveric (CD) และ living donate (LD) ได้ผลเหมือนกัน อันที่จริงแล้วปัจจัยสำคัญที่มีผลต่อการดำรงอยู่ของอวัยวะมากที่สุด คือ ระดับของ PRA การใช้ tacrolimus ยังทำให้ผู้ป่วยเด็กมากกว่าร้อยละ 70 สามารถหยุดใช้ steroid ได้ (ตารางที่ 5) ซึ่งการหยุดใช้ steroid มีผลต่อการเจริญเติบโตของผู้ป่วยเด็ก เด็กกลุ่มที่หยุดใช้ steroid จะมีความสูงมากกว่าเด็กกลุ่มที่ใช้ steroid<sup>12,13</sup>

ตารางที่ 5 ประสิทธิผลของ tacrolimus-based regimen ที่ใช้เป็นยากดภูมิคุ้มกันในเด็กที่ผ่าตัดปลูกถ่ายอวัยวะ

| Reference     | No of pts.<br>mean age(yr) | Dosage in<br>mg/kg/day<br>(mean follow-up)      | Time of<br>Assessment<br>(yr) | Results                          |                             |                                     |                                   |
|---------------|----------------------------|-------------------------------------------------|-------------------------------|----------------------------------|-----------------------------|-------------------------------------|-----------------------------------|
|               |                            |                                                 |                               | Graft<br>survival<br>(% of pts.) | Pt. survival<br>(% of pts.) | Acute<br>rejection<br>(episode/pt.) | Steroid<br>stopped<br>(% of pts.) |
| Ellis et al   | 24[11,4]                   | TRL 0.1IV then<br>0.3PO+CS±AZA<br>(24.5 mo)     | 1                             | 92                               | 100                         | 0.58*                               | 77                                |
|               | 24HC[9,8]                  | CYA 10 IV then<br>10-15PO+CS±AZA<br>ALA (42 mo) | 1                             | 92                               | 100                         | 0.21                                | Not attempted                     |
| Shapiro et al | 69 [10,3]                  | TRL 0.075-0.1 IV<br>then<br>0.3PO+CS(32mo)      | 1                             | 99                               | 100                         |                                     |                                   |
|               |                            |                                                 | 4                             | 85                               | 95                          | 49 <sup>a</sup>                     | 73                                |

<sup>a</sup> Percentage of patients experiencing acute rejection.

\*P < 0.05

### การใช้ยาเพื่อรักษาหรือแก้ไข

จากการศึกษาของ Morale และคณะ<sup>16</sup> ในผู้ป่วยผ่าตัดปลูกถ่ายไตจำนวน 189 ราย ในช่วง มิ.ย. 1996–ม.ค. 1998 ได้รับยากดภูมิคุ้มกันคือ cyclosporin, mycophenolate mofetil หรือ azathioprine และ steroids ผู้ป่วยในจำนวนนี้ 32 ราย (17%) เกิดภาวะการปฏิเสธอวัยวะเฉียบพลันตั้งแต่ระยะแรก ซึ่งผู้ป่วย 18 ราย (57%) รักษาโดยการให้ steroid เป็นช่วงๆ, 10 ราย (31%) เปลี่ยนจาก cyclosporin ไปใช้ tacrolimus, และอีก 4 ราย (12%) สูญเสียตัวในทันที เมื่อศึกษาวิเคราะห์ย้อนหลัง ในผู้ป่วย 10 รายที่เปลี่ยนการใช้ยาจาก cyclosporin เป็น tacrolimus แบ่งผู้ป่วย เป็น 2 กลุ่ม คือ กลุ่ม A เป็นผู้ป่วยที่เปลี่ยนมาใช้ยาเนื่องจากมีภาวะการปฏิเสธอวัยวะเฉียบพลันที่ต้องต่อ steroid หรือ anti-lymphocytic drug และได้รับ anti-lymphocytic antibodies และอีกกลุ่มนึง เป็นกลุ่ม B เป็นผู้ป่วยที่เกิดภาวะการปฏิเสธอวัยวะเฉียบพลันที่ตอบสนองต่อ steroid น้อย แต่ยังไม่เคยได้รับ anti-lymphocytic

antibodies ค่าเฉลี่ยของผู้ป่วยที่มาพบแพทย์ ตามนัด  $11 \pm 5$  เดือน ทำการวิเคราะห์ตัวแปรต่างๆ ที่เกี่ยวข้องกับผู้บุริจาคมติและผู้ที่ได้รับไตโดยวิธีทางสหัติ และใช้ chi-square และ t-test หาความแตกต่างระหว่างกลุ่ม ผลการศึกษาพบว่าผู้บุริจาคมติเป็นเพศชาย 7 ราย หญิง 3 ราย มีอายุเฉลี่ย  $40 \pm 18$  ปี (15-85 ปี) มีภาวะสมองตายจากเลือดออกในสมอง 5 ราย และ cranioencephalic trauma 5 ราย ค่าซีรัมครีอตินีนก่อนผ่าตัดเฉลี่ย  $0.92 \pm 0.35$  mg/dl ผู้รับบริจาคมติเป็นเพศชาย 6 ราย หญิง 4 ราย อายุเฉลี่ย  $37 \pm 17$  ปี (17-69 ปี) ได้รับยา cyclosporin, mycophenolate และ steroids ผู้ป่วยเกิดภาวะไตวายเรื้อรัง ตามด้วย reflux nephropathy 2 ราย, เกิด nephro-angiosclerosis 2 ราย, diabetic nephropathy 1 ราย, hypomagnesemia 1 ราย glomerulonephritis 2 ราย และ nephro-pathy of unknown origin 2 ราย ค่า cold ischemic time  $23 \pm 4$  ชั่วโมง เกิดไตทำงานได้ช้าร้อยละ 40 จัดเป็นผู้ป่วยกลุ่ม A 4 ราย (40%) ผู้ป่วยกลุ่ม B 6 ราย

(60%) ตารางที่ 6 แสดงลักษณะของผู้ป่วยในแต่ละกลุ่ม เมื่อเปรียบเทียบแล้วไม่แตกต่างกันอย่างมีนัยสำคัญ หลังจากเปลี่ยนมาใช้ยา tacrolimus และ ในผู้ป่วยที่หยุดยาหรือเกิดความเป็นพิษต่อไตหรือระบบประสาท

สรุปผลการศึกษาได้ว่าสามารถใช้ tacrolimus เพื่อรักษาภาวะการปฏิเสธอวัยวะเฉียบพลันที่ตอบสนองต่อ steroid ช้าได้เป็นการหลีกเลี่ยงการใช้ antilymphocytic globulin ซึ่งสามารถลด morbidity ที่เกิดจากยาได้ ผู้ป่วยไม่เกิดการกลับเป็นขึ้นของภาวะการปฏิเสธอวัยวะเฉียบพลันอีก

#### การศึกษาในเด็ก

มีการศึกษาในผู้ป่วยเด็กกลุ่มเล็ก ๆ พบว่าเมื่อเปลี่ยนการใช้ยาจาก cyclosporin เป็น tacrolimus และ สามารถช่วยเหลือผู้

ป่วยที่เกิดการปฏิเสธอวัยวะเฉียบพลันที่ดื้อต่อ steroid ได้<sup>17</sup> มีอัตราการรอดของอวัยวะที่เวลา 1 ปีหลังผ่าตัดเป็นร้อยละ 70 ( $n=10$ )<sup>18</sup> และร้อยละ 86 ( $n=11$ )<sup>19</sup> ตามลำดับ วัดค่าการรอดที่แท้จริงของอวัยวะที่เวลา 1 ปีและ 2 ปีหลังการผ่าตัดในผู้ป่วยเด็กจำนวน 24 ราย ซึ่งเปลี่ยนมาใช้ tacrolimus เนื่องจากมีการปฏิเสธอวัยวะชนิดที่ดื้อต่อ steroids และ ALG ( $n=19$ ) หรือผู้ป่วยที่เกิดผลข้างเคียงจากการใช้ยาดกูนิคุณกันอื่น ๆ ได้ผลเป็นร้อยละ 75 และร้อยละ 68 ตามลำดับ และผู้ป่วยมีชีวิตรอดทั้งหมด<sup>20</sup> ในผู้ป่วยที่เกิดภาวะการปฏิเสธอวัยวะเรื้อรัง 8 ราย การใช้ tacrolimus สามารถช่วยให้อวัยวะรอดได้เพียงร้อยละ 44 ของผู้ป่วยเท่านั้น<sup>21</sup>

ตารางที่ 6 ลักษณะของผู้ป่วยในกลุ่ม A และกลุ่ม B

|                                                  | กลุ่ม A       | กลุ่ม B            |
|--------------------------------------------------|---------------|--------------------|
| Number                                           | 4             | 6                  |
| Conversion to FK506 (days after acute rejection) | $23 \pm 8.5$  | $12 \pm 10$ (NS)   |
| Controlled acute rejection                       | 3(75%)        | 6(100%)            |
| Graft lost                                       | 1(25%)        | 0(0%)              |
| Scr prior to FK506 (mg/dl)                       | $6.9 \pm 2.6$ | $6.6 \pm 1.8$      |
| Scr at the end of the follow up (mg/dl)          | $1.4 \pm 0.5$ | $2.0 \pm 0.8$ (NS) |
| Rejection recurrence after FK506 use             | 0             | 0                  |

Scr = serum creatinine levels, NS = no significant difference.

#### ความปลอดภัยของยา

##### 1. ผลต่อไต

ผู้ป่วยที่ใช้ tacrolimus จะมีระดับครีออะตินีนเพิ่มขึ้นมากกว่าผู้ป่วยที่ใช้ cyclosporin<sup>6,7</sup> อย่างไรก็ตามในระยะยาวระดับครีออะตินีนเฉลี่ยในเลือดไม่มีความแตกต่างทางคลินิกระหว่าง 2 กลุ่ม<sup>6,7,11</sup> อุบัติ-

การณ์ของการเกิดเนื้อตายของท่อไตและความเป็นพิษต่อไตที่เกิดขึ้นทั้ง 2 กลุ่มคล้าย ๆ กัน ( $10.2-20.8\%$  vs  $4.8-16.6\%$ )<sup>6,7</sup> ความต้องการการฟอกเลือดคิดเป็นสัดส่วนพอย กันทั้ง 2 กลุ่ม ( $44.9\%$  vs  $42.1\%$ ) เกิดจากการที่ไตไม่ทำงานตั้งแต่แรกร้อยละ 85.3 ของผู้ที่ใช้ tacrolimus

และร้อยละ 82.0 ของผู้ที่ใช้ cyclosporin คิดเป็นเวลาโดยเฉลี่ย 13.7 วัน และ 21.9 วันหลังการผ่าตัดตามลำดับ

## 2. ผลต่อเมตรabolism

อุบัติการณ์ของการเกิดภาวะระดับน้ำตาลในเลือดสูงและเบาหวานในผู้ป่วยทั้ง 2 กลุ่มนี้ความแตกต่างกันอย่างมีนัยสำคัญ<sup>6</sup> ผู้ป่วยใหม่ที่เป็นเบาหวานที่ต้องพึ่งอินซูลินมีร้อยละ 8.2 ในกลุ่มที่ใช้ tacrolimus และร้อยละ 2.2 ในกลุ่มที่ใช้ cyclosporin อย่างไรก็ตาม ความต้องการการใช้อินซูลินนี้เป็นเพียงชั่วคราว เมื่อวัดผลในเดือนที่ 12 ผู้ป่วยที่ต้องใช้อินซูลินในกลุ่มของ tacrolimus ลดลงเป็นร้อยละ 5.5 เทียบกับ cyclosporin ร้อยละ 2.2 ( $p=0.189$ ) ใช้ multivariate วิเคราะห์ได้ว่าการเกิดเบาหวานหลังการผ่าตัดนี้มีความสัมพันธ์กับระดับความเข้มข้นของยา tacrolimus ในเลือดและขนาดของยา corticosteroid ผลการศึกษาของ Pirsch และคณะ ขัดแย้งกับการศึกษานี้ โดยพบว่าผู้ป่วยเกิดเบาหวานหลังผ่าตัดร้อยละ 19.9 และ 4.0 ตามลำดับ ( $p<0.001$ )

## 3. ผลต่อหัวใจและหลอดเลือด

อุบัติการณ์ของการเกิดความผิดปกติเกี่ยวกับระบบหัวใจและหลอดเลือดใกล้เดียงกัน ( $29.4\% \text{ vs } 26.9\%$ )<sup>6</sup> แต่พบว่าเกิด angina ในผู้ป่วยกลุ่มที่ใช้ tacrolimus มากกว่า ในขณะที่พบ arrhythmia ในกลุ่มผู้ป่วยที่ใช้ cyclosporin มากกว่า Angina ที่พบจำากัดอยู่ในช่วงหลังการผ่าตัดใหม่ ๆ อุบัติการณ์ของการเกิดกล้ามเนื้อหัวใจขาดเลือดของ tacrolimus และ cyclosporin ใกล้เดียงกัน ( $2.3\% \text{ vs } 2.1\%$ ) และการเกิดความดันโลหิตสูงและต้องใช้ยาลดความดัน

ใกล้เดียงกัน ( $70.3\% \text{ vs } 73.1\%$ ) ผู้ป่วยใหม่ที่เกิดโรคเกี่ยวกับหลอดเลือดของหัวใจจากทั้ง 2 กลุ่มเท่ากัน ( $4.0\% \text{ vs } 4.1\%$ )

การศึกษาของ Copley และคณะ<sup>21</sup> พบว่า tacrolimus ทำให้ผู้ป่วยผ่าตัดปลูกถ่ายไตมีความดันโลหิตสูงขึ้นน้อยกว่า cyclosporin อย่างมีนัยสำคัญ สอดคล้องกับการศึกษาของ Boots และคณะ<sup>11</sup> แต่ขัดแย้งกับการศึกษาของ Mayer และคณะ<sup>6</sup> และ Pirsch และคณะ<sup>8</sup> ซึ่งพบว่าผู้ป่วยทั้ง 2 กลุ่มเกิดความดันโลหิตสูงไม่แตกต่างกันอย่างมีนัยสำคัญ นอกจากนี้ Copley และคณะ<sup>23</sup> ยังพบว่า tacrolimus ทำให้ผู้ป่วยมีระดับ total cholesterol และ LDL สูงขึ้นน้อยกว่า cyclosporin อย่างมีนัยสำคัญ แต่ระดับ HDL ปกติ หรือสูงขึ้นไม่แตกต่างกันอย่างมีนัยสำคัญ ซึ่งสอดคล้องกับผลการศึกษาอื่นอีกหลาย ๆ การศึกษา<sup>11,24</sup>

## 4. ผลต่อระบบประสาท

ความผิดปกติเกี่ยวกับระบบประสาท พบรากการสั่นในผู้ป่วยที่ใช้ยา tacrolimus อาการนอนไม่หลับ ปวดศีรษะ และประสาทสัมผัสผิดปกติ ได้มากกว่าผู้ป่วยที่ใช้ cyclosporin อย่างมีนัยสำคัญ<sup>8,9</sup> ผู้ป่วยที่เกิดความผิดปกติเกี่ยวกับระบบประสาทและพิจารณาแล้วเห็นว่าจำเป็นต้องลดขนาดการใช้ยา มากมีอาการดีขึ้นเมื่อปรับขนาดยา

## 5. ผลต่อระบบทางเดินอาหาร

การศึกษาแบบ multicenter ในยุโรป พบรากผู้ป่วยกลุ่มที่ได้รับ tacrolimus เกิดอาการท้องเสียมากกว่ากลุ่ม cyclosporin อย่างมีนัยสำคัญ<sup>8</sup> ส่วนอาการอื่น ๆ เช่น คลื่นไส้ อาเจียน อาหารไม่ย่อย ท้องผูก พบ

ใกล้เคียงกันทั้ง 2 กลุ่ม แต่การศึกษาแบบ multicenter ในสหรัฐอเมริกา พบว่าอุบัติ-การณ์ของอาการท้องเสีย คลื่นไส้ ใกล้เคียงกันทั้ง 2 กลุ่ม<sup>9</sup>

#### 6. ผลต่อการติดเชื้อ

การติดเชื้อซึ่งเป็นเหตุการณ์ที่ไม่พึงประสงค์ที่พบมากที่สุดของทั้ง 2 กลุ่ม มีอุบัติการณ์พอ ๆ กัน<sup>8,9</sup> เชื้อจุลย์อุกกาสที่พบบ่อย คือ CMV, Pneumocystis carinii, Aspergilus และ Epstein-Barr ซึ่งทั้ง 2 กลุ่มไม่แตกต่างกัน

สรุปผลข้างเคียงเมื่อศึกษาติดตามผู้ป่วยเป็นระยะเวลา 1 ปี ภายหลังการผ่าตัด

แสดงในตารางที่ 7

#### ค่าใช้จ่ายในการรักษา

เพื่อเปรียบเทียบในด้านค่าใช้จ่าย หากพิจารณาเพียงราคายาแล้ว tacrolimus มีราคาแพงกว่า cyclosporin เมื่อพิจารณาต่อขนาดการใช้ยา (ตารางที่ 8) แต่เมื่อคิดในภาพรวมระยะยาวแล้ว สามารถลดค่าใช้จ่ายได้มากกว่าการใช้ยา cyclosporin เนื่องจากสามารถลดอัตราการปฏิเสธอวัยวะเฉียบพลันได้มากกว่า

ตารางที่ 7 เปรียบเทียบผลข้างเคียงระหว่างการใช้ tacrolimus กับ cyclosporin (1-year followup)

| Adverse Events           | Mayer et al <sup>8</sup> |                |        | Pirsch et al <sup>10</sup> |                |        |
|--------------------------|--------------------------|----------------|--------|----------------------------|----------------|--------|
|                          | TRL<br>(n=303)           | CsA<br>(n=145) | p      | TRL<br>(n=205)             | CsA<br>(n=207) | p      |
| <b>Increased Scr</b>     | 106(35.0%)               | 30(20.7%)      | 0.003  | 93(45.4%)                  | 86(41.5%)      | 0.434  |
| <b>Mean Scr</b>          | 1.69                     | 1.76           | NS     | 1.66                       | 1.64           | NS     |
| <b>Diarrhoea</b>         | 66(21.8%)                | 15(10.3%)      | 0.005  | 90(43.9%)                  | 84(40.6%)      | 0.495  |
| <b>Hirsutism</b>         | 36.6%                    | 38.6%          | NS     | 1(0.5%)                    | 18(8.7%)       | <0.001 |
| <b>Hyper gingival</b>    | 4(1.3%)                  | 9(6.2%)        | 0.01   | 1(0.5%)                    | 11(5.3%)       | 0.004  |
| <b>Hyperlipidemia</b>    | -                        | -              | -      | 63(30.7%)                  | 79(38.2%)      | 0.113  |
| <b>Hypertension</b>      | 36.6%                    | 38.6%          | NS     | 102(49.8%)                 | 108(52.2%)     | 0.624  |
| <b>PTDM at 12 months</b> | 5.5%                     | 2.2%           | 0.189  | 30(19.9%)                  | 6(4.0%)        | <0.001 |
| <b>Tremor</b>            | 105(34.7%)               | 17(11.7%)      | <0.001 | 111(54.1%)                 | 70(33.8%)      | <0.001 |

NS = Not significant.

TRL = tacrolimus, CsA = cyclosporin, Scr = serum creatinine, PTDM = post transplant diabetes mellitus.

ตารางที่ 8 เปรียบเทียบค่าใช้จ่ายด้านค่ายาระหว่างการใช้ cyclosporin และ tacrolimus\*

| ชื่อยา                | ขนาดการใช้ยา (ต่อน้ำหนัก 70 กก.) | ค่าใช้จ่าย (ปอนด์) |
|-----------------------|----------------------------------|--------------------|
| Cyclosporin (Neoral®) | 4-6 mg/kg                        | 2,737-4,150        |
| Tacrolimus            | 0.075-0.15 mg/kg                 | 3,449-7,588        |

\* เป็นราคainปี ค.ศ. 1998 (ตารางนี้ตัดมาเพียงบางส่วนจากตารางเดิม<sup>24</sup>)

## สรุป

จากผลการศึกษาต่างๆ แสดงให้เห็นว่าถึงแม้ tacrolimus และ cyclosporin จะมีกลไกที่คล้ายคลึงกันในการกดภูมิคุ้มกันของร่างกาย แต่มีผลทางคลินิกที่แตกต่างกัน ยา tacrolimus สามารถลดอัตราการปฏิเสธ อวัยวะเฉียบพลันได้มากกว่า cyclosporin อย่างมีนัยสำคัญ แต่ผลต่อการอยู่รอดของผู้ป่วยและอวัยวะไม่แตกต่างกันอย่างมีนัยสำคัญ แต่ tacrolimus มี steroid sparing effect ทำให้ผู้ป่วยสามารถลดขนาดการใช้ยา corticosteroid ได้ ทำให้ผลข้างเคียงที่เกิดจาก corticosteroid ลดลง สามารถลดการใช้ antithymocyte ที่ใช้เพื่อการรักษาการปฏิเสธ อวัยวะเฉียบพลันได้ นอกจากจะสามารถใช้ tacrolimus ได้ในการป้องกันการปฏิเสธ อวัยวะแล้ว ยังสามารถใช้รักษาการปฏิเสธ อวัยวะที่ดื้อต่อยา steroid ได้โดยใช้ร่วมกับยาตัวอื่น ส่วนในด้านความปลอดภัยของยานั้น ยาทั้งสองชนิดมีความเป็นพิษต่อไต กดภูมิคุ้มกันของร่างกายทำให้เกิดการติดเชื้อ ตลอดจนเกิดมะเร็งได้คล้ายคลึงกัน แต่ยา

tacrolimus มีผลข้างเคียงที่มากกว่า cyclosporin ในแง่ของการเกิดภาวะระดับน้ำตาลในเลือดสูงและเบาหวานหลังการผ่าตัด ตลอดจนความเป็นพิษต่อระบบประสาท ในขณะที่ cyclosporin มีผลข้างเคียงที่มากกว่า ในแง่ของระดับไขมันในเลือดสูง และการเกิดภาวะเหื่อกรอบวนหนา

เมื่อเปรียบเทียบในด้านค่าใช้จ่าย ระหว่างยาทั้งสองชนิด ถึงแม้ว่าการใช้ tacrolimus จะจะมีราคาแพงกว่าเมื่อเทียบต่อขนาดการใช้ยา แต่เมื่อคิดในระยะยาวแล้ว จะสามารถลดค่าใช้จ่ายได้มากกว่าการใช้ cyclosporin เนื่องจากสามารถลดอัตราการเกิดภาวะปฏิเสธอวัยวะเฉียบพลันได้มากกว่า และเพิ่มโอกาสในการได้รับการผ่าตัดปลูกถ่ายไตให้แก่ผู้ที่รอคิวยาวนาน

อย่างไรก็ตาม tacrolimus ถือเป็น alternative drug ที่แพทย์สามารถเลือกใช้แทน cyclosporin ได้ ซึ่งคงต้องพิจารณา ร่วมกับปัจจัยต่างๆ ที่เกี่ยวข้อง และเลือกใช้ยาให้เหมาะสมกับผู้ป่วยแต่ละราย

## เอกสารอ้างอิง

1. Merrill JP, Murray JE, Harrison JH. Successful homotransplantation of the human kidney between identical twins. *J Am Med Assoc* 1956;160(4):277-82.
2. Jitprahai P, Pornpong C, Prommol S. Current status of kidney transplantation in Thailand. *Siriraj Hospital Gazette* 2539;48 (5):405-11.
3. Gjertson DW, Cecka JM, Teresaki PI. The relative effects of FK506 and cyclosporin on short-and long-term kidney graft survival. *Transplantation* 1995;60:1384-8.
4. Flechner SM. Current status of renal transplantation. *The Urologic Clinics of North America* 1994;21:265- 82.
5. Product Monograph: Zenapax (Daclizumab). Basel: F. Hoffmann-La Roche;1998.
6. Knoll GA, Bell RC. Tacrolimus versus cyclosporin for immunosuppression in renal transplantation: Meta-analysis of randomised trials. *BMJ* 1999; 318:1104-7.
7. Shapiro R, Jordan M, Scantlebury VP, et al. FK506 in clinical kidney transplantation. *Transpl Proc* 1991; 23 (6): 3065-7.
8. Mayer AD, Dmitrewski J and European Tacrolimus Multicentre Renal study

Group. Multicentre randomised trial comparing tacrolimus (FK506) and cyclosporin in the prevention of renal allograft rejection: a report of the European Tacrolimus Multicentre Renal Study Group. *Transplantation* 1997; 64 (3): 436-43.

9. Naimark DMJ, Cole E. Determinants of long-term renal allograft survival. *Transpl Rev* 1994;8: 93-113.
10. Pirsch JD, Miller J, Deierhoi MH, et al. A comparison of tacrolimus (FK506) and cyclosporin for immunosuppression after cadaveric renal transplantation. *Transplantation* 1997;63(7): 977-83.
11. Boots JM, van Duijnhoven EM, Christians MH, et al. Single-center experience with tacrolimus versus cyclosporin-Neoral in renal transplant recipients. *Transpl Int* 2001;14(6):370-83.
12. Halloran P, Mathew I, Tomlanovich S, et al. Mycophenolate mofetil in renal allograft recipients. *Transplantation* 1997; 63: 39-47.
13. Ellis D, Shapiro R, Jordan ML, et al. Comparison of FK-506 and cyclosporin regimens in paediatric renal transplantation. *Pediatr Nephrol* 1994; 8:193-200.
14. Shapiro R, Scantlebury VP, Jordan ML, et al. Tacrolimus in pediatric renal transplantation. *Transplantation* 1996;62: 1752-8.
15. Product Monograph: Prograf (tacrolimus). London: Fujisawa:1997.
16. Morales E, Andres A, Herrero JC, et al. Conversion from cyclosporin to FK506 as rescue therapy in renal transplantation with poorly steroid-responsive acute rejection. *Transplant Proc* 1999;31:2248-9.
17. Hymes LC, Warshaw BL. Tacrolimus rescue therapy for children with acute renal transplant rejection. *Pediatr Nephrol* 2001;16(12):990-2.
18. Schroeder TJ, First MR, Gaber AO. Monitoring and management of immunosuppression in pediatric transplant patients. *Clin Immunother* 1995 ; 4: 425 – 44.
19. Offner G, Latta K, Bokenkamp A, Hayer PF. Tacrolimus for rescue of renal transplantation in children [abstract]. *Pediatr Nephrol* 1996; 10:c42.
20. Corey HE, Tellis V, Schechner R. Improved renal allograft survival in children treated with FK-506 (tacrolimus) rescue therapy. *Pediatr Nephrol* 1996; 10:720-2.
21. Shapiro R, Scantlebury VP, Jordan ML, et al. FK-506 in pediatric kidney transplantation-primary and rescue experience. *Pediatr Nephrol* 1995;9(Suppl):43-8.
22. Birk PE, Cook ME, Schmidt WJ, et al. Preliminary experience with FK506 in pediatric renal transplant recipients: a single center report. *Transplant Proc* 1996;28:993-4.
23. Copley JB, Staffeld C, Lindberg J, et al. Cyclosporin to tacrolimus: Effect on hypertension and lipid profiles in renal allografts. *Transpl Proc* 1998; 30:1254-6.
24. Jensik SC and the FK506 Kidney Transplant Study Group. Tacrolimus (FK506) in kidney transplantation: Three - year survival results of the US multi-center, randomised, comparative trial. *Transpl Proc* 1998; 30: 1216-8.
25. Andrew JB, editor. Simulect redefining immunosuppressive strategies. *Proceeding of a Meeting. Sponsored by Norvatis Pharmaceuticals* 1998; June10; Birmingham UK.

สมาคมเภสัชวิทยาแห่งประเทศไทย ร่วมกับ คณะเภสัชศาสตร์ มหาวิทยาลัยมหิดล  
จัดการอบรมเรื่อง

**Update on Clinical Pharmacokinetics**

วันศุกร์ที่ 11 ตุลาคม 2545

ณ ห้องประชุม คณะเภสัชศาสตร์ มหาวิทยาลัยมหิดล

|             |                                                                                           |
|-------------|-------------------------------------------------------------------------------------------|
| 08.00-08.30 | Registration                                                                              |
| 08.30-08.45 | Opening ceremony<br>President, The Pharmacological and Therapeutic Society<br>of Thailand |
| 08.45-09.45 | Significance of clinical pharmacokinetics<br>Amnuay Thithapandha                          |
| 09.45-10.45 | Rates, orders of pharmacokinetic processes and parameters<br>Kesara Na Bangchang          |
| 10.45-11.00 | Break                                                                                     |
| 11.00-12.00 | Pharmacokinetic variability : Genetic and environmental factors<br>Wichitra Tassaneeyakul |
| 12.00-13.00 | Lunch                                                                                     |
| 13.00-14.00 | Pharmacokinetic variability : Influence of disease states<br>Suda Vannaprasaht            |
| 14.00-15.00 | Therapeutic drug monitoring<br>Chaichan Sangdee                                           |
| 15.00-15.15 | Break                                                                                     |
| 15.15-16.15 | Clinical applications : Case studies<br>Winai Wanrukul                                    |
| 16.15-16.30 | Discussion & close<br>Amnuay Thithapandha                                                 |

**วิทยากร**

- Amnuay Thithapandha, Ph.D.
- Wichitra Tassaneeyakul, Ph.D.
- Chaichan Sangdee, Ph.D.
- Kesara Na Bangchang, Ph.D.
- Suda Vannaprasaht, M.D.
- Winai Wanrukul, M.D.

## TOXICITY OF APPETITE SUPPRESSANTS: FENFLURAMINE AND PPA

Veeravan Lekskulchai

*Department of Pathology, Faculty of Medicine, Srinakharinwirot University.*

### ABSTRACT

Appetite suppressants are drugs that act on the brain leading to inhibition of hunger. Fenfluramine is a serotonin res-uptake inhibitor which has been withdrawn from the markets due to its pulmonary and heart problems. It can also cause depletion of brain serotonin by damaging serotonergic neurons which can consequently lead to drug tolerance. This toxic effect may be a hidden reason that the manufacturer voluntarily took it out from the markets. Phenylpropanolamine (PPA) is not only employed as an appetite suppressant, it is also used in cold reliever medicines as well as in "look-alike" stimulants. It has a low therapeutic index. Using at high doses or in combination with other drugs can cause hypertension and cerebral hemorrhage especially in subjects who has a history of hypertension. Because most obese people are also hypertension prone and require long-term anti-obesity treatment, PPA should not be used as an appetite suppressant. However, PPA in cold relievers may still be used under the supervision of physicians, in low doses, and in a short period. To prevent its toxicity, drug interactions and patients' underlying diseases must be taken into account as well.

**Key words :** appetite suppressant, fenfluramine, PPA

## พิษของยาลดความอิจฉาอาหาร: Fenfluramine และ PPA

วีรวรรณ เล็กสกุลไชย

ภาควิชาพยาธิวิทยา คณะแพทยศาสตร์ มหาวิทยาลัยศรีนครินทรวิโรฒ

### บทคัดย่อ

ยาลดความอิจฉาอาหารออกฤทธิ์ในสมอง มีผลในการยับยั้งความทิ่ง Fenfluramine ออกฤทธิ์ยับยั้งการเก็บกลับของ serotonin ที่ปลายประสาท ยาชนิดนี้ได้ถูกถอนออกจากตลาดเนื่องจากความเป็นพิษต่อปอดและหัวใจ ยานี้มีผลทำลายเซลล์ประสาทด้วย ซึ่งทำให้ผู้ใช้ยาเกิดภาวะดื้อต่ออุทิศยา จึงน่าจะเป็นภาวะพิษที่ทำให้บริษัทผู้ผลิตสมัครใจถอนยาออกจากตลาด Phenylpropanolamine หรือ PPA นอกจากจะใช้เป็นยาลดความอิจฉาอาหารแล้วยังใช้เป็นส่วนประกอบของยาแก้หวัดและยากระตุ้นประสาทด้วย ระดับของยาที่มีผลต่อการรักษาไม่ต่างจากระดับยาที่ก่อให้เกิดพิษมากนัก ดังนั้นหากใช้ในขนาดที่สูงหรือใช้ร่วมกับยาอื่น PPA สามารถทำให้เกิดภาวะความดันโลหิตสูงและการแตกของเส้นเลือดในสมอง โดยเฉพาะในรายที่มีประวัติเป็นโรคความดันโลหิตสูง เนื่องจากคนอ้วนส่วนใหญ่มีภาวะความดันโลหิตสูงและการรักษาภาวะอ้วนต้องใช้เวลานาน PPA จึงไม่เหมาะสมที่จะใช้เป็นยาลดความอิจฉาอาหาร แต่หากใช้เป็นยาแก้หวัดภายใต้การดูแลของแพทย์ในขนาดที่ไม่สูงมากและในช่วงเวลาสั้นๆ PPA ก็น่าจะยังสามารถใช้ได้ โดยแพทย์ต้องคำนึงถึงการใช้ยาอื่นร่วมด้วย และโรคที่ผู้ป่วยอาจมีอยู่แล้ว เพื่อหลีกเลี่ยงความเป็นพิษของยา

คำสำคัญ : ยาลดความอิจฉาอาหาร, fenfluramine, PPA

## INTRODUCTION

Obese or "fat" is not a pleasant characteristic that most people especially women like to be called. Not only for the cosmetic purpose, obesity is now known to be associated with risks of life-threatening diseases such as hypertension, stroke, ischemic heart disease, diabetes mellitus, and certain cancers<sup>1</sup>. Thus, in obese persons, reducing weight will help decreasing risks of these diseases, resolving their symptoms or slowing their progression, as well as decreasing the risks of depression and social withdrawal and increasing self-esteem. The world health organization (WHO, 1998) recommends that weight management strategies should include modifications of diet, physical activity, daily habits, and thoughts. Specific behaviors conducive to over-eating or under-activity need to be identified and corrected. Greater success might have been achieved by focusing on a few crucial issues such as eating in social situations and mechanisms for obtaining satisfaction from smaller intakes of food including slow eating methods and concentration on eating as a unique activity. In fact, the most successful patients simply attempted to avoid clearly aberrant behavior such as binge eating (eating in large amount each time)<sup>2</sup>. Although not recommended, anti-obesity drugs are widely used. Because obesity is a life-long condition and necessitates long-term treatment. When used, the risks to patient from obesity related diseases need to be balanced against the risks from adverse effects of anti-obesity drugs.

Anti-obesity drugs can be divided into three groups: those which reduce food intake (appetite suppressant), those which act on the gastrointestinal system to reduce fat absorption, and those which alter metabolism and increase thermogenesis. Diuretics, laxatives and emetics are sometimes misused as anti-obesity agents. High fiber supplements have been used to reduce energy intake. Artificial carbohydrates or sweeteners such as saccharin and aspartame and fat-like substances such as simplesse have similar tastes to natural products but much less calorie also have been used to reduce energy intake. The consumption of excess fatty food plays a significant role in the development of excess weight, since fat provides twice the number of calories per gram of weight as of carbohydrate and protein. Reduction of dietary fat intake is one potential way of losing weight. Tetrahydrolipostatin and a novel drug, Xenical

or Orlistat, are weight loss medications that target the absorption of fat in the body. They attach to the pancreatic lipase and block it from breaking down the eaten fat. The undigested fat cannot be absorbed and is eliminated in stool. The adverse effects of these medication are reducing the absorption of fat soluble nutrients particularly beta-carotene, vitamin E, and vitamin K. They can cause changes in the bowel habits, leading to oily or loose stool and increased gas or flatulence. Cholestyramine is a bile-sequestering resin that decreases fat absorption by disrupting micelle formation. Although thyroid hormone is a thermogenic agent that can increase metabolic rate or energy expenditure, it also has stimulatory effects on heart rate, and consequently that latter activity prevents the use of native thyroid hormone for the treatment of obesity. The only thermogenic drug combination that has been tested is ephedrine and caffeine, but this treatment has not been approved as an anti-obesity drug by regulating agencies<sup>3,4</sup>.

## APPETITE SUPPRESSANTS

Multiple brain neurotransmitters are known to play a role in the control of food intake, appetite, and patterns of meal-taking behavior. The neurotransmitters in the brain that have an inhibitory influence over eating behavior are dopamine (DA), serotonin (5-hydroxytryptamine, 5-HT), and norepinephrine (NE). Pharmacological studies indicate that peripheral and hypothalamic administration of 5-HT can suppress total food intake, i.e., decrease the size of meal taken and the rate of eating. NE decreases food intake by activating adrenergic receptors<sup>3,5,6</sup>. Data from the US national heart, lung and blood indicate that appetite suppressants help many people lose weight and maintain the weight loss without serious adverse effects. Appetite suppressants enhance weight loss more than behavior modification, exercise, and caloric restriction alone<sup>2</sup>. However, due to their CNS effects, these drugs may have a potential for abuse and dependence. Several of these drugs have fallen into disfavor. The original appetite suppressants, introduced in the 1970s, was amphetamine. Now its effects are considered more dangerous than being overweight. Depressive psychopathology is also strongly associated with the use of the appetite suppressants<sup>7</sup>.

## FENFLURAMINE

Fenfluramine (Pondimin) is an amphetamine derivative which is used primarily as an appetite suppressant in the treatment of obesity. Dexfenfluramine (Redux) is the active isomer of fenfluramine meaning that half the dose previously required can be taken with the same effects and without the extra side effects of the levo-fenfluramine. They are potent serotonin reuptake inhibitor/releaser and effective weight reduction drugs but have been withdrawn from the market because of the drug-related complication of primary pulmonary hypertension (PPH) and hypertrophic cardiac valvular lesions. An association between the dietary suppressants fenfluramine and d-fenfluramine and valvular heart disease was first described in patients from North Dakota and Minnesota in 1997. A prevalence of significant heart valve regurgitation associated with fenfluramine is between 2-12% and the likelihood of disease increases with dose and/or duration of drug use<sup>8</sup>. The mechanism by which fenfluramine increases the risk of PPH is not known. Investigators have hypothesized that fenfluramine might elevate blood 5-HT by releasing platelet 5-HT, which might cause chronic increases in pulmonary blood pressure and growth of arterial smooth muscle, thereby producing PPH in susceptible individuals<sup>9</sup>. This toxic reaction may depend on the degree of drug retention at the lung, time retained, and intrinsic drug toxicity<sup>10</sup>. Hypoxia or a condition with low oxygen content as found at high altitude may potentiate the toxicity of fenfluramine. Lacking of oxygen can depolarize the smooth muscle, which in turn, enhances pulmonary vasoconstriction. This phenomenon may be worsen when fenfluramine is taken<sup>11,12</sup>. Fenfluramine produces negative chronotropic and inotropic effects. It shows tonic blockade of sodium channels, shortens the action potential duration in papillary muscles and purkinje fibres. The effect of fenfluramine on sodium channels may play an important role in its cardiotoxicity<sup>13</sup>.

It is noteworthy that fenfluramine and d-fenfluramine cause depletion of brain 5-HT and apparent loss of 5-HT nerve terminals<sup>10</sup>. Alterations of the serotonergic system are also observed during the aging process. Thus, treatment with d- or dl-fenfluramine resulting in alteration of this system could be exacerbated when associated with the aging process<sup>14</sup>. Studies in animals indicate that dexfenfluramine damages brain serotonin

neurons. Elevated extracellular 5-HT levels alone are probably not sufficient for neurotoxicity, and additional factors such as repeated doses or high doses, hyperthermia, regional specificity of 5-HT receptors subtypes, blood flow, and/or neuronal networks may be involved<sup>15,16</sup>. In therapeutic doses, regional serotonin contents are decreased dose-dependently. However, after stop using fenfluramine, brain serotonin almost totally recovers and the long-term effects are completely reversed<sup>17</sup>. But high doses of fenfluramine have been reported to cause long-term decreases in brain serotonin levels and density of high affinity 5-HT uptake sites<sup>18,19</sup>. Development of serotonin receptor hyposensitivity and decreased serotonin levels can lead to tolerance to its anorectic activity and, consequently, cause over eating<sup>20</sup>. In addition, its neurotoxicity has been found to cause behavior signs such as tremors, myoclonus, rigidity, and splayed legs in animals suggesting some degrees of neurodegeneration occurred<sup>15</sup>.

Amphetamine-like phentermine was first used as an appetite suppressant in the 1960s. It increases the body's metabolism and decreases the appetite by enhancing the availability of two brain chemicals, dopamine and norepinephrine. After 1992, phentermine was paired with fenfluramine to cancel out the tendency of its stimulant effect and of fenfluramine's depressant effect. Coadministration of phentermine and fenfluramine (Phen/Fen) effectively treats obesity and possibly addictive disorders. In vivo microdialysis studies in rat brain show that phentermine increases extracellular levels of DA, fenfluramine increases extracellular 5-HT, and Phen/Fen mixture elevates both transmitters. The dual activation of central DA and 5-HT transmission is thought to underlie the therapeutic potential of Phen/Fen drug combination<sup>21</sup>. In 1997, fenfluramine was voluntarily withdrawn by its manufacturer because it was speculated that fenfluramine was responsible for myocardial and valvular complications reported to the US FDA. These effects were serious and, in some patients, required surgery and heart valvular replacement. Phentermine has not been associated with heart diseases when taken alone and the drug is still available by prescription. There is no definitive causal relationship that has yet been confirmed between valvular heart diseases and the combined use of these products. Normally, serotonin levels in the blood plasma are kept

low by two mechanisms: absorption into platelets and the serotonin destroying monoamine oxidase (MAO) enzyme. Taking an MAO inhibitor like phentermine with serotonin uptake blockers like fenfluramine inhibits the body's ability to keep serotonin in check. Moreover, fenfluramine stops plasma serotonin from being taken up into platelets. Specific 5-HT receptors were also found on the heart valves. Taking these evidences together, rising in blood serotonin levels may affect the regulation of valvular function and structure and damage blood vessels in the lungs<sup>22</sup>. In addition, phentermine has been expected to exacerbate fenfluramine induced serotonin neurotoxicity<sup>23</sup>.

### PHENYLPROPANOLAMINE

Phenylpropanolamine (PPA) is a phenethylamine and an analog of amphetamine. Its appetite suppressant effect is mediated by an alpha-1 adrenergic satiety mechanism within the paraventricular nucleus<sup>24</sup>. The most important toxic effect of PPA (Acutrim<sup>R</sup>, Dexatrim<sup>R</sup>) is hypertension. Since an acute increase in systemic mean arterial pressure can lead to loss of cerebral blood flow autoregulation and break the blood brain barrier that can result in subarachnoid or intracerebral hemorrhage. The therapeutic index of PPA is low, and in some susceptible subjects severe hypertension may occur after ingestion of less than three times the therapeutic dose<sup>25</sup>. Although ingestion of 25 mg of PPA did not elevate blood pressure in normal individuals, ingestion of 85 mg of PPA led to a significant increase in both systolic and diastolic blood pressure in all normal volunteers. FDA recommends that PPA is safe at a dose of 37.5 mg two times per day in immediate release tablet. There was not a direct correlation between the acute rise in arterial pressure and cerebral hemorrhage. Other factors such as pre-existing brain damage, abnormal oxygen delivery, and autoregulatory function may also contribute to cerebral hemorrhage<sup>26</sup>. The hypertensive effect of PPA may result from MAO inhibition that leads to increasing blood catecholamine and subsequent vasoconstriction<sup>27</sup>.

PPA is often combined with other drugs in diet preparations and "look-alike" stimulants. Numerous case reports have documented that PPA stimulates the central nervous system with symptoms ranging from anxiety and hallucinations to grand mal seizures at toxic doses. Most of these

symptoms occurred following concomitant use of caffeine, which, in high doses, is known to cause seizures and psychotic episodes. Acute or chronic pretreatment with PPA increases the sensitivity of rats to the neurotoxic effects of caffeine<sup>28</sup>. Repeated administration of PPA/caffeine can lead to cerebral hemorrhage and tubular necrosis in hypertensive and stroke prone subjects. Because large percentages of hypertensive population are not aware that they have hypertension, and because hypertension is more common among overweight individuals who are also diet pill users, the risk of hypertensive crisis resulted from the combination of PPA/caffeine is high<sup>29</sup>. Drug interactions may also exaggerate the hypertension produced by PPA. Hypertension from PPA alone is typically accompanied by a reflex bradycardia that serves to limit or "buffer" the increase in blood pressure. Concomitant ingestion of drugs producing an increase in heart rate such as caffeine might antagonize this buffering effect and thereby increase blood pressure further<sup>25</sup>.

Less common features of toxic reactions to PPA include chest pain and ventricular arrhythmia<sup>30</sup>. When tachycardia is seen in patients with toxic reaction to PPA, it is usually concomitantly administered with caffeine, ephedrine, or antihistamine<sup>25</sup>. The increased availability of tablets and capsules containing substantial quantities of PPA, caffeine, and ephedrine creates a potential for drug-induced morbidity and mortality. In nonprescription stimulants and diet pills, combination of caffeine, phenylpropanolamine and ephedrine were most commonly found. These drugs cause excessive CNS stimulation (e.g., increased motor activity, anxiety, and agitation) and elevated pulse rate and blood pressure. Reactions following the ingestion of these drugs have included severe hypertension, possible renal failure, cerebral hemorrhage, and cardiac arrhythmia. Neither ephedrine nor caffeine ingested alone has been reported to increase blood pressure in association with end-organ damage<sup>31</sup>. Therefore, the toxic reactions of these combinations may result from PPA alone or from the synergistic effects of the drug mixtures. Ephedrine and pseudoephedrine can cause hypertension, tachycardia, and arrhythmia due to beta-adrenergic stimulation. Toxic reactions from caffeine are characterized by agitation, seizures, tachycardia, arrhythmia, and hypotension<sup>25</sup>. Overdoses with the sympathomimetic agent PPA may cause arrhythmia and myocardial injury in humans.

From light microscopic examination, rats treated with PPA had diffuse dose-related myocardial necrosis. The observed lesion was similar in appearance to the myocardial necrosis produced by large doses of catecholamines or sympathomimetic agents<sup>32</sup>. Phenylpropanolamine can produce hepatic glutathione depletion. Dose-response relationships for phenylpropanolamine and acetaminophen were such that increased toxicity was observed only when the interaction was sufficient to lower hepatic glutathione concentration below a level regarded as critical in preventing acetaminophen-induced hepatotoxicity<sup>33</sup>. Hepatic necrosis produced by carbon tetrachloride in mice was also found to be potentiated by simultaneous co-treatment with phenylpropanolamine<sup>34</sup>.

#### OTHER APPETITE SUPPRESSANTS

Sibutramine (Meridia) is a serotonin and norepinephrine re-uptake inhibitor that enhances post-ingestive satiety and increases resting metabolic rate. After treatment with sibutramine, significant reductions in blood triglycerides and low density lipoprotein cholesterol levels were observed<sup>35</sup>. Its anti-obesity action may result from the changes in brain dopamine as well as serotonin neurons by metabolism. Sibutramine works outside neuron by delaying serotonin reabsorption, thus prolongs the full and satisfied feeling after a meal. Its side effects are not serious which include dry mouth, drowsiness, constipation, and difficult sleeping. It has been approved by the US FDA for long-term weight reduction<sup>36</sup>. Tricyclic anorectic Mazidol or Sanorex not only suppresses hunger (appetite) but also affects the metabolism of energy substrates. Blood thyroxin level is increased significantly after using Mazidol. Its side effects are dryness of mouth, insomnia, superficial sleep, headache, elevated excitability, tachycardia, and general feebleness<sup>37</sup>. Cholecystokinin boosters are used to increase cholecystokinin, a brain chemical believed to produce the feeling of fullness. People using these drugs would feel full quicker and eat less<sup>3</sup>.

Currently, there are herbal fen-phen products being marketed over the internet and through weight loss clinics. Neither fenfluramine nor phentermine is an ingredient of these products. The main product is ephedra, commonly known in China as Ma Huang. The main component in ephedra is ephedrine. The adverse effects associated with the use of

ephedra ranged from episodes of high blood pressure, heart rate irregularity, insomnia, nervousness, tremor, headache, seizures, heart attack, strokes, and death. Another herbal fen-phen product contains l-tryptophan, which is an analog of 5-HT. However, it was used primarily as a sleep aid. This product was pulled from the market after it was found to link to more than 1,500 cases of a rare blood disorder known as eosinophilia myalgia syndrome<sup>38</sup>.

#### DISCUSSION AND CONCLUSION

Like many marketed drugs, most anti-obesity drugs are not indicated in people with certain medical problems including obesity related diseases, and may interact with some medications. Taking more than one drug at the same time, as commonly found in diet pills and cold relievers, can be dangerous. Anti-obesity drugs are not a magic bullet for weight reduction. They actually are designed to be a part of comprehensive weight loss program that includes regular exercise and a low-fat low-calorie diet. The treatment of obesity means that patients and doctors should work together. Physicians can adjust doses and adapt to more realistic goals. Physicians must be aware of possible adverse reactions to anti-obesity drugs and fully assess the risk/benefit ratio, remembering that while medical benefits from moderate weight loss are high; drug therapy is not without risk. Before using a certain drug, patients should know possible adverse effects they could get<sup>2</sup>. As published information about anti-obesity drugs is limited; more research is needed into their long-term safety and effectiveness.

In human studies, most of adverse drug reactions are case reports. Problems are the non-unique nature of symptoms and signs. The association by co-incidence alone is troublesome because, in reported clinical drug toxicity, it is usually the effect that is first noted and the cause is sought retrospectively. As a direct result of this process, social beliefs and clinical customs and attitudes, but not science, may forge an apparent link between cause and effect. In case reports of PPA toxicity in the past decades, more than 60% were not toxicity of PPA alone<sup>39</sup>. In 1974, Rumack et al.<sup>40</sup> presented three case reports of severe reactions to Ornade (the combination of PPA, chlorpheniramine, and isopropamide). The toxicity of Ornade was attributed chiefly to chlorpheniramine and isopropamide. This report was cited in 4 articles, however, none of

them specifically discussed the toxicity of these two drugs. Clark and colleagues<sup>41</sup> referred to this article that PPA caused arrhythmias. Cuthbert and colleagues<sup>42</sup> reported the interaction of PPA with monoamine oxidase inhibitors in increasing blood pressure. This article has been cited for the relationship between PPA doses and blood pressures without mentioning the interaction with MAO inhibitor in 2 studies<sup>43,44</sup>. Citation behavior must be viewed carefully, because authors may cite those which appear to support a current idea without adequate attention to content or nuance in the original article. The examination of the citation behavior makes it appear that the social belief is not obviously supported by evidence. Clearly PPA is not free of adverse effects. However, the conclusion of many articles, that its margin of safety is smaller than once believed, is a contestable fact<sup>39</sup>. When a toxic reaction caused by a combination of drugs is reported, the data must be interpreted with caution. Their clinical pharmacology properties are complex. Toxicity should be most readily understood by considering the effects of individual drug

separately followed by possible drug interactions. Since there often is no data for the plasma level of each drug in the patients. Most reports of toxic reactions to drug combination and the contribution of each drug to the overall toxic effect are difficult to assess<sup>25</sup>.

Because PPA has low therapeutic index and its toxicity depends on dose and duration of administration, it should be used under supervision of physicians. PPA should not be used for the treatment of obesity, which required long-term administration. Drug interactions must be considered when using PPA. Blood pressure must be monitored and controlled regularly while PPA is given. Fenfluramine has been withdrawn voluntarily from the markets. Fen/Phen toxicity might result from MAO inhibition of phentermine, which exacerbate the toxicity of fenfluramine by increasing blood serotonin levels. Fenfluramine causes depletion of brain serotonin and serotonergic neurodegeneration or neurotoxicity that eventually leads to drug tolerance. Instead of reducing weight, this effect may cause over-eating and weight gain.

## REFERENCES

1. Van Itallie T. Health implications of overweight and obesity in the United States. *Ann Intern Med* 1985; 103: 983-8.
2. Weintraub M. Long-term weight control study: conclusion. *Clin Pharmacol Ther* 1992; 51: 642-6.
3. Bray GA. Treatment for obesity: A nutrient balance/nutrient partition approach. *Nutr Rev* 1991; 49: 33-45.
4. Bray GA. Drug treatment of obesity. *Baillieres Best Pract Res Clin Endocrinol Metab* 1999; 13: 131-48.
5. Blundell JE. Serotonin and appetite. *Neuropharmacol* 1984; 23: 1537-52.
6. Leibowitz SF. Brain monoamines and peptides: role in the control of eating behavior. *FASEB* 1986; 45: 1396-403.
7. Patten SB. "Diet pills" and major depression in the Canadian population. *Can J Psychiatry* 2001; 46: 438-40.
8. Weissman NJ. Appetite suppressants and valvular heart disease. *Am J Med Sci* 2001; 321: 285-91.
9. Herve P, Launay J-M, Scrobohaci M-L, et al. Increased plasma serotonin in primary pulmonary hypertension. *Am J Med* 1995; 99: 249-54.
10. Rothman RB, Ayestas MA, Dersch CM, et al. Aminorex, fenfluramine, and chlorphentermine are serotonin transporter substrates. Implications for primary pulmonary hypertension. *Circulation* 1999; 100: 869-75.
11. Davis WM, Waters IW. High altitude may be synergistic with pulmonary hazards of appetite control medications fenfluramine and dexfenfluramine. *Med Hypotheses* 1997; 49: 509-12.
12. Eddahibi S, Raffestin B, Launay J-M, et al. Effect of dexfenfluramine treatment in rats exposed to acute and chronic hypoxia. *Am J Respir Crit Care Med* 1998; 157: 1111-9.
13. Rajamani S, Studenik C, Lemmens-Gruber R, et al. Cardiotoxic effects of fenfluramine hydrochloride on isolated cardiac preparations and ventricular myocytes of guinea-pigs. *Br J Pharmacol* 2000; 129: 843-52.
14. D'Almeida V, Camarini R, Azzalis LA, et al. Chronic fenfluramine treatment of rats with different ages: effects on brain oxidative stress-related parameters. *J Biochem Toxicol* 1996; 11: 197-201.

15. Schmued L, Slikker W, Clausing P, et al. d-Fenfluramine produces neuronal degeneration in localized regions of the cortex, thalamus, and cerebellum of the rat. *Toxicol Sci* 1999; 48: 100-6.
16. Malberg JE, Seiden LS. Administration of fenfluramine at different ambient temperatures produces different core temperature and 5-HT neurotoxicity profiles. *Brain Res* 1997; 765: 101-7.
17. Fracasso C, Guiso G, Confalonieri S, et al. Depletion and time-course of recovery of brain serotonin after repeated subcutaneous dexfenfluramine in the mouse. A comparison with the rat. *Neuropharmacol* 1995; 34: 1653-9.
18. Appel NM, Contrera JF, De Souza EB. Fenfluramine selectively and differentially decreases the density of serotonergic nerve terminals in rat brain: evidence from immunocytochemical studies. *J Pharmacol Exp Ther* 1989; 249: 928-43.
19. Semple-Rowland SL, Mahatme A, Rowland NE. Effects of dexfenfluramine or 5,7-dihydroxytryptamine on tryptophan hydroxylase and serotonin transporter mRNAs in rat dorsal raphe. *Brain Res Mol Brain Res* 1996; 41: 121-7.
20. Garattini S, Mennini T, Bendotti C, et al. Neurochemical mechanism of action of drugs which modify feeding via the serotonergic system. *Appetite* 1986; 7 Suppl: 15-38.
21. Rothman RB, Elmer GI, Shippenberg TS, et al. Phentermine and fenfluramine: preclinical studies in animal models of cocaine addiction. *Ann N Y Acad Sci* 1998; 844: 59-74.
22. Roy A, Brand NJ, Yacoub MH. Expression of 5-hydroxytryptamine receptor subtype messenger RNA in interstitial cells from human heart valves. *J Heart Valve Dis* 2000; 9: 256-60.
23. McCann UD, Yuan J, Ricaurte GA. Neurotoxic effects of +/- fenfluramine and phentermine, alone and in combination, on monoamine neurons in the mouse brain. *Synapse* 1998; 30: 239-46.
24. Wellman PJ, Davies BT. Reversal of phenylpropanolamine anorexia in rats by the alpha-1 receptor antagonist benoxathian. *Pharmacol Biochem Behav* 1991; 38: 905-8.
25. Pentel P. Toxicity of over-the-counter stimulants. *JAMA* 1984; 252: 1898-903.
26. Horowitz JD, McNeil JJ, Sweet B, et al. Hypertension and postural hypotension induced by phenylpropanolamine (trimelets). *Med J Aust* 1979; 1: 176-7.
27. Yu PH. Inhibition of monoamine oxidase activity by phenylpropanolamine, an anorectic agent. *Res Commun Chem Pathol Pharmacol* 1986; 51: 163-71.
28. Walker JS. Phenylpropanolamine potentiates caffeine neurotoxicity in rats. *J Pharm Sci* 1989; 78: 986-9.
29. Mueller SM, Muller J, Asdell SM. Cerebral hemorrhage associated with phenylpropanolamine in combination with caffeine. *Stroke* 1994; 15: 119-23.
30. Peterson RB, Vasquez LA. Phenylpropanolamine-induced arrhythmias. *JAMA* 1973; 233: 324-5.
31. Sawyer DR, Conner CS, Rumack BH. Managing acute toxicity from nonprescription stimulants. *Clin Pharm* 1982; 1: 529-33.
32. Pentel PR, Jentzen J, Sievert J. Myocardial necrosis due to intraperitoneal administration of phenylpropanolamine. *Fundam Appl Toxicol* 1987; 9: 167-72.
33. James RC, Harbison RD, Robert SM. Phenylpropanolamine potentiation of acetaminophen-induced hepatotoxicity: evidence for a glutathione-dependent mechanism. *Toxicol Appl Pharmacol* 1993; 118: 159-68.
34. Roberts SM, Harbison RD, Seng JE, et al. Potentiation of carbon tetrachloride hepatotoxicity by phenylpropanolamine. *Toxicol Appl Pharmacol* 1991; 111: 175-88.
35. Wadden TA, Berkowitz RI, Sarwer DB, et al. *Arch Intern Med* 2001; 161: 218-27.
36. Balcioglu A, Wurtman RJ. Sibutramine, a serotonin uptake inhibitor, increases dopamine concentrations in rat striatal and hypothalamic extracellular fluid. *Neuropharmacol* 2000; 39: 2352-9.
37. Dolecek R. Endocrine studies with Mazidol in obese patients. *Pharmatherapeutica* 1980; 2: 309-16.
38. FDA. Department of Health and Human Services. Weight control drug products for over-the-counter human use. Establishment of a monograph. *Federal Register* 1982; 47: 8466-84.
39. Puder KS, Morgan JP. Persuading by citation: An analysis of the references of fifty-three published reports of phenylpropanolamine's clinical toxicity. *Clin Pharmacol Ther* 1987; 42: 1-9.
40. Rumack BH, Anderson RJ, Wolfe R, Ornade and anticholinergic toxicity:

hypertension, hallucinations, and arrhythmias. *Clin Toxicol* 1974; 7: 573-81.

41. Clark JE, Simin WA. Cardiac arrhythmias after phenylpropanolamine ingestion. *Drug Intell Clin Pharm* 1983; 17: 737-8.

42. Cuthbert MF, Greenberg MP, Morley SW. Cough and cold remedies: a potential danger to patients on monoamine oxidase inhibitors. *Br Med J* 1969; 1 404-6.

43. McEwen J. Phenylpropanolamine-associated hypertension after the use of "over the counter" appetite suppressant products. *Med J Aust* 1983; 2: 71-3.

44. Pentel PR, Mikell FL, Zavoral JH. Myocardial injury after phenylpropanolamine ingestion. *Br Heart J* 1982; 47: 51-4.

ข่าวประชาสัมพันธ์ของสมาคมเภสัชวิทยาแห่งประเทศไทย

ท่านที่สนใจเข้ารับการอบรมวิชาการ เรื่อง

*Update on Clinical Pharmacokinetics*

จัดโดย

สมาคมเภสัชวิทยาแห่งประเทศไทย ร่วมกับ  
คณะเภสัชศาสตร์ มหาวิทยาลัยมหิดล

วันศุกร์ที่ 11 ตุลาคม 2545

ณ.ห้องประชุม คณะเภสัชศาสตร์ มหาวิทยาลัยมหิดล

ติดต่อสอบถามรายละเอียดได้ที่

รศ.ดร. ศรีจันทร์ พรจิราศิลป์ โทรศัพท์ 02-6448700

หรือ รศ.สุพิชา วิทยเดชปัญญา โทรศัพท์ 02-2564481

\*\*หมายเหตุ การอบรมครั้งนี้สามารถนับหน่วยกิตสะสมคะแนนในการศึกษาต่อเนื่อง

## NEW DRUGS

### SULTAMICILLIN, SULBACTAM/AMPICILLIN : A RE-EVALUATION

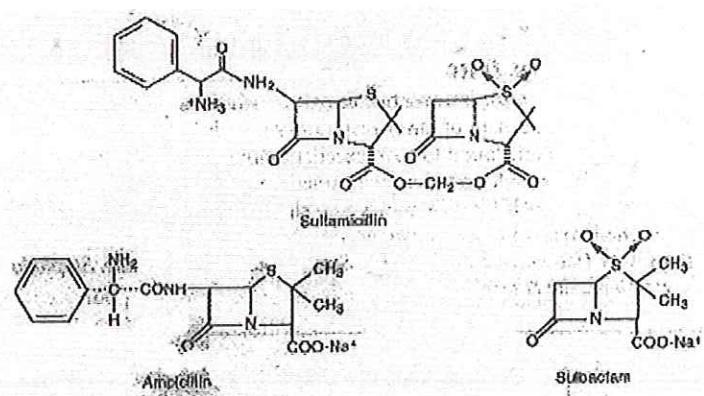
Nisamanee Satyapan

*Department of Pharmacology, Pramongkutkla College of Medicine, Bangkok 10400, Thailand.*

#### ABSTRACT

Sulbactam/ampicillin is a combination of broad spectrum  $\beta$ -lactam (BL), ampicillin and a  $\beta$ -lactamase inhibitor (BI), sulbactam. Sultamicillin is a mutual prodrug of sulbactam/ampicillin for oral administration. They were developed over a decade ago, in response to the increasing problem of  $\beta$ -lactamase producing among pathogenic bacteria. Sulbactam is active against the transferable, plasmid-mediated  $\beta$ -lactamase which occurred in a high proportion of gram positive, gram negative and anaerobic bacteria, such as *Streptococcus* sp., *Staphylococcus* sp., *Haemophilus* sp. and *Bacteroides* sp.. The combination is widely distributed to body fluids and soft tissue thus it is effective in various systemic infections like upper and lower respiratory tract infections, intra-abdominal infections, urinary tract infections, skin and soft tissue infections. Many recent clinical trials have demonstrated the clinical efficacy and safety of the combination in these conditions and in children as well. The advantages of sulbactam over other BI are that it has no property of induction of  $\beta$ -lactamase producing in some bacteria, has some antimicrobial activity and is stable in low pH. Besides, sulbactam/ampicillin will improve compliance when used in children as it is available in both parenteral and oral forms.

**Key words :**  $\beta$ -lactamase inhibitor, sultamicillin, sulbactam/ampicillin, antimicrobial agent


## บทนำ<sup>1,2</sup>

ปัจจุบันแบคทีเรียทั้งกรัมบวก กรัมลบ และ anaerobe มีอุบัติการณ์ในการสร้างเอนไซม์  $\beta$ -lactamases เพื่อใช้ทำลายยาในกลุ่มเบต้าแอลกอ腾เพิ่มขึ้นเรื่อยๆ โดย  $\beta$ -lactamases จะถูกหล่อออกมานอกใน periplasmic space ซึ่งเป็นช่องระหว่างผนังเซลล์ กับเยื่อบุชั้นนอกของเชื้อแบคทีเรียบางชนิด เมื่อยากลุ่มเบต้าแอลกอ腾แพร่ผ่านเข้าสู่เซลล์จนถึง periplasmic space ก็จะถูกทำลายโดย  $\beta$ -lactamases ก่อนที่จะจับกับPBPs (penicillin-binding proteins) ทำให้ยาไม่สามารถถูกยึดยั้งการสร้างผนังเซลล์ของเชื้อนั้นๆ ได้ ถูกครอบคลุมเชื้อจึงไม่ก่อวัง ต่อมาก็ได้มีการนำ  $\beta$ -lactamase inhibitors (BI) มาใช้ร่วมกับยาเบต้าแอลกอ腾ที่ถูกทำลายด้วย  $\beta$ -lactamases เพื่อให้ยาแน่นๆ กลับมาใช้ได้อีก BI ที่นำมาใช้ร่วมกับเบต้าแอลกอ腾 (BL) ในปัจจุบันมี 3 ตัว คือ sulbactam, clavulanate และ tazobactam

Sulbactam/ampicillin จัดเป็นยาผสมระหว่าง BI-BL ตัวหนึ่งที่นำมาใช้เพื่อแก้ปัญหาการต้านยากลุ่มเบต้าแอลกอ腾ของเชื้อที่สร้างเอนไซม์  $\beta$ -lactamases โดยในรูปยาจัดประกอบด้วย sulbactam/ampicillin และในรูปยารับประทานอยู่ในรูป sultamicillin ซึ่งเป็นเกลือ tosylate ของ sulbactam กับ ampicillin เชื่อมต่อกันด้วย double ester (รูปที่ 1)<sup>3</sup>

## วงฤทธิ์ต้านแบคทีเรีย

พบว่าเมื่อนำ sulbactam มารวมกับ ampicillin จะทำให้ประสิทธิภาพในการต้านแบคทีเรียดีขึ้นกว่าเมื่อใช้ยาตัวใดตัวหนึ่งเดียวๆ (ตารางที่ 1) sulbactam มีฤทธิ์ต้านเชื้อ Acinetobacter, Bacteroides, Neisseria species ได้ ซึ่งเป็นคุณสมบัติที่ต่างจาก BI ตัวอื่น<sup>3,4</sup> นอกจากนี้ยังมีฤทธิ์ต้าน  $\beta$ -lactamases ชนิดที่ถูกกำกับด้วย plasmid และเช่นเดียวกับ BI ทุกตัว sulbactam จะไม่ได้ผลต่อ extended spectrum  $\beta$ -lactamase ที่ผลิตโดยเชื้อ enterobacter, citrobacter, serratia และ pseudomonas<sup>6</sup>



รูปที่ 1 สูตรโครงสร้างเคมีของ sulbactam, ampicillin และ sultamicillin

นอกจากนี้ sulbactam ไม่เห็นย่วนนำให้เชื้อ *E. coli*, *Enterobacter*, *Proteus*, *Citrobacter* และ *Morganella* สร้าง  $\beta$ -lactamases ที่ถูกกำกับด้วยโครโนไซม์ ในขณะที่ *clavulanate* เห็นย่วนนำให้เชื้อ

*Enterobacteriaceae* สร้าง  $\beta$ -lactamases ที่ถูกกำกับด้วยโครโนไซม์ได้ 30%<sup>5</sup>

*Sulbactam/ampicillin* และ *sultamicillin* มีฤทธิ์ครอบคลุมเชื้อ *Acinetobacter* sp. ดีกว่า *amoxicillin/clavulanate*<sup>3,4</sup>

ตารางที่ 1 เปรียบเทียบประสิทธิภาพในการยับยั้งแบคทีเรียของ ampicillin, sulbactam และ sulbactam/ampicillin<sup>4</sup>

| Organism<br>(number of isolates) | MIC <sub>50</sub> (mcg/ml) |           |      |
|----------------------------------|----------------------------|-----------|------|
|                                  | Ampicillin                 | Sulbactam | Both |
| <i>S.aureus</i>                  |                            |           |      |
| ampicillin - resistant (70)      | >128                       | >128      | 4    |
| methicillin - resistant (75)     | >128                       | >32       | 16   |
| <i>S.epidermidis</i> (25)        | 64                         | >128      | 4    |
| <i>B.fragilis</i> (51)           | >100                       | >100      | 6.3  |
| <i>B.vulgaris</i> (17)           | 25                         | 100       | 6.3  |
| <i>H.influenzae</i>              |                            |           |      |
| ampicillin - resistant (20)      | >64                        | >64       | 2    |
| <i>E.coli</i> (150)              | >128                       | 64        | 16   |
| <i>K.pneumoniae</i>              | >128                       | 64        | 8    |
| <i>Serratia</i> spp. (21)        | >128                       | >128      | 32   |
| <i>Citrobacter</i> spp. (15)     | >128                       | >128      | 32   |
| <i>Proteus</i> spp. (23)         | >128                       | >128      | 8    |
| <i>Enterobacteriaceae</i> (23)   | >128                       | >128      | 32   |

### เภสัชจลนศาสตร์<sup>7,8</sup>

Ampicillin ถูกดูดซึมน้อยเมื่อให้ทางปาก แต่เมื่อออยู่ในรูป sultamicillin ซึ่งเป็น mutual prodrug ที่เป็นเกลือ tosylate ของ sulbactam กับ ampicillin ซึ่งต่อ กัน

ด้วย double ester bond จะถูกดูดซึมได้ดี มี bioavailability 88.7% เมื่อให้ sultamicillin ขนาด 500 มก. จะได้พื้นที่ต่อโถง (AUC) สูงกว่าเมื่อให้ ampicillin ขนาด 500 มก. อายุ่เดียว 1.91 เท่า

เมื่อให้ยา sulbactam/ampicillin ทางหลอดเลือดดำในขนาด 0.5 กรัม/1 กรัม จะได้ระดับสูงสุดของ sulbactam/ampicillin ระหว่าง 21-40 มคก./มล. และ 40-71 มคก./มล. ตามลำดับ และเมื่อให้ยาขนาดเดิมฉีดเข้ากล้ามเนื้อ จะได้ระดับสูงสุดของ sulbactam/ampicillin ระหว่าง 6-24 มคก./มล. และ 8-37 มคก./มล. ตามลำดับ อาหารไม่รบกวนการดูดซึมของยาทั้งสอง

ค่าครึ่งชีวิตของยาทั้งสองตัวในอาสาสมัครที่มีสุขภาพแข็งแรงมีค่าประมาณ

1 ชม. Sulbactam/ampicillin จับกับโปรตีนในเลือด 38% และ 28% ตามลำดับ และกระจายตัวไปยังของเหลวและเนื้อเยื่อต่างๆ ในร่างกายได้ดี (ตารางที่ 2)

ในคนปกติยาทั้งสองถูกขับออกทางปัสสาวะในรูปเดิม 75-85% ภายใน 8 ชม. หลังการบริหารยา โดย probenecid จะทำให้ระดับยาทั้งสองเพิ่มขึ้น และอยู่ในร่างกายนานขึ้น (ค่าครึ่งชีวิตยาวขึ้น) เช่นเดียวกับในผู้ที่ทำการไม่ปกติ

ตารางที่ 2 ระดับความเข้มข้นของ ampicillin/sulbactam ในเนื้อเยื่อและของเหลวต่างๆ ในร่างกาย เมื่อฉีดเข้าหลอดเลือดดำ<sup>3</sup>

| Fluid or tissue            | Ampicillin/sulbactam Dose (g) | Ampicillin/sulbactam Concentration (mg/l or mg/kg) |
|----------------------------|-------------------------------|----------------------------------------------------|
| Sputum                     | 2.0/1.0                       | 1.6/1.84                                           |
| Peritoneal fluid           | 0.5/0.5                       | 7.1/14.5                                           |
| Prostatic tissue           | 1.0/0.5                       | 2.4/19.8                                           |
| Intestinal mucosa          | 0.5/0.5                       | 9.4/18.0                                           |
| Gall bladder               | 1.0/0.5                       | 6.3/7.7                                            |
| Salpinges                  | 1.0/1.0                       | 41.0/25.3                                          |
| Meninges (marked inflamed) | 0.8/1.0                       | 26.5/8.5                                           |

### การศึกษาทางคลินิก

Sulbactam/ampicillin เป็นยาที่มีใช้ทางคลินิกนานแล้ว จึงมีการศึกษาทางคลินิกมาหลายปี และในที่นี้จะยกถ่วงผลการศึกษาทางคลินิกที่่น่าสนใจในระยะ 6-7 ปีที่ผ่านมาโดยสังเขป (ค.ศ. 1996-2001)

1. ปี 1996 Schwigon และคณะ<sup>9</sup> ทำการศึกษาแบบ prospective, randomized and comparative ระหว่าง sulbactam/ampicillin (SBT/AMP) และ cefuroxime (CXM) สำหรับการรักษาการติดเชื้อระบบทางเดินหายใจส่วนล่าง ในผู้ป่วยในโรงพยาบาลที่ต้องการรักษาด้วยยาที่มีค่าครึ่งชีวิตสั้น เช่น CXM แต่ไม่สามารถใช้ได้เนื่องจากภาวะแพ้ยา ผลการศึกษาพบว่า SBT/AMP ให้ผลการรักษาที่ดีไม่劣กว่า CXM และมีค่าครึ่งชีวิตที่สั้นกว่า CXM อย่างมาก จึงเป็นยาที่มีประโยชน์ในการรักษาในกลุ่มนี้

พยาบาลจำนวน 73 คน ซึ่งแบ่งเป็น ผู้ป่วยที่ได้รับ SBT/AMP ขนาด 1-2 กรัม วันละ 3 ครั้ง จำนวน 36 คน กลุ่มที่ 2 ได้รับ CXM ขนาด 1.5 กรัม วันละ 3 ครั้ง จำนวน 37 คน ผู้ป่วยทั้งหมดได้รับการบริหารยา โดยหยดเข้าหัวหลอดเลือดดำ ระยะเวลาในการรักษาตั้งแต่ 5 ถึง 12 วัน (ค่ามัธยมของแต่ละกลุ่ม = 8 วัน) กลุ่มที่ได้รับ SBT/AMP ใช้สำหรับ pneumonia 23 ราย (64%), acute purulent bronchitis 13 ราย (36%) และในการใช้เครื่องช่วยหายใจ 13 ราย (36%) ส่วนกลุ่มที่ได้รับ CXM ใช้สำหรับ pneumonia 23 ราย (62%), acute purulent bronchitis 14 ราย (38%) และในการใช้เครื่องช่วยหายใจ 8 ราย (22%)

เมื่อเพาะเชื้อจากผู้ป่วย 54 คน (SBT/AMP 26 คน และ CXM 28 คน) พบว่าเชื้อส่วนใหญ่เป็น *Escherichia coli*, *Haemophilus influenzae*, *Klebsiella pneumoniae*, *Staphylococcus aureus* และ *pneumococci* ในแต่ละกลุ่มผู้ป่วยได้รับการประเมินทางคลินิกจำนวน 35 คน ในจำนวนนี้กลุ่มที่ได้รับ SBT/AMP ตอบสนองต่อการรักษาดี 31 คน (89%) และการรักษาไม่ได้ผล 4 คน (11%) กลุ่มที่ได้รับ CXM ตอบสนองต่อการรักษาดี 28 คน (80%) และการรักษาไม่ได้ผล 7 คน (20%) การประเมินประสิทธิภาพต่อเชื้อกระทำในผู้ป่วยกลุ่มที่ได้รับ SBT/AMP และ CXM จำนวน 26 คนและ 28 คน ตามลำดับ พบว่า กลุ่มที่ได้รับ SBT/AMP มี 22 คน (84%) ที่เชื้อที่เป็นสาเหตุถูกกำจัด อีก 2 คน (8%) ยังมีการติดเชื้ออญ่ และอีก 2 คน เกิดการติดเชื้อซ้ำ (8%) กลุ่มที่ได้รับ

CXM มี 23 คน (82%) ที่เชื้อที่เป็นสาเหตุถูกกำจัด อีก 3 คน (11%) ยังมีการติดเชื้ออญ่ และอีก 2 คน (7%) เกิดการติดเชื้อซ้ำ ตาม สรุปได้ว่า ผลการรักษาของยาทั้ง 2 กลุ่ม ไม่มีความแตกต่างกันอย่างมีนัยสำคัญ

2. ปี 1996 Akova และคณะ จากประเทศตุรกี<sup>10</sup> ศึกษาประสิทธิภาพของ sulbactam/ampicillin ในการรักษาการติดเชื้อที่เก้าในผู้ป่วยที่เป็นโรคเบ้าหวาน (DFI) เชื้อที่เป็นสาเหตุส่วนใหญ่มีทั้ง anaerobes (โดยเฉพาะ *B.fragilis*) และ aerobes (เช่น *Streptococcus sp.*, *S.aureus* และอื่นๆ) ซึ่งมักจะมีอาการรุนแรง เนื่องจากผู้ป่วยมีภูมิต้านทานต่ำจากโรคเบ้าหวานที่เป็นอยู่แล้ว การรักษาจึงจำเป็นต้องใช้ยาต้านจุลชีพที่มีฤทธิ์ฆ่าเชื้อและครอบคลุมเชื้อ กว้าง เมื่อศึกษาในผู้ป่วยจำนวน 75 คน ที่ได้รับ sulbactam/ampicillin ขนาด 1.5 กรัม วันละ 4 ครั้ง ระยะเวลาเฉลี่ยที่ใช้ในการรักษาผู้ป่วย DFI จาก osteomyelitis (n = 49) และจาก soft tissue infection (n = 25) มีค่าเป็น  $14 \pm 3$  และ  $41 \pm 5$  วัน ตามลำดับ โดยมีผู้ป่วยที่ต้องตัดขาในระดับต่างๆ จำนวน 14 คน (19%) อัตราการรักษาหายในผู้ป่วยที่เป็น soft tissue infection และ osteomyelitis เป็น 100% และ 86% ตามลำดับ และพบว่า sulbactam/ampicillin สามารถใช้รักษา DFI ได้ผลดี โดยผู้ป่วยที่มี osteomyelitis ร่วมด้วยควรได้รับยาเป็นเวลานานกว่าผู้ป่วยที่มี soft tissue infection ร่วมด้วย (คือประมาณ 6 สัปดาห์)

3. ปี 1996 Wildfeuer และ Rader จากประเทศเยอรมนี<sup>11</sup> ทำการศึกษาเปรียบเทียบความคงตัวของ BI และ BL ในรูปยา

ฉีด (infusion solution) จำนวน 4 ตำรับ ได้แก่ sulbactam ขนาด 1 กรัม, clavulanate ขนาด 0.2 กรัม, ampicillin ขนาด 2 กรัม และ amoxicillin ขนาด 2 กรัม ที่อุณหภูมิ 4, 25 และ 37 องศาเซลเซียส พบว่ามีความคงตัวเรียงลำดับจากมากไปน้อยเป็นต้นนี้ sulbactam > ampicillin > amoxicillin > clavulanate จึงทำให้ประมาณการได้ว่าเมื่อยาอยู่ในรูปปาราวน BI-BL และ sulbactam/ampicillin จะมีความคงตัวสูงกว่า amoxicillin/clavulanate ในทุกอุณหภูมิที่เปลี่ยนแปลงไป โดยเฉพาะที่อุณหภูมิของของเหลวในร่างกาย (37 องศาเซลเซียส) ตั้งนี้ sulbactam/ampicillin ที่ผสมแล้วจะเก็บไว้ในตู้เย็นได้หลายชั่วโมง ในขณะที่ amoxicillin/clavulanate ที่ผสมแล้วจะต้องใช้ภายใน 30 นาที

4. ปี 1997 Zervos และคณะ<sup>12</sup> ทำการศึกษาโดยวิธี meta-analysis เพื่อประเมินประสิทธิภาพและความปลอดภัยของการใช้ sulbactam/ampicillin เปรียบเทียบกับการใช้ cephalosporins รุ่นที่ 2 และ 3 (ได้แก่ cefoxitin, cefuroxime, cefamandole, cefotaxime) ในการรักษาการติดเชื้อระบบทางเดินหายใจส่วนล่าง โดยรวมรวมและวิเคราะห์จากผลการศึกษาทางคลินิกที่มีรูปแบบการวิจัยคล้ายคลึงกันและได้รับการตีพิมพ์จำนวน 7 ฉบับ<sup>13-19</sup> พบว่า มีผู้ป่วยที่ได้รับ sulbactam/ampicillin จำนวน 353 คน และได้รับ cephalosporins ต่างๆ จำนวน 288 คน ในจำนวนนี้มีผู้ป่วยที่สามารถประเมินประสิทธิภาพของยาได้ในกลุ่มที่ได้รับ sulbactam/ampicillin และ cephalosporins ต่างๆ จำนวน 255 คน และ

164 คน ตามลำดับ โดยมีอัตราการรักษาหายหรือมีอาการดีขึ้น (clinical cure or improvement) ในกลุ่ม sulbactam/ampicillin เป็น 93.3% ของผู้ป่วยทั้งหมด สูงกว่ากลุ่ม cephalosporins ซึ่งมีอัตราการรักษาหายหรือมีอาการดีขึ้น 86.6% อย่างมีนัยสำคัญ ( $P = 0.019$ ) โดยอัตราของการเกิดอาการไม่พึงประสงค์รวมทั้งอัตราการเสียชีวิตใกล้เคียงกันทั้งสองกลุ่ม

5. ปี 1998 Collins และคณะ จากประเทศสหรัฐอเมริกา<sup>20</sup> ทำการศึกษาโดยวิธี randomized control trial เพื่อเปรียบเทียบการรักษาการติดเชื้อในช่องท้องในเด็ก โดยกลุ่มที่ 1 ได้รับยา sulbactam/ampicillin ร่วมกับ aminoglycosides ซึ่งมีผู้ป่วยที่สามารถประเมินผลการรักษาได้จำนวน 75 คน กับ กลุ่มที่ 2 ใช้ยา ampicillin ร่วมกับ clindamycin และ aminoglycosides ซึ่งมีผู้ป่วยที่สามารถประเมินผลการรักษาได้จำนวน 39 คน เชือที่แยกได้จากผู้ป่วยทั้ง 2 กลุ่ม ส่วนใหญ่ได้แก่ *E.coli* (32%), *B. fragilis* (21%), *Bacteroides sp.* (21%), *Streptococcus sp.* (32%), *Streptococcus viridans* (22%) พบว่าการกำจัดเชื้อในกลุ่มที่ 1 และ 2 เป็น 89% (67 จาก 75 คน) และ 92% (36 จาก 39 คน) ตามลำดับ, clinical success rate เป็น 92% (69 จาก 75 คน) ในกลุ่ม sulbactam/ampicillin ร่วมกับ aminoglycosides และ 95% (37 จาก 39 คน) ในกลุ่ม ampicillin ร่วมกับ clindamycin และ aminoglycosides แสดงว่ามากกว่า 2 กลุ่มให้ผลการรักษาเท่าๆ กัน โดยมีอาการไม่พึงประสงค์ที่พบบ่อยที่สุดคือท้องเดิน (9.9% และ 15.6% ตามลำดับ)

6. ในปี 1998 Lopez และ Rivas จากประเทศอาร์เจนตินา<sup>21</sup> ได้ทำการศึกษาการใช้ sultamicillin ในเด็ก โดยศึกษาในผู้ป่วยเด็ก จำนวน 466 คน (อายุ 5 เดือน ถึง 16 ปี) ที่ติดเชื้อแบบไม่รุนแรงถึงปานกลาง และได้รับ sultamicillin ขนาด 25-50 mg./kg. วันละ 2 ครั้ง เป็นเวลา 7-14 วัน (มีการประเมินทางคลินิกเฉพาะในผู้ป่วยที่ได้รับการรักษาตั้งแต่ 5 วันขึ้นไป) พบร่วมกับ sultamicillin จำนวน 466 คน แบ่งเป็นโรคติดเชื้อระบบทางเดินหายใจส่วนบน 306 คน (acute otitis media 172 คน, sinusitis 9 คน, pharyngitis 65 คน) และระบบทางเดินหายใจส่วนล่าง 59 คน อัตราการรักษาหาย (clinical cure) 416 คน (89%) ตีขึ้น 37 คน (8%) รวมอัตราความสำเร็จจากการรักษาเป็น 453 คน (97%) ความสามารถในการกำจัดแบคทีเรีย (bacteriological eradication) เป็น 94 จาก 95 คน (99%) โดยยกเว้น 1 รายที่มีการติดเชื้อ *P. aeruginosa* ที่ทางเดินปัสสาวะ เชื้อสาเหตุซึ่งแยกได้บ่อยที่สุด คือ *Streptococcus pyogenes*, *E.coli*, *S.aureus* และ *Streptococcus pneumoniae*

#### ปฏิกิริยาภัยยาอื่น<sup>8</sup>

ส่วนมากเป็นปฏิกิริยาต่อ ampicillin ในส่วนผสม คือ

1. Probenecid จะยับยั้ง tubular secretion ของ sulbactam/ampicillin ทำให้การขับถ่าย sulbactam/ampicillin ทางปัสสาวะลดลง

2. การใช้ ampicillin ร่วมกับ allopurinol จะเพิ่มอุบัติการณ์ของ rash มาก

กว่าเมื่อให้ ampicillin เดี่ยวๆ โดยยังไม่ทราบว่ามีสาเหตุจาก allopurinol เอง หรือจากระดับกรดยูริกสูงในผู้ป่วยเหล่านั้น อย่างไรก็ตามยังไม่มีข้อมูลเกี่ยวกับเรื่องนี้จากการใช้ sulbactam/ampicillin ร่วมกับ allopurinol

3. Ampicillin จะทำให้ aminoglycosides หมวดที่ จึงไม่ควรผสม sulbactam/ampicillin ร่วมกับ aminoglycosides ในชุดเดียวกัน

4. Ampicillin ปริมาณมากที่อยู่ในปัสสาวะอาจทำให้เกิด false positive ในการทดสอบหากลูโคสในปัสสาวะโดยวิธี Clinitest TM, Benedict's solution หรือ Fehling's solution (แนะนำให้ใช้ Clinistix TM แทนในการณ์เหล่านี้)

#### อาการไม่พึงประสงค์<sup>8,24</sup>

จากการศึกษาในผู้ป่วยที่ได้รับ sultamicillin จำนวน 5,947 คน พบร่วมกับไม่พึงประสงค์ 1,064 คน (17.9%) และในจำนวนนี้มี 282 คน (4.7%) ต้องหยุดยา (ตารางที่ 3)<sup>24</sup>

อาการไม่พึงประสงค์ที่พบบ่อยที่สุด คือ อาการท้องเดิน (10.4%) ซึ่งมีสาเหตุจาก normal flora ในทางเดินอาหารถูกทำลายโดยยา ซึ่งพบใกล้เคียงกับเมื่อใช้ amoxicillin/clavulanate

ส่วนอาการแพ้แบบ anaphylactic reaction อาจเกิดได้ในผู้ป่วยที่มีประวัติแพ้เพนนิซิลลิน หรือ ampicillin อย่างรุนแรงมาก่อน อาจเกิด pseudomembranous colitis ได้เช่นเดียวกับยาต้านจุลชีพอื่นๆ แต่พบน้อยมาก

ตารางที่ 3 อาการไม่พึงประสงค์ในผู้ป่วยจำนวน 5,947 คน ที่ได้รับ sultamicillin<sup>24</sup>

| Side effect                   | Incidence |      |
|-------------------------------|-----------|------|
|                               | amount    | %    |
| <b>Gastrointestinal</b>       |           |      |
| • Diarrhea                    | 620       | 10.4 |
| • Soft stools                 | 136       | 2.3  |
| • Loose stools                | 84        | 1.4  |
| • Abdominal pain/cramping     | 63        | 1.1  |
| • Abdominal discomfort        | 16        | 0.3  |
| • Nausea                      | 67        | 1.1  |
| • Vomiting                    | 29        | 0.5  |
| • Epigastric distress         | 13        | 0.2  |
| • Epigastric pain             | 8         | 0.1  |
| <b>Skin</b>                   |           |      |
| • Dermatitis (rash)           | 56        | 0.9  |
| • Itching                     | 24        | 0.4  |
| <b>Central nervous system</b> |           |      |
| • Smell/taste change          | 7         | 0.1  |
| • Drowsiness/sedation         | 6         | 0.1  |
| • Anorexia                    | 7         | 0.1  |
| • Headache                    | 21        | 0.4  |
| <b>Gynecologic</b>            |           |      |
| • Vaginal discharge           | 12        | 0.2  |
| <b>Superinfection</b>         |           |      |
| • Yeast infection             | 36        | 0.6  |
| <b>Others</b>                 | 124       | 2.1  |

#### ขนาดและวิธีใช้<sup>8</sup>

1. ยานี้ดีสำหรับฉีดเข้าหลอดเลือดดำหรือเข้ากล้ามเนื้อ ประกอบด้วย sulbactam/ampicillin ในอัตราส่วน 1:2 ในผู้ใหญ่ แนะนำให้ใช้ 1-2 vials หรือ 1.5-3 กรัม ทุก 6-8 ชม.

2. ยารับประทานประกอบด้วย sultamicillin แนะนำให้ใช้ขนาด 375-750 มก. (1-2 เม็ด) วันละ 2 ครั้ง

#### ความคงตัวและการเก็บรักษา<sup>25</sup>

Sulbactam คงตัวใน pH ค่อนข้างต่ำ เช่น pH ของบริเวณที่มีการติดเชื้อ สามารถเก็บได้ในอุณหภูมิห้องไม่เกิน 30 องศาเซลเซียส ไม่จำเป็นต้องเก็บในที่แห้ง และเย็น สำหรับยาฉีดเมื่อผอสมแล้วให้เก็บ

ในตู้เย็นซึ่งจะเก็บไว้ได้ 3-72 ชม. ขึ้นกับชนิดและความเข้มข้นของสารละลาย

#### สรุป

Sulbactam/ampicillin เป็น BI-BL ตัวหนึ่งที่ใช้รักษาการติดเชื้อได้ครอบคลุม ขึ้นมากกว่าเมื่อใช้ ampicillin ตัวเดียว เช่น สามารถใช้ได้กับเชื้อ *Streptococcus pneumoniae*, *S.aureus*, *B.fragilis*, *H.influenzae* ที่ผลิต  $\beta$ -lactamases ซึ่ง ampicillin เดียว ๆ จะใช้ไม่ได้ผล ยานี้คุณสมบัติกระจายตัวดี จึงมีประโยชน์ทางคลินิก ต่อการติดเชื้อแบคทีเรียที่ไม่รุนแรงถึงปานกลางในหลายระบบ เช่น ระบบทางเดินหายใจทั้งส่วนบนและส่วนล่าง ช่องท้องทางเดินปัสสาวะ ผิวหนังและ soft tissue ซึ่งยืน-

ยันได้จากการศึกษาทางคลินิกตั้งแต่อดีตจนถึงปัจจุบัน<sup>26</sup> จุดเด่นของยาอยู่ที่ ยาไม่คุณสมบัติเหนี่ยวนำให้เชื้อแบคทีเรียบางชนิดสร้าง  $\beta$ -lactamases และยาไม่ความคงตัวดีใน pH ของบริเวณที่มีการติดเชื้อส่วนมาก

(คือ pH ที่ค่อนข้างต่ำ) ยาไม่ทั้งรูปรับประทานและรูปปั๊ม จึงเหมาะสมสำหรับใช้กับการติดเชื้อในเด็กและผู้ใหญ่ ซึ่งจะทำให้ compliance ดีกว่ายาที่มีแต่รูปปั๊มหรือรูปเม็ดเท่านั้น<sup>26,27</sup>

### เอกสารอ้างอิง

1. Williams J. Beta-lactamases and beta-lactamase inhibitors. *Int J Antimicrob Agents* 1999; 12: S3-S7.
2. Tenover FC. Development and spread of bacterial resistance to antimicrobial agents: an overview. *Clin Infect Dis* 2001; 33 (suppl 3): S108-S115.
3. Friedel HA, Campoli-Richards DM, Goa KL. Sultamicillin: a review of its antibacterial activity, pharmacokinetic properties and therapeutic use. *Drugs* 1989; 37 : 491-522.
4. William JD. Beta-lactamase inhibition and in vitro activity of sulbactam and sulbactam/ cefoperazone. *Clin Infect Dis* 1997; 24: 494 - 497.
5. Moosdeen F, Keeble J, Williams JD. Induction / inhibition of chromosomal beta-lactamase inhibitors. *Rev Inf Dis* vol 8 (suppl 5): S562-S568.
6. Raymond J, Aujard Y. Nosocomial infections in pediatric patients: a European, multicenter prospective study. *Infect Control Hosp Epidemiol* 2000; 21: 260-263.
7. Lode H, Hampel B, et al. The pharmacokinetics of sultamicillin. *APMIS* suppl 1989; 5 : 17-22.
8. Physicians' Desk Reference 2001, 55<sup>th</sup> ed. Montvale, NJ: Medical Economics Company, Inc., 2001.
9. Schwigon CD, Cuhorst R, Gabor M, et al. Comparison of sulbactam/ ampicillin and cefuroxime in infections of the lower respiratory tract: result of a prospective, randomized and comparative study. *J Antimicrob Agents* 1996 ; 6: S67-S72.
10. Akova M, Ozcebe O, Gullu I, et al. Efficacy of sulbactam-ampicillin for the treatment of severe diabetic foot infection. *J Chemother* 1996; 8: 284-289.
11. Wildfeuer A, Rader K. Stability of  $\beta$ -lactamase inhibitors and  $\beta$ -lactam antibiotics in parenteral dosage forms and in body fluids and tissue homogenates : a comparative study of sulbactam, clavulanic acid, ampicillin and amoxycillin *Int J Antimicrob Agents* 1996; 6: S31- S34.
12. Zervos MJ, Skupien D, Dmuchowski CF. Meta-analysis of the efficacy and safety of ampicillin/sulbactam in the treatment of patients with bacterial infection of the lower respiratory tract. *Infect Dis Clin Prac* 1997; 6: 473 – 480.
13. Geckler RW. A comparison of ampicillin /sulbactam and cefuroxime in the treatment of patients with bacterial infections of the lower respiratory tract. *Clin Ther* 1994; 16: 662 -672.
14. Jauregui J, Minns P, Hageage G. Ampicillin /sulbactam compared with cefotaxime in the treatment of lower respiratory tract infections of bacterial etiology. *Adv Ther* 1995; 12: 62-71.
15. Rossoff LJ, Hilton E, Smith C, et al. Intravenous ampicillin/sulbactam versus cefuroxime axetil in the treatment of patients hospitalized with community-acquired lower respiratory tract infections. *Curr Ther Res Clin Exp* 1995; 56: 852 – 862.
16. Castellano MA, Maniatis T. Ampicillin /sulbactam versus cefoxitin in the treatment of lower respiratory tract infections. *Infect Med* 1998;15: 259 – 263.
17. Williams D, Perri M, Zervos MJ. Randomized comparative trial with ampicillin/sulbactam versus cefamandole in the therapy of community acquired pneumonia. *Eur J Clin Microbiol Infect Dis* 1997; 13: 293-298.
18. Berk SL, Musgrave T, Kalbfleisch J, Hatcher E. A comparison of ampicillin-sulbactam with cefamandole in the

treatment of bacterial pneumonia in the elderly. *Infect Med* 1993; 10: 29-38.

- 19. Tan J, File TM. A comparison of ampicillin/sulbactam with cefoxitin in the treatment of lower respiratory tract infections of bacterial etiology. *Adv Ther* 1994; 11: 11-20.
- 20. Collins MD, Dajani AS, Kim KS, et al. Comparison of ampicillin/ sulbactam plus aminoglycoside vs. ampicillin plus clindamycin plus aminoglycoside in the treatment of intraabdominal infections in children. *Pediatr Infect Dis J* 1998; 17: S15-S18.
- 21. Lopez EL, Rivas NA. Clinical use of sultamicillin (ampicillin/sulbactam) in children. *Pediatr Infect Dis J* 1998; 17 (3 Suppl): S12- S14.
- 22. Scholz H, Marker X, Rockstroh T. Treatment of bacterial infections in children with sultamicillin. *Int J Antimicrob Agents* 1996; 6: S41- S45.
- 23. Alpuche-Aranda CM. Beta-lactamase production and the role of ampicillin/ sulbactam. *Pediatr Infect Dis J* 1998; 17 (3 Suppl): S8 -S11.
- 24. Pitts NE, gilbert GS., knirch K, et al. *APMIS Suppl* 1989; 5: 23-34.
- 25. *TIMS Annual* 1995.
- 26. Dajani AS. Use of ampicillin/sulbactam and sultamicillin in pediatric infections: a re-evaluation. *Int Med Res* 2001; 29: 257- 269.
- 27. Finegold SM. In vitro efficacy of beta-lactam/beta-lactamase inhibitor combination against bacteria involved in mixed infections. *Int J Antimicrob Agents* 1999; 12: S9-S14.

## SIBUTRAMINE : THE NOVEL ANTI-OBESITY DRUG FOR EFFECTIVE WEIGHT CONTROL

Thanarat Suansanae<sup>1</sup>, Chuthamanee Suthisisang<sup>2</sup>

<sup>1</sup>*Department of Clinical Pharmacy, Faculty of Pharmacy, Srinakarinwirot University, Nakornnayok,*

<sup>2</sup>*Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.*

### ABSTRACT

Obesity is a major risk factor for morbidity and mortality. Treatment of obesity includes nonpharmacological approaches and medical treatment. Patients with severe obesity or have multiple risk factors may require pharmacological treatment for effective weight reduction. Sibutramine is a new anti-obesity agent. It is a serotonin-norepinephrine reuptake inhibitor. Sibutramine does not have any effect on dopamine reuptake or releasing mechanism as that of phentermine. Sibutramine is extensively metabolized by CYP3A4 to two active metabolites, M1 and M2. Sibutramine 10-15 mg/day combined with dietary control and exercise can reduce and maintain body weight up to 2 years. Dry mouth, headache, constipation, insomnia, and increase in blood pressure and heart rate are common adverse effects. These effects are dose-related. Patients who receive sibutramine have to be monitored for blood pressure and heart rate regularly. Obese patients with coronary artery disease, cerebrovascular disease, and chronic heart failure are contraindicated. Sibutramine should not be used concomitantly with selective serotonin-reuptake inhibitors, monoamine oxidase inhibitors, sympathomimetic agents, enzyme CYP3A4 inhibitors or inducers.

**Key words :** obesity, sibutramine, appetite suppressant, serotonin-norepinephrine reuptake inhibitor

## บทนำ

ภาวะอ้วนเป็นภาวะที่มีไขมันสะสมทั่วร่างกายมากเกินปกติ ในการวินิจฉัยจะใช้ค่า body mass index (BMI) หรือดัชนีมวลกาย ซึ่งคำนวณได้จาก

$$\text{ดัชนีมวลกาย} = \frac{\text{น้ำหนัก (กิโลกรัม)}}{\text{ความสูง (เมตร)}^2}$$

โดยถ้า BMI >25 ถือว่าเริ่มอ้วนหรือเป็นโรคอ้วน<sup>1</sup> ในปัจจุบันโรคอ้วนเป็นปัญหาที่ทวีความรุนแรงมากขึ้นทั้งในประเทศไทยที่พัฒนาแล้ว และประเทศไทยที่กำลังพัฒนา<sup>2,3</sup> เนื่องจากโรคอ้วนโดยเฉพาะการอ้วนที่เอว หรือ android obesity (เส้นรอบเอว >90 cm ในผู้ชาย และ >80 cm ในผู้หญิง) เป็นปัจจัยเสี่ยงที่ทำให้เกิดโรคต่างๆ ตามมากมาย เช่น ความดันโลหิตสูง โรคกล้ามเนื้อหัวใจขาดเลือด โรคหลอดเลือดสมอง โรคเบาหวานชนิดที่ 2 ภาวะไขมันในเลือดผิดปกติ ภาวะนี่ในถุงน้ำดี โรคข้อเข่าเสื่อม โรคเก้าต์ โรคหายใจผิดปกติขณะนอนหลับ (sleep apnea) โรคมะเร็งบางชนิด และยังพบว่า อัตราการตายจะเพิ่มขึ้นตามค่า BMI ที่เพิ่มขึ้นด้วย ดังนั้นการลดน้ำหนักตัวไม่ว่าจะลดได้มากน้อยเพียงใดก็ตาม พบว่าจะช่วยลดความเสี่ยงของการเกิดโรคแทรกซ้อนดังกล่าวได้<sup>4,5</sup>

สำหรับในประเทศไทยข้อมูลจาก Health National Exam Survey<sup>6</sup> พบว่ามีผู้ป่วยโรคอ้วนอยู่ประมาณ 1/4-1/5 ของประชากรผู้ใหญ่ของประเทศไทย และปัญหาที่พบอีกอย่างหนึ่ง คือ ปัจจุบันเด็กไทยไม่ว่า

ชายหรือหญิงมีปัญหาเรื่องอ้วนเป็นจำนวนมากขึ้น เพราะพฤติกรรมการบริโภคของเด็กไทยเปลี่ยนแปลงไป ซึ่งเป็นปัญหานี้ที่ประเทศไทยต้องเผชิญในอนาคตหากไม่มีการป้องกันที่ดี

## ยาที่ใช้ในการลดน้ำหนัก<sup>4</sup>

การรักษาโรคอ้วนโดยทั่วไปมักแนะนำให้ผู้ป่วยปรับเปลี่ยนพฤติกรรมเป็นสำคัญ เช่น การรับประทานอาหารให้ถูกสัดส่วน การออกกำลังกาย แต่ในผู้ที่มี BMI ≥30 kg/m<sup>2</sup> หรือมี BMI ≥27 kg/m<sup>2</sup> ร่วมกับภาวะความเจ็บป่วยอื่นที่อาจก่อให้เกิดอันตรายต่อผู้ป่วยได้ ก็จะแนะนำให้รับประทานยาลดน้ำหนักร่วมด้วยได้ ในปัจจุบันยาลดน้ำหนักแบ่งได้เป็น 3 กลุ่มตามกลไกการออกฤทธิ์ คือ

1. Appetite suppressants เช่น phentermine, fenfluramine เป็นต้น ยากลุ่มนี้จะไปออกฤทธิ์ที่ระบบประสาทส่วนกลาง โดยเฉพาะที่ hypothalamus ซึ่งเป็นศูนย์ควบคุมความพิว-ความอิ่มของร่างกาย โดยมีผลเพิ่มระดับของ monoamine neurotransmitters ในสมอง

2. Thermogenic drugs เช่น tyroxine เป็นยาที่ช่วยเพิ่มอัตราการเผาผลาญพลังงานของร่างกาย (metabolic rate) ซึ่งยาในกลุ่ม appetite suppressants ที่มีฤทธิ์เพิ่มระดับของ norepinephrine ในสมอง ก็จะมีฤทธิ์นี้เช่นกัน

3. ยาที่ออกฤทธิ์ที่ระบบทางเดินอาหาร เช่น orlistat จะลดการดูดซึมไขมันจากอาหารประมาณ 30%

ในที่นี้จะยกล่าวถึงยาในกลุ่ม appetite suppressants เท่านั้น

### Appetite suppressants<sup>7</sup>

ยาในกลุ่มนี้ส่วนใหญ่เป็นอนุพันธ์ของ amphetamine (ยกเว้น mazindol) แบ่งได้เป็น 2 กลุ่มตามกลไกการออกฤทธิ์ คือ

1. กลุ่มที่ออกฤทธิ์ผ่าน norepinephrine (NE) และ dopamine (DA) ได้แก่ phentermine, diethylpropion
2. กลุ่มที่ออกฤทธิ์ผ่าน serotonin (5-HT) ได้แก่ fenfluramine, dexfenfluramine, fluoxetine ซึ่งปัจจุบันยาสองตัวแรกถูกถอนออกจากทะเบียนตำรับแล้ว เนื่องจากมีรายงานว่าเพิ่มความเสี่ยงในการเกิด primary pulmonary hypertension และ valvular heart disease ได้<sup>8-11</sup>

ยาในกลุ่มที่ออกฤทธิ์ผ่าน NE และ DA ซึ่งนิยมใช้กันมากในปัจจุบัน ทำให้เกิดอาการข้างเคียงที่สำคัญ คือ กระตุ้นระบบประสาทส่วนกลาง ทำให้หงุดหงิดง่าย ไวต่อสิ่งเร้า นอนไม่หลับ และกระตุ้นระบบหัวใจและหลอดเลือด ทำให้หัวใจเต้นเร็ว ใจสั่น ความดันโลหิตสูงขึ้น ซึ่งเป็นปัญหาที่พบได้บ่อยในผู้ป่วยที่ได้รับยากลุ่มนี้

### SIBUTRAMINE

เป็นยาใหม่ในกลุ่ม appetite suppressant มีโครงสร้างเป็น  $\beta$ -phenylethylamine ซึ่งเป็น tertiary amine (รูปที่ 1) เดิมถูกพัฒนาเพื่อใช้เป็นยาต้านอาการซึมเศร้า แต่พบว่ามีผลทำให้น้ำหนัก

ตัวลดลงด้วย จึงนำมาใช้เป็นยาลดน้ำหนักแทน



รูปที่ 1 โครงสร้างของ sibutramine

### กลไกการออกฤทธิ์<sup>12-14</sup>

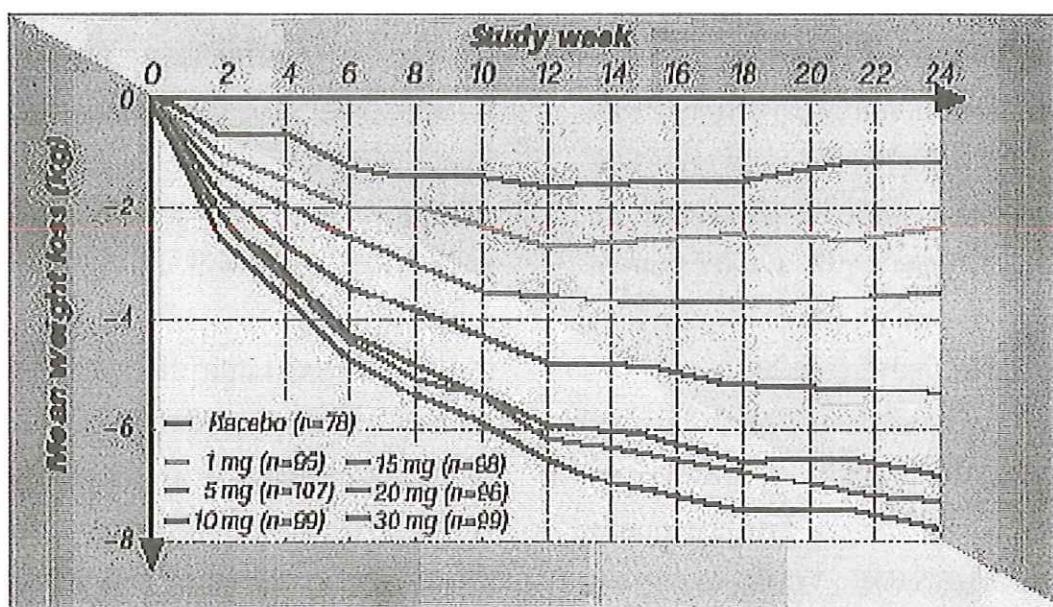

Sibutramine จัดเป็นยาในกลุ่มที่เรียกว่า serotonin-norepinephrine reuptake inhibitor (SNRI) ซึ่งมี dual mechanism คือ มีผลยับยั้งการเก็บกลับของสารสื่อประสาทพวก NE และ 5-HT (รูปที่ 2) โดยที่จะมีผลต่อการเก็บกลับของสารสื่อประสาทพวก DA น้อยมาก ทำให้มีปริมาณของ NE และ 5-HT ในสมองมากขึ้น โดย 5-HT จะจับกับ 5-HT<sub>2A/2C</sub> receptor ที่ ventromedial hypothalamus และจะเหนี่ยวนำให้เกิดความรู้สึกอิ่ม ส่วน NE จะจับกับ  $\alpha_1$  และ  $\beta_1$  receptors บน lateral hypothalamus และลดความทิ่ว นอกจากนี้ NE ยังสามารถกระตุ้นผ่าน  $\beta_3$  receptor ที่ brown adipose tissue ทำให้เกิด lipolysis ช่วยเพิ่มอัตราการเผาผลาญพลังงานของร่างกาย (thermogenic effect)

การศึกษาในเนื้อเยื่อสมองของคนพบว่า sibutramine มีฤทธิ์อ่อนมากในการยับยั้งการเก็บกลับของสารสื่อประสาทดังกล่าว แต่เมตาบอไลท์ของ sibutramine คือ

M1 และ M2 (จะกล่าวรายละเอียดในส่วนของเกล็ชจลนศาสตร์) จะมีความแรงใกล้เคียงกันในการยับยั้งการเก็บกลับของสารสื่อประสาทพวก NE และ 5-HT และแรงมากกว่า sibutramine หลายเท่า ในขณะที่ฤทธิ์ของ M1 และ M2 ในการยับยั้งการเก็บกลับของ DA จะต่ำกว่า sibutramine ประมาณ 2-3 เท่า

Sibutramine, M1 และ M2 ไม่มีผลในการเพิ่มการหลั่งของ monoamines ทุกตัว ซึ่งผลนี้จะแตกต่างจากกลไกการออกฤทธิ์ของยาในกลุ่ม appetite suppressant รุ่นเก่า

ซึ่งมีฤทธิ์เพิ่มการหลั่ง (releasing mechanism) monoamines จากปัจจัยประสาท ทำให้ sibutramine มีข้อดีที่แตกต่างจาก appetite suppressants รุ่นเก่าที่มีทั้งสองกลไก คือ ไม่ทำให้เกิดภาวะ monoamine neurotransmitter depletion ถ้าใช้ยาติดต่อ กันเป็นระยะเวลานาน ซึ่งมักทำให้มี weight regain ภายหลังจากการใช้ยาไปแล้วประมาณ 6-12 สัปดาห์ Sibutramine ไม่ทำให้เกิดภาวะนี้ ทำให้การควบคุมน้ำหนักตัวไม่ให้เพิ่มขึ้นในระยะยาวคงอยู่ได้นาน




รูปที่ 2 กลไกการออกฤทธิ์ของ sibutramine<sup>15</sup>

#### ผลการศึกษาทางคลินิก

การศึกษาทางคลินิกในช่วงแรกของ sibutramine เพื่อประเมินประสิทธิภาพในการลดน้ำหนัก และความปลอดภัยจากการใช้ยา พบว่า sibutramine ในขนาดตั้งแต่ 1-

30 mg ต่อวันมีผลช่วยลดน้ำหนักตัวลงได้โดยน้ำหนักที่ลดลงจะเป็นแบบ dose-related (รูปที่ 3) แต่ sibutramine ในขนาด  $\geq 10$  mg ต่อวัน จะให้ผลในการลดน้ำหนักได้อย่างมีนัยสำคัญ<sup>12,13,16</sup>

รูปที่ 3 ผลของขนาดยา sibutramine ต่อการเปลี่ยนแปลงของน้ำหนักตัว<sup>16</sup>

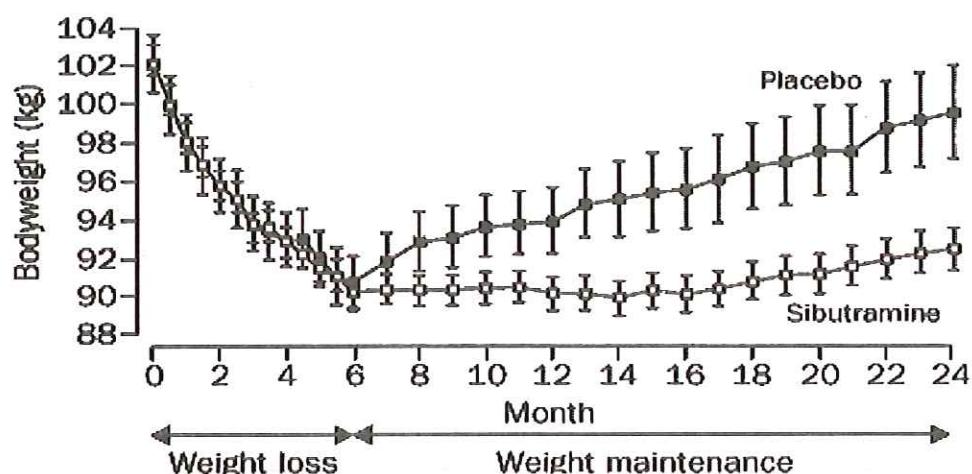
การศึกษาของ sibutramine เพื่อประเมินประโยชน์ของยาในการทำให้น้ำหนักตัวที่ลดลงแล้วยังคงลดลงอยู่ได้ คือ Sibutramine Trial of Obesity Reduction and Maintenance (STORM trial)<sup>17</sup> เป็นการศึกษาในผู้ป่วยอ้วนจำนวน 605 คน อายุระหว่าง 17-65 ปี ที่มีค่า BMI 30-45 kg/m<sup>2</sup> ผู้ป่วยทุกคนจะได้รับอาหารที่น้อยกว่าปกติ 600 kcal ต่อวัน ซึ่งประกอบด้วยไขมันน้อยกว่า 30% และมีโปรตีน 15% และผู้ป่วยจะได้รับคำแนะนำให้ออกกำลังกายโดยเพิ่มการเดินจากเดิมวันละ 30 นาที การทดลองแบ่งเป็น 2 ช่วง คือ 6 เดือนแรก (weight loss phase) ซึ่งเป็นการศึกษาแบบเปิด ผู้ป่วยที่เข้ามาในช่วงนี้จะได้รับยา sibutramine 10 mg ต่อวัน ร่วมกับการควบคุมแคลอรีและการออกกำลังกาย โดยผู้ป่วยที่สามารถลดน้ำหนักลงได้มากกว่า 5% ของน้ำหนักตัวเดิมในช่วง 6 เดือนแรก จะเข้าสู่

ช่วงที่ 2 (weight maintenance phase) โดยผู้ป่วยจะถูกสุ่มแบบ double-blind, placebo-controlled เพื่อให้ได้รับ sibutramine ในขนาด 10 mg ต่อวัน (n=352) หรือยาหลอก (n=115) ต่อไปอีก 18 เดือน โดยสามารถเพิ่มน้ำหนักของยา sibutramine ขึ้นเป็น 15 หรือ 20 mg (ซึ่งเป็นขนาดยาสูงสุดในการศึกษานี้) ถ้าน้ำหนักตัวเพิ่มขึ้นมากกว่า 1 กิโลกรัมภายใน 6 เดือนที่ 6 ของ weight maintenance period

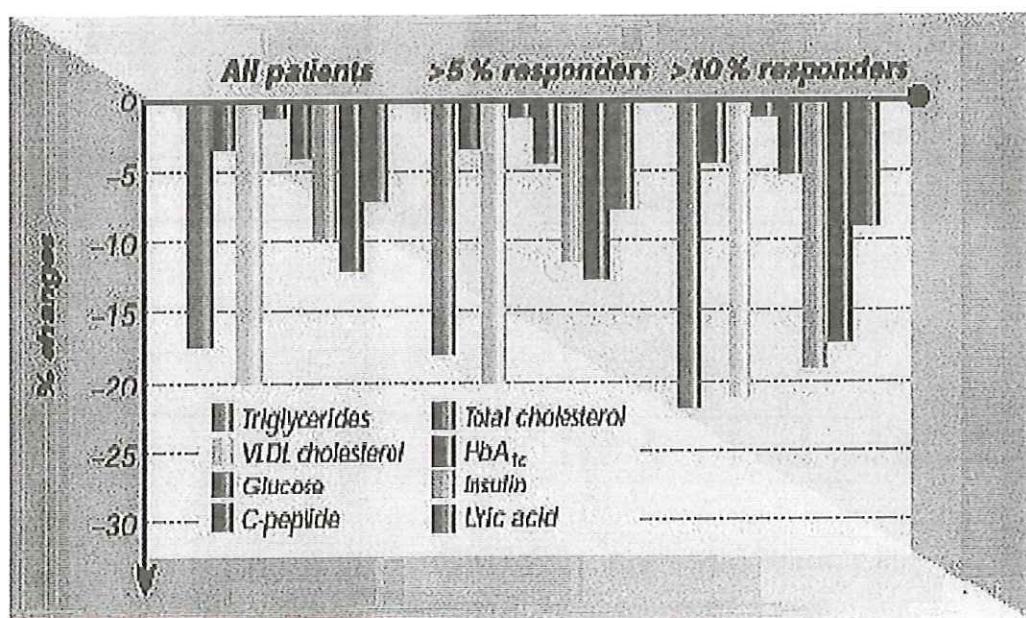
ผลการศึกษาพบว่าในช่วง weight loss phase น้ำหนักตัวเฉลี่ยของผู้ป่วยลดลง 11.3 กิโลกรัม มีผู้ป่วยจำนวน 148 คน (42%) ในกลุ่ม sibutramine และ 58 คน (50%) ในกลุ่มยาหลอกที่ต้องถอนตัวออกจากการศึกษา สำหรับผู้ป่วยในกลุ่ม sibutramine ที่เหลืออีก 204 คน มี 89 คน (43%) ที่สามารถรักษาน้ำหนักตัวอยู่ได้

เดียงกับน้ำหนักตัวในช่วง weight loss ในขณะที่มีเพียง 9 คน (16%) จาก 57 คนในกลุ่มที่ได้รับยาหลอกที่สามารถรักษาน้ำหนักตัวอย่างยั่งเดิมได้ ซึ่งแตกต่างจากกลุ่ม sibutramine อย่างมีนัยสำคัญทางสถิติ ( $p <0.01$ ) ดังแสดงในรูปที่ 4 และยังสามารถลดขนาดของเส้นรอบเอวได้มากกว่ายาหลอกอย่างมีนัยสำคัญเช่นกัน

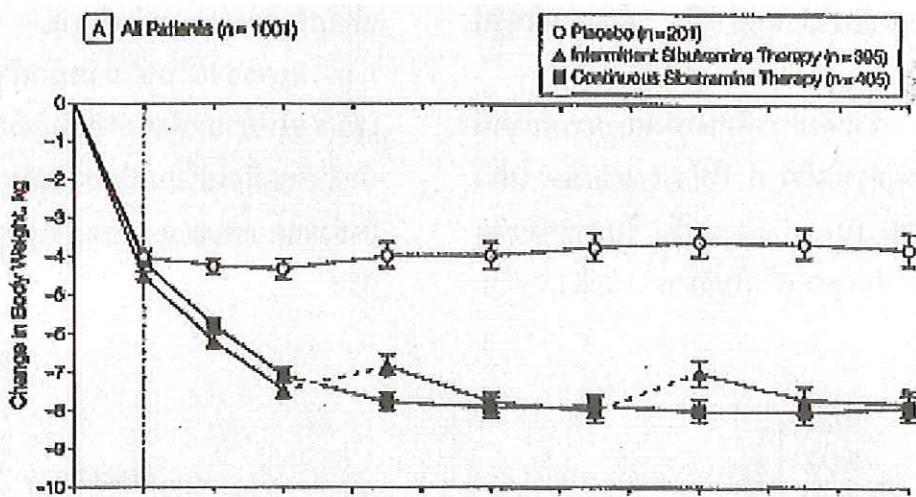
ผลการศึกษาอีกอย่างที่ได้จาก STORM คือ ผลของ sibutramine ต่อ metabolic risk factors ซึ่งพบว่าระดับของ serum triglyceride, VLDL cholesterol, total cholesterol, insulin, C-reactive peptide, glucose, HbA<sub>1c</sub> และ uric acid ลดลงอย่างชัดเจน แต่ไม่มีการเปลี่ยนแปลงของ LDL cholesterol โดยการเปลี่ยนแปลงนี้จะคงอยู่ตลอด 2 ปี และลดลงเป็นสัดส่วนกับน้ำหนักตัว ดังแสดงในรูปที่ 5


การศึกษาล่าสุดของ sibutramine คือ การศึกษาเพื่อเปรียบเทียบประสิทธิภาพในการลดน้ำหนักในระยะยาวของ sibutramine 2 regimens เปรียบเทียบกับ placebo<sup>18</sup> โดยมีรูปแบบการศึกษาเป็น randomized, double-blind, parallel-group placebo-controlled trial ในผู้ป่วยอ้วนที่มี BMI 30-40 kg/m<sup>2</sup> จำนวน 1,102 คน ทำการศึกษานาน 1 ปี (48 สัปดาห์) โดยแบ่งการทดลองออกเป็น 2 ช่วง คือ 4 สัปดาห์แรกเป็น open-label run-in phase ผู้ป่วยทุกคนที่เข้าสู่ช่วงนี้จะได้รับ sibutramine 15 mg ต่อวัน หลังจากนั้นจะประเมินน้ำหนักตัวที่ลดลง ถ้าผู้ป่วยมีน้ำหนักตัวลดลงมากกว่า 2% ของน้ำหนักตัวเดิม หรือมากกว่า 2 กิโลกรัม จะเข้าสู่ช่วงที่ 2 ในช่วงนี้ (สัปดาห์

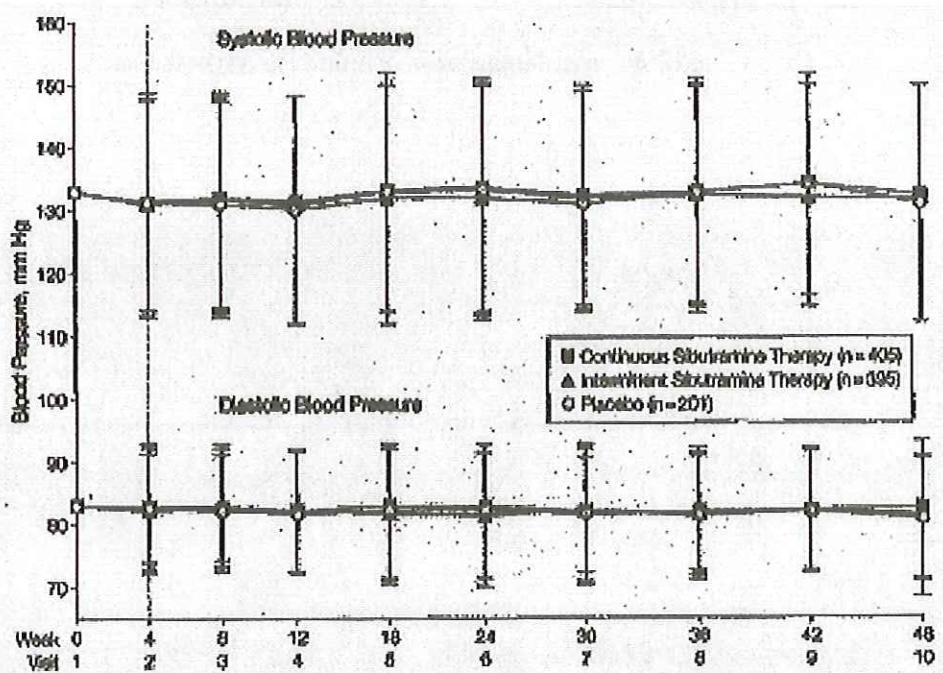
ที่ 5-48) ผู้ป่วย ( $n=1,001$ ) จะถูกแบ่งออกเป็น 3 กลุ่มโดยวิธีสุ่ม กลุ่มที่ 1 ( $n=405$ ) ได้รับ sibutramine 15 mg ต่อวันตลอดการศึกษา หรือ continuous therapy กลุ่มที่ 2 ( $n=395$ ) ได้รับ sibutramine เป็นช่วงๆ ช่วงละ 12 สัปดาห์ และหยุดยานาน 6 สัปดาห์ในระหว่างช่วง หรือ intermittent therapy (ได้รับยาในสัปดาห์ที่ 1-12, 19-30 และ 37-48) และกลุ่มที่ 3 ( $n=201$ ) ได้รับยาหลอกตลอดการศึกษา ผลการศึกษาพบว่าในช่วงที่ 2 น้ำหนักตัวเฉลี่ยของผู้ป่วยที่ลดลง คือ 3.8, 3.3 และ 0.2 กิโลกรัม ในผู้ป่วยกลุ่ม continuous therapy, intermittent therapy และยาหลอก ตามลำดับ (รูปที่ 6) โดยกลุ่มที่ได้รับ sibutramine มีน้ำหนักตัวลดลงแตกต่างจากกลุ่มยาหลอกอย่างมีนัยสำคัญทางสถิติ ( $p <0.001$ ) ส่วนในกลุ่ม sibutramine ทั้ง 2 regimens พบร่วมน้ำหนักตัวของกลุ่ม continuous therapy ลดลงได้มากกว่ากลุ่ม intermittent therapy แต่ไม่มีความแตกต่างกันทางสถิติ ( $p=0.28$ ) เมื่อพิจารณาจากน้ำหนักตัวที่ลดลงตลอดการศึกษา (48 สัปดาห์) พบร่วมน้ำหนักตัวของผู้ป่วยที่ลดลง คือ 7.9, 7.8 และ 3.8 กิโลกรัม ในผู้ป่วยกลุ่ม continuous therapy, intermittent therapy และยาหลอก ตามลำดับ นอกจากนี้ยังมีเส้นรอบเอว, triglyceride level, LDL-cholesterol ลดลง และ HDL cholesterol เพิ่มขึ้นด้วย ส่วนอาการไม่พึงประสงค์ที่พบก็คล้ายกับที่พบใน STORM trial แต่ในกลุ่มที่ได้รับ intermittent therapy เกิดน้อยกว่ากลุ่มที่ได้รับ continuous therapy สำหรับผลของ sibutramine ต่อความดันโลหิต พบร่ว-


ความดันโลหิตของผู้ป่วยทั้ง 3 กลุ่มมีการเปลี่ยนแปลงไม่แตกต่างกัน ดังแสดงในรูปที่ 7

จากการศึกษาทั้งสองการศึกษานี้สามารถสรุปได้ว่า การใช้ sibutramine ไม่ว่าในขนาด 10-15 mg ต่อวัน รับประทานติดต่อกันไปตลอด หรือในขนาด 15 mg ต่อวัน


รับประทานเป็นช่วงๆ ร่วมกับการควบคุมแคลอรีและการออกกำลังกาย มีประสิทธิภาพในการช่วยรักษาน้ำหนักตัวไม่ให้กลับเพิ่มขึ้นไปภายหลังจากที่ลดลงมาได้อย่างมีนัยสำคัญเมื่อเปรียบเทียบกับยาหลอก และยังช่วยลด metabolic risk factors ต่างๆ ได้ด้วย




รูปที่ 4 การเปลี่ยนแปลงของน้ำหนักตัวใน STORM trial



รูปที่ 5 การเปลี่ยนแปลงของ metabolic risk factors ใน STORM trial<sup>16</sup>



รูปที่ 6 การเปลี่ยนแปลงของน้ำหนักตัวเปรียบเทียบระหว่าง sibutramine แบบ continuous therapy, intermittent therapy และยาหลอก<sup>18</sup>



รูปที่ 7 การเปลี่ยนแปลงของความดันโลหิตเปรียบเทียบระหว่าง sibutramine แบบ continuous therapy, intermittent therapy และยาหลอก<sup>18</sup>

### เภสัชจุณศาสตร์<sup>12,13</sup>

หลังจากการรับประทาน sibutramine ยาถูกดูดซึมได้ดีจากทางเดินอาหาร ให้ระดับยาในเลือดสูงสุดภายใน 1-2 ชั่วโมง โดยอาหารไม่มีผลต่อการดูดซึมของยา ประมาณ 97% ของ sibutramine จะจับกับ plasma protein ยาจะถูกเปลี่ยนสภาพเป็น active metabolites คือ M1 (secondary amine) และ M2 (primary amine) โดยเอนไซม์ cytochrome P450 subfamily 3A4 (CYP3A4) ที่ตับ และถูกเปลี่ยนต่อไปเป็น inactive metabolites คือ M5 และ M6 โดย phase II metabolism และถูกขับออกทางปัสสาวะและอุจจาระต่อไป ค่าครึ่งชีวิตของ sibutramine, M1 และ M2 คือ 1.1, 14 และ 16 ชั่วโมง ตามลำดับ ทำให้สามารถให้ยาวันละ 1 ครั้ง เช่นเดียวกับ appetite suppressants ตัวอื่นได้

### การใช้ยาในผู้ป่วยกลุ่มพิเศษ<sup>12,13</sup>

ผู้ป่วยที่มีการทำงานของตับบกพร่องขั้นปานกลาง สามารถใช้ยาในขนาดปกติได้ แต่ห้ามใช้ยาในผู้ป่วยที่มีการทำงานของตับบกพร่องขั้นรุนแรง ส่วนในผู้ป่วยที่มีการทำงานของไตบกพร่อง ไม่พบว่าทำให้ระดับของ sibutramine, M1 และ M2 เปลี่ยนแปลงไป แต่ไม่แนะนำให้ใช้ในผู้ป่วยที่มีการทำงานของไตบกพร่องอย่างรุนแรง

### ข้อห้ามใช้<sup>12,13</sup>

ไม่ควรใช้ยานี้ในผู้ป่วยที่มีประวัติโรคหลอดเลือดหัวใจ โรคหัวใจล้มเหลว โรคหัวใจเต้นผิดจังหวะ โรคหลอดเลือดสมองนอกจากนี้ไม่ควรใช้ในเด็ก สตรีมีครรภ์

ทุ่งให้นมบุตร เพราะยังไม่มีข้อมูลมากเพียงพอ

### ปฏิกิริยาระหว่างยา<sup>12,13</sup>

ไม่ควรให้ยา sibutramine ร่วมกับยาต่อไปนี้

- ยาต้านอาการซึมเศร้าในกลุ่ม selective serotonin-reuptake inhibitor (SSRI) หรือ monoamine oxidase inhibitor (MAOI) เพราะอาจทำให้เกิดภาวะ serotonin syndrome หรือ hypertensive crisis
- ยาที่มีผลเพิ่ม blood pressure เช่น nasal decongestants, cough suppressants
- ยาที่มีผลยับยั้งการทำงานของ CYP3A4 เช่น erythromycin, ketoconazole เป็นต้น
- ยาที่มีผลกระทบตุ้นการทำงานของ CYP3A4 เช่น rifampicin, carbamazepine เป็นต้น

### อาการไม่พึงประสงค์<sup>12,13,17,18</sup>

อาการไม่พึงประสงค์ที่พบได้บ่อยจากการใช้ยา sibutramine คือ ปากแห้ง เปื่อยอาหาร เหงื่ออออกมาก นอนไม่หลับ ห้องผูกปวดศีรษะ และปวดหลัง โดยอาการดังกล่าวเกิดขึ้นในผู้ป่วย >5% เมื่อเปรียบเทียบกับยาหลอก และเนื่องจาก sibutramine มีฤทธิ์ยับยั้งการเก็บกลับของ NE ซึ่งมีผลเพิ่ม sympathetic activity จึงมีผลเพิ่ม blood pressure (BP) และ heart rate (HR) ได้โดยจะเพิ่ม BP ประมาณ 1-3 mmHg และ HR ประมาณ 4-5 beats/min ผลข้างเคียง

ดังกล่าวจะเพิ่มมากขึ้นตามขนาดยาที่เพิ่มขึ้น นอกจานี้จากการศึกษาในสัตว์ทดลอง พบว่า sibutramine ไม่มีผลทำให้เกิดการติดยา และไม่ทำให้เกิดภาวะ primary pulmonary hypertension และ valvular heart disease

จากการศึกษาในผู้ป่วยที่มีความดันโลหิตสูงที่สามารถควบคุมได้ดีแล้ว พบว่า sibutramine มีผลทำให้ความดันโลหิตและอัตราการเต้นของหัวใจเปลี่ยนแปลงน้อยมาก

#### ขนาดที่แนะนำในการรักษา<sup>4,12-14</sup>

Sibutramine แนะนำให้ใช้ในการรักษาโรคอ้วน เพื่อใช้ลดน้ำหนักตัว หรือเพื่อควบคุมน้ำหนักตัวไม่ให้เพิ่มมากขึ้นในผู้ป่วยที่มี  $BMI \geq 30 \text{ kg/m}^2$  หรือมี  $BMI \geq 27 \text{ kg/m}^2$  ร่วมกับภาวะความเจ็บป่วยอื่นที่อาจก่อให้เกิดอันตรายต่อผู้ป่วยได้ โดยจะต้องใช้ร่วมกับการจำกัดปริมาณแคลอรีและการออกกำลังกายด้วย

Sibutramine ในประเทศไทย มีจำหน่ายในชื่อการค้าว่า Reductil<sup>®</sup> เป็นแคปซูล มี 2 ขนาด คือ 10 และ 15 mg โดยทั่วไปขนาดยาที่แนะนำ คือ เริ่มต้นด้วยขนาด 10 mg ต่อวัน ก่อนหรือหลังอาหาร โดยให้รับประทานในตอนเช้า เพื่อหลีกเลี่ยงปัญหารื่องนอนไม่หลับที่อาจเกิดขึ้นได้หากให้ในตอนกลางวันหรือตอนเย็น ถ้าหากน้ำหนักตัวไม่ลดลงมากกว่า 2 กิโลกรัมใน 1 เดือน อาจเพิ่มขนาดยาขึ้นเป็น 15 mg ต่อวันได้ แต่หากใช้ในขนาดนี้แล้วน้ำหนักตัวยังไม่ลดลงอีก ควรหยุดใช้ยา sibutramine และประเมินวิธีการรักษา และเลือกใช้วิธีอื่นแทน

โดยเหตุที่ sibutramine มีผลทำให้ BP และ HR เพิ่มขึ้นได้ จึงมีแนวทางในการติดตามอาการข้างเคียงนี้ ดังนี้

1. ให้วัดค่า BP และ HR อุ่งน้อย 3 ครั้งใน visit ที่ต่างกันก่อนเริ่มให้ยา โดยให้ผู้ป่วยนั่งพักอย่างน้อย 5 นาที และเลือกใช้ cuff size ให้ถูกต้อง

2. ควรวัดค่า BP และ HR ทุก 2 สัปดาห์ใน 3 เดือนแรกของการเริ่มใช้ยา และวัดทุกเดือนในเดือนที่ 4-6 และวัดทุก 3 เดือนภายหลังจากเดือนที่ 6

3. ให้หยุดใช้ยา sibutramine ในกรณีต่อไปนี้

- systolic BP เพิ่มขึ้นกว่า 10 mmHg ติดต่อกัน 2 visits
- HR ขณะพักเพิ่มขึ้น 10 ครั้งต่อนาที ติดต่อกัน 2 visits
- BP เพิ่มขึ้นมากกว่า 145/90 mmHg ติดต่อกัน 2 visits ในผู้ป่วยความดันโลหิตสูงที่เคยควบคุมความดันได้ดีแล้ว

#### สรุป

โรคอ้วนจัดเป็นปัญหาต่อสุขภาพของประชาชนทั่วโลก รวมทั้งประเทศไทย และเป็นปัจจัยเสี่ยงที่สำคัญในการก่อให้เกิด metabolic syndrome ต่างๆ ตามมา ปัจจุบันการรักษาโรคอ้วนจะใช้การปรับเปลี่ยนพฤติกรรมเป็นหลัก ร่วมกับการใช้ยาลดน้ำหนัก ซึ่งมีอยู่หลายกลุ่ม Appetite suppressants เป็นกลุ่มที่นิยมใช้มาก แต่ยา กลุ่มนี้มีข้อเสียคือ สามารถใช้ลดน้ำหนักได้เฉพาะในระยะสั้นเท่านั้น หากใช้ติดต่อกันเป็นระยะเวลานาน (มากกว่า 6 เดือน) จะทำให้เกิดปัญหา

เรื่อง weight regain ได้ นอกจากนี้ยังมีผลข้างเคียงต่อระบบประสาทส่วนกลาง ทำให้หงุดหงิดง่าย นอนไม่หลับ ปวดศีรษะ ประสาทหลอน หัวร้าวเรวง รวมทั้งทำให้เกิดการติดยาได้

Sibutramine เป็นยาใหม่ในกลุ่ม appetite suppressant ที่มีกลไกการออกฤทธิ์ ขับยั้งเฉพาะการเก็บกลับของ norepinephrine และ serotonin โดยมีผลต่อการเก็บกลับของ dopamine น้อยมาก นอกจากนี้ sibutramine ยังไม่มีฤทธิ์ในการเพิ่มการหลั่งของ monoamines จากปลายประสาท ทำให้ไม่เกิดภาวะ monoamine neurotransmitter depletion ในกรณีที่ใช้ยาติดต่อกันเป็นเวลานาน ทำให้ปัญหาเรื่อง weight regain ลดลง Sibutramine ถูกเปลี่ยนเป็น active metabolites คือ M1 และ M2 โดย

CYP3A4 ซึ่งมีฤทธิ์มากกว่า sibutramine หลายเท่า จากการศึกษาทางคลินิก พบว่า sibutramine ในขนาด 10-15 mg ต่อวัน รับประทานทุกวัน หรือในขนาด 15 mg รับประทานเป็นช่วงๆ ช่วงละ 18 สัปดาห์ และเว้น 6 สัปดาห์ ร่วมกับการจำกัดปริมาณแคลอรีและการออกกำลังกายเพิ่มขึ้น มีผลช่วยลดน้ำหนักตัวลง และมีประสิทธิภาพในการช่วยรักษาน้ำหนักตัวไม่ให้กลับเพิ่มขึ้นไปอย่างเดิมได้อย่างมีนัยสำคัญ โดยอาการข้างเคียงที่พบได้บ่อย คือ นอนไม่หลับ ปวดศีรษะ ห้องผูก คลื่นไส้ ปากแห้ง เนื้อออกมาก และมีผลเพิ่มความดันโลหิตและอัตราการเต้นของหัวใจได้ ดังนั้นผู้ป่วยที่ได้รับยา sibutramine จึงต้องมีการติดตามอาการข้างเคียงเหล่านี้อย่างสม่ำเสมอ

## เอกสารอ้างอิง

1. National Institutes of Health. Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults: The Evidence Report. *Obes Res* 1998; 6(suppl 2):S1-S209S.
2. Mokdad AH, Serdula MK, Dietz WH, Bowman BA, Marks JS, Koplan JP. The spread of the obesity epidemic in the United States, 1991-1998. *JAMA* 1999; 282:1519-22.
3. The Asia-Pacific perspective: Redefining obesity and its treatment. *WHO Western Pacific Region/International Association for the Study of Obesity and the International Obesity Task Force*. February 2000.
4. National Task Force on the Prevention and Treatment of Obesity. Overweight, obesity, and health risk. *Arch Intern Med* 2000; 160:898-904.
5. Goldstein DJ. Beneficial health effects of modest weight loss. *Int J Obes Relat Metab Disord* 1992; 16:397-415.
6. สมาคมแพทย์โรคหัวใจแห่งประเทศไทย ในพระบรมราชูปถัมภ์. รายงานการประชุม Cardiovascular Epidemiology Meeting วันที่ 31 พฤษภาคม-1 มิถุนายน พ.ศ. 2544. Available from: [http://www.thaiheart.org/epidemiology/epi\\_meeting\\_2001.htm](http://www.thaiheart.org/epidemiology/epi_meeting_2001.htm). (Accessed 20/04/2002).
7. Yanovski SZ, Yanovski JA. Obesity. *N Eng J Med* 2002; 346:591-602.
8. Mark EJ, Patalas ED, Chang HT, et al. Fatal pulmonary hypertension associated with short-term use of fenfluramine and phentermine. *N Eng J Med* 1997; 337:602-6.
9. Connolly HM, Crary JL, McGoon MD, et al. Valvular heart disease associated with

fenfluramine-phentermine. *N Eng J Med* 1997; 337:581-8.

10. Cannistra LB, Davis SM, Bauman AG. Valvular heart disease associated with dexfenfluramine (letter). *N Eng J Med* 1997; 337:636.
11. McCann UD, Seiden LS, Rubin LJ, et al. Brain serotonin neurotoxicity and primary pulmonary hypertension from fenfluramine and dexfenfluramine: a systematic review of the evidence. *JAMA* 1997; 278:666-72.
12. Luque CA, Rey JA. Sibutramine: a serotonin-norepinephrine reuptake-inhibitor for the treatment of obesity. *Ann Pharmacother* 1999; 33:968-78.
13. McNeely W, Goa KL. Sibutramine: a review of its contribution to the management of obesity. *Drugs* 1998; 56: 1093-124.
14. จุฑามณี สุธีสังข์. ภาวะอ้วนและยาใหม่ที่ใช้ในการลดน้ำหนัก. ใน: นงลักษณ์ สุขวารณิชย์-ศิลป์, บรรณาธิการ. ความก้าวหน้าทางเภสัช-วิทยา. กรุงเทพมหานคร: บริษัทนิวไทรนิติ-การพิมพ์ (1996) จำกัด, 2544:-53-67.
15. BASF-Group: Innovation actualized: Innovation award: Sibutramine. Sibutramine: breakthrough in the fight against pathological obesity. Available from:<http://www.bASF.de/en/corporate/innovationen/realisiert/innovationspreis/sibutram.htm>. (Accessed 20/04/2002).
16. The Israael Society for High Blood Pressure. Reductil®. Available from: <http://www.ish.org.il/reductil.htm>. (Accessed 20/02/2002).
17. James WP, Astrup A, Finer N, Hilsted J, Kopelman P, Rossner S, et al. Effect of sibutramine on weight maintenance after weight loss: a randomised trial. *Lancet* 2000; 356:2119-25.
18. Wirth A, Krause J. Long-term weight loss with sibutramine: a randomized controlled trial. *JAMA* 2001; 286:1331-9.

## CASE REPORT

### ATENOLOL-RELATED SKIN RASH : A CASE REPORT

Viroj Wiwanitkit

*Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.*

#### ABSTRACT

Atenolol is a beta-blocker commonly used for treating hypertension. It can induce various kinds of adverse effects including the rare effect, skin rash. The atenolol-related skin rashes include intermittent dermatitis, psoriasiform skin eruptions, skin necrosis, vasculitis, and drug-induced connective tissue disease. We reported a 54 years old patient receiving atenolol for his hypertension for 4 weeks who subsequently developed intermittent itching skin lesion. On history taking, the relation between ingestion of atenolol and occurrence of skin lesion can be detected. He was then discarded from continuation of atenolol use and prescribed for HCTZ instead. On the one-month follow up after discontinuation of atenolol, he did not state any recurrence of the skin rash, confirming that atenolol was probably responsible for his lesion.

**Key words :** atenolol, skin lesion

## ผื่นผิวหนังที่สัมพันธ์กับการใช้ยา atenolol : รายงานผู้ป่วย 1 ราย

วีโรจน์ ไวนิชกิจ

ภาควิชาเวชศาสตร์ชั้นสูตร คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย กรุงเทพมหานคร 10330

### บทคัดย่อ

Atenolol เป็นยาในกลุ่ม beta-blocker ที่ใช้กันทั่วไปในการรักษาภาวะความดันโลหิตสูง ยานินิดนี้สามารถถูกกำจัดได้โดยผลข้างเคียงจากการใช้ได้หลายประการ รวมถึงผลข้างเคียงที่พบได้ในบ่อยเช่นผื่นผิวหนัง ผื่นผิวหนังที่เกิดจากยานี้มีได้หลายรูปลักษณะ เช่น ผื่นคัน เป็นๆหายๆ ผื่นในลักษณะสะเก็ด ผื่นแพล การอักเสบของหลอดเลือด รวมถึงโรคของระบบเนื้อเยื่อประสาณ บทความนี้รายงานผู้ป่วยชายอายุ 54 ปี 1 ราย ที่ได้รับยา atenolol สำหรับรักษาภาวะความดันโลหิตสูงเป็นเวลา 4 สัปดาห์ และเริ่มมีอาการของผื่นคันที่ผิวหนังเป็นๆ หายๆ จากการซักประวัติพบความสัมพันธ์ของการใช้ยา atenolol กับการเกิดผื่นผิวหนัง ผู้ป่วยรายนี้ได้รับคำแนะนำให้หยุดยา atenolol และเปลี่ยนมาใช้ยา HCTZ แทน จากการตรวจติดตามที่ระยะเวลา 1 เดือน หลังจากหยุดยาผู้ป่วยไม่ปรากฏอาการของผื่นคันดังกล่าวอีก ทำให้สามารถกล่าวได้ว่าผื่นคันดังกล่าวมีความสัมพันธ์กับการใช้ยา atenolol

คำสำคัญ : atenolol, ผื่นผิวหนังจากยา

## INTRODUCTION

Atenolol, a synthetic, beta<sub>1</sub>-selective (cardioselective) adrenoreceptor blocking agent, may be chemically described as benzeneacetamide, 4-[2'-hydroxy-3'-(1-methylethyl) amino] propoxy<sup>1</sup>. It has a molecular weight of 266. It is a relatively polar hydrophilic compound with a water solubility of 26.5 mg/ml at 37°C and a log partition coefficient (octanol/water) of 0.23. It is freely soluble in 1N HCl (300 mg/ml at 25°C) and less soluble in chloroform (3 mg/ml at 25°C)<sup>1</sup>.

The efficacy of atenolol for hypertension and coronary heart disease has been well documented in numerous comparative studies<sup>1,2</sup>. Like other antihypertensive drugs, atenolol lowers the systolic and diastolic blood pressures by 15 to 20% in a single drug treatment. In long-term treatment it has the ability to reduce cardiovascular mortality<sup>3</sup>.

Considering its adverse reactions, pronounced fatigue and cold extremities have been observed in 10 to 20% of the treated subjects. Complaints about bradycardia, dizziness and gastrointestinal symptoms are less frequent. Despite its relative selectivity, atenolol can cause bronchospasm in asthma patients. Among the many but rarely observed side-effects are sleep disturbances, depressions, paresthesia, impotence, and arthropathies. Also, skin rash is a rare adverse reaction of using this drug<sup>1,2</sup>. Here we report a case of a Thai male patient with intermittent skin lesion most likely to be related to the use of atenolol.

## CASE REPORT

A Thai male, aged 54 years old presented to the physician with the complaint of itching skin lesion on his extremities for 3 weeks. He presented the intermittent occurrence of the lesion. Also, he presented the history of hypertension with the recent history of antihypertensive treatment for 4 weeks. On visiting his cardiologist in charge, he was prescribed for atenolol (Prenolol<sup>®</sup>) at the dosage of 100 milligram daily. He stated the sense of itch after starting this antihypertensive drug. He notified that the skin lesion started to occur at about 15 minutes after ingestion of the drug. He also got topical steroid paste but his lesion was still intermittent relating to the ingestion of the antihypertensive drug. He presented no history of other drugs use. He presented no previous history of drug or food

allergy as well.

This patient received the presumptive diagnosis of atenolol-related skin disorder. He was ordered to stop the atenolol and use the antihypertensive drug HCTZ instead. On follow up at one month, he presented no longer the intermittent skin lesion, confirming that atenolol was probably responsible for his lesion. However, the patient refused to be rechallenged with atenolol for the confirmative test.

## DISCUSSION

Atenolol is a beta-blocker commonly used for treating hypertension. Atenolol is well tolerated, not very expensive, and it has a remarkable record. Its long-term use is documented convincingly for coronary heart diseases and hypertension alike<sup>1-3</sup>. However, like every drug, it can induce a number of adverse effects<sup>1-3</sup>. Apart from the general adverse effects, it can induce various kinds of adverse effects (but rarely detected), including intermittent dermatitis, psoriasisiform skin eruptions, skin necrosis, vasculitis, and drug-induced connective tissue disease.

A number of cases with skin reactions to propranolol have been reported since 1970's<sup>4-6</sup>. Skin eruptions were usually developed during long-term therapy with propranolol. These exanthemas disappeared gradually within 1-5 weeks after treatment with propranolol had been stopped<sup>4,5,7</sup>. Challenge test and provocation test with propranolol are not used in general practice since it can induce severe reactions<sup>4,5,7</sup>. Skin biopsies can show a wide spectrum of pathology as acanthosis, parakeratosis, micro-abscesses, and cellular infiltration of upper dermis<sup>4-6</sup>. The pathogenesis mechanism responsible for these adverse cutaneous reactions is believed to be the blockade of the epidermal beta-receptors. Therefore, it is recommended that all patients receiving beta-blocking drugs should be examined carefully for adverse reactions.

Here, we reported a patient receiving atenolol for his hypertension for 4 weeks who subsequently developed intermittent itching skin lesion. His skin rash disappeared after discontinuation of the drug. This case is likely to be a case of atenolol induced skin rash<sup>7</sup>. The conclusion of this case as a spontaneous report of ADR is presented in Table 1. The atenolol related skin rash can be diagnosed by discontinuation and recontinuation test. In some cases, a very severe form, connective

tissue disorder, which presents as lupus can be detected. Regarding these very rare cases, antihistone antibody follow up can be a useful marker<sup>7</sup>. Due to the fact that atenolol is a

widely used antihypertensive drug in the present day, the awareness to its rare complication as the atenolol related skin rash should be kept in mind of the drug prescribers.

**Table 1.** Conclusion of this case as spontaneous report of ADR form.

| Topics                                                   | Record                                               |
|----------------------------------------------------------|------------------------------------------------------|
| Age                                                      | 54 years                                             |
| Sex                                                      | male                                                 |
| Suspected Drug(s), Route of Administration               | atenolol, per oral                                   |
| Dosage Regimen                                           | 100 milligram daily                                  |
| Interval of Drug Administration                          | 4 weeks                                              |
| Describe the Reactions                                   | intermittent itching skin lesions of the extremities |
| Relevant Information (Labs, Allergies)                   | no                                                   |
| Concomitant Drugs (Exclude Those Used to Treat Reaction) | no                                                   |
| Action Taken with Suspected Drug                         | Drug discontinuation                                 |
| Patient Outcomes                                         | Symptoms resolved                                    |

## REFERENCES

1. Cruickshank JM, McAinsh J. Atenolol and ischemic heart disease: an overview. *Curr Med Res Opin* 1991; 12: 485-96.
2. Psaty BM, Koepsell TD, LoGerfo JP, et al.  $\beta$ -Blockers and primary prevention of coronary heart disease in patients with high blood pressure. *JAMA* 1989; 261: 2087-94.
3. Wadsworth AN, Murdoch D, Brogden RN. Atenolol: a reappraisal of its pharmacological properties and therapeutic use in cardiovascular disorders. *Drugs* 1991; 42: 468-510.
4. Jensen HA, Mikkelsen HI, Wadskov S, Sondergaard J. Cutaneous reactions to propranolol (Inderal). *Acta Med Scand* 1976;199:363-7.
5. Halevy S, Feuerman EJ. Psoriasisiform eruption induced by propranolol. *Cutis* 1979;24:95-8.
6. Tuzun B, Tuzun Y, Gurel N, Tuzuner N, Altug T, Buyukdevrim S. Psoriasis-like lesions in guinea-pigs receiving propranolol. *Int J Dermatol* 1993;32:133-4.
7. McGuiness M, Frye RA, Deng JS. Atenolol-induced lupus erythematosus. *J Am Acad Dermatol* 1997;37:298-9.

## PHARMACOLOGICAL DIGEST

Nisamanee Satyapan

Department of Pharmacology, Pramongkutkla College of Medicine, Bangkok 10400, Thailand.

### **Losartan Lowers CV Complications of Hypertension**

A head-to-head trial has been reported by the Losartan Intervention for Endpoint Reduction in Hypertension Study (LIFE) that losartan is better than atenolol at reducing cardiovascular disease and stroke, with similar degrees of blood pressure lowering and fewer adverse effects.

In this randomized, multicenter trial based in Europe and the United States, 9,193 hypertensive patients with LVH, aged 55-80 years, received either losartan-based or atenolol-based antihypertensive treatment for at least 4 years and until 1,040 patients had a primary cardiovascular event defined as death, myocardial infarction, or stroke. Both treatments were equally effective in reducing blood pressure, with mean reduction of 30/17 mmHg for losartan and 29/17 mmHg for atenolol. Compared with atenolol, losartan prevented more cardiovascular illness, death, and new-onset diabetes. Losartan reduced the overall risk of primary cardiovascular event by 13%, cardiovascular death by 11%, and fatal or nonfatal stroke by 25%. Patients given atenolol had a 7% reduction in the risk of fatal and nonfatal myocardial infarction.

The other LIFE investigators from Umea University, Sweden, compared the efficacy of losartan and atenolol in 1,195 patients who had diabetes as well as hypertension and LVH. Losartan reduced the risk of cardiovascular death, stroke, and myocardial infarction by 24%, the risk of cardiovascular death by 37%, and the risk of death from all causes by 39%.

Results from both LIFE studies also were presented at the American College of Cardiology Annual Meeting in Atlanta, Georgia, on March 20.

[*Lancet* 2002;359(9311):995-1003.]

### **Beta-3 Adrenergic Receptor Agonist Increases Energy Expenditure in Obese Men**

A randomized crossover trial was conducted by Dr. Marleen A. van Baak, from Maastricht University, the Netherlands, and colleagues in

12 healthy obese men treated with 250 mg, 1,000 mg L-796568, a novel beta-3 adrenergic receptor agonist or placebo. In each of the three trials the men received one of the regimens. The indirect calorimetry was used to measure energy expenditure and respiratory quotient before and after administering L-796568. They also obtained blood samples and measured ear temperature, heart rate, and blood pressure before and after treatment. It was found that after the 1,000 mg dose of L-796568, there was a significant increase in energy expenditure of 7.8% ( $p < 0.001$ ). There was also a dose-dependent increase in plasma glycerol and free fatty acid concentration ( $p < 0.010$ ).

At 1,000 mg, L-796568 also caused a significant increase in systolic blood pressure. However, there were no changes in heart rate, diastolic blood pressure, ear temperature, plasma catecholamine, potassium, or leptin levels. Thus it was concluded that single-dose administration of 1,000 mg of the novel beta-3 adrenergic receptor agonist L-796568 increased lipolysis and energy expenditure in overweight men. This is the first study to show such an effect of beta-3 adrenergic receptor agonists in humans, without significant evidence for beta-2 adrenergic receptor involvement.

[*Clin Pharmacol Ther* 2002;71:272-279.]

### **Leptin Corrects Glucose Metabolism, Reverses Hepatic Steatosis in Lipodystrophy**

It has been reported by US investigators that chronic leptin treatment leads to improved insulin sensitivity in the liver and in muscle and to reversal of hepatic steatosis in patients with severe lipodystrophy. Earlier this year, the research team reported that leptin deficiency appeared to be the main cause of metabolic abnormalities associated with severe lipodystrophy and that leptin treatment ameliorated these abnormalities in nine patients. In this study, a subset of three of the original patients, one with acquired lipodystrophy and two with congenital form were reported. Fasting leptin concentration

was less than 4 ng/mL at baseline. Patients were treated with recombinant methionyl human leptin, given subcutaneously every 12 hours, approximately doubled insulin suppression of hepatic glucose production and insulin-stimulated peripheral glucose disposal. Nuclear magnetic resonance measurements showed liver triglyceride content ranging from 4.6% to 48% prior to treatment, compared with a content less than 1% in six control subjects. The abnormal levels were reduced by nearly 85%. Intramyocellular triglyceride and fatty acyl CoA were reduced by about 30%. It was attributed that the lipid-lowering effects of leptin to a reduction in energy intake, resulted from decreased appetite in the treated patients. [J Clin Invest 2002;109: 1285-1286,1345-1350.]

#### Atorvastatin Does Not Improve Vasoreactivity in Type 2 Diabetic Patients.

The hypothesis that treatment with atorvastatin would have a beneficial effect on NO availability in forearm resistance in patients with type 2 diabetes and mild dyslipidemia was tested by Dr. Ton J. Rabelink, of University Medical Center Utrecht, the Netherlands, and colleagues. They used venous occlusion plethysmography to examine the effect of intensive lipid lowering (4 weeks of 80-mg atorvastatin) on vasoreactivity in 23 type 2 diabetics and 21 matched controls. Compared with controls, type 2 diabetic patients had significantly blunted serotonin-induced NO-dependent vasodilation. Nitroprusside-induced endothelium-independent vasodilation was also reduced in patients with type 2 diabetes compared with control subjects. Although significant reductions in total cholesterol, low density lipoproteins and triglycerides were observed, there were no apparent effects on NO-dependent and endothelium-independent vasodilation. This finding should suggest that other factors, such as hyperglycemia, may play an important role in impaired vasoreactivity in patients with type 2 diabetes.

[Arterioscler Thromb Vasc Biol 2002;22:799-804.]

#### Menstrual Migraine Linked to Magnesium Deficiency

Prospective study in 61 women who had menstrual migraine were conducted by Dr. Burton M. Altura and colleagues, from the State University of New York at Downstate

Medical Center, Brooklyn. Ionized magnesium, total magnesium, and ionized calcium were measured and calculated for the ionized calcium/ionized magnesium ratio. It was found that during menstrual migraine, 45% of the women had an ionized magnesium deficiency compared with 15% during nonmenstrual migraine and 14% during menstruation without migraine. Between menstruations and during times when there were no headaches, 15% of the women had an ionized magnesium deficiency. In women with menstrual migraine the ionized calcium/ ionized magnesium ratio was elevated compared with age-matched controls. The high incidence of ionized magnesium deficiency found in patients during menstrual migraine attacks indicates that magnesium may have a role in the development of this disease in a subgroup of patients. Some women exhibited ionized magnesium deficiency between migraines and menstruations but that the incidence rose when these two events were combined.

[Headache 2002;42:242-248.]

#### Statin Drugs Increase Risk of Peripheral Neuropathy

In the population-based study, the researchers used patient registries to identify all first cases of idiopathic peripheral neuropathy in Funen County, Denmark, over a 5-year period. Each case was matched to 25 controls of the same age and sex. Of 166 cases of first-time idiopathic neuropathy, 35 were classified as definite, 54 as probable and 77 as possible cases. Nine of those diagnosed with neuropathy had taken statins, with an average use duration of 2.8 years. Compared with controls, the statin users had a 14.2-fold risk of developing neuropathy classified as definite, and a 3.7-fold risk of developing neuropathy of any classification. Those currently using statins had a 16.1-fold risk of definite idiopathic neuropathy and a 4.6-fold risk considering all cases of idiopathic neuropathy. In subjects receiving statins for 2 or more years, risk of developing definite idiopathic neuropathy was 26.4 times that of control patients.

Presenting risk data in this study is in terms of number of patients needed to be treated to harm. For subjects aged 50 years or older, there was 1 excess case of idiopathic peripheral neuropathy for every 2,200 person-years of statin use, which was considerably lower than a comparable estimate of 10,000 for statin myopathy.

Thus it was concluded by David Gaist, MD, PhD, of the University of Southern Denmark in Odense that although statins were linked to increased risk of myopathy, peripheral neuropathy might also be a delayed adverse effect. Even though absolute risk of peripheral neuropathy from these findings is low, if people taking statins develop neuropathy symptoms, they should talk with their doctor, who may reconsider the use of the statins.

[*Neurology* 2002;58:1333-1337.]

### New Guidelines for Managing Hypercholesterolemia

In 2001, the National Cholesterol Education Program (NCEP) released its third iteration of guidelines regarding detection, evaluation, and treatment of hypercholesterolemia in adults. The guidelines were developed by an expert panel with representatives from interested organizations such as the American Heart Association, the American College of Cardiology, and the American Medical Association, among others.

These new recommendations, called the Adult Treatment Program (ATP) III guidelines, comprise an extensively referenced and evidence-based report that provides the scientific rationale for the recommendations contained in the executive summary. Each version of the ATP guidelines focuses on a specific goal. ATP I outlines a strategy for the primary prevention of coronary heart disease (CHD) in persons with elevated low-density lipoprotein (LDL) levels or those with borderline LDL levels and 2 or more risk factors. ATP II adds the intensive management of LDL cholesterol in patients with established CHD. ATP III adds a call for more intensive LDL cholesterol lowering in subgroups of patients; however, its core remains the recommendations made in ATP I and II. The most significant recommendation made in ATP III is the elevation of persons with diabetes mellitus (DM) to the risk level of those with established CHD. This recommendation is based on the very high prevalence of asymptomatic CHD in persons with DM and multiple risk factors. Thus, the preferred LDL cholesterol level in both CHD patients and diabetics is less than 100 mg/dL. ATP III also identifies persons with multiple metabolic risk factors (abdominal obesity, elevated triglycerides, low high-density lipoprotein [HDL] cholesterol, hypertension, and insulin resistance) as having *metabolic syndrome*. ATP III recognizes metabolic

syndrome as a secondary target of risk-reduction *after* an ideal LDL level is attained. The guidelines also recommend applying risk projections based upon data from the Framingham Heart Study to identify persons with more than 2 CHD risk factors for intensive therapy. ATP III also modifies the low categorical value of HDL cholesterol from less than 35 mg/dL to less than 40 mg/dL, and lowers desirable levels of triglycerides to less than 150 mg/dL. Finally, ATP III recommends that initial testing for hypercholesterolemia consists of a complete, fasting lipid profile. It also encourages the use of dietary fiber as an adjunct to lowering LDL levels. Implementing the ATP III guidelines represents a challenge to the clinician. An expanded pool of persons requiring treatment, closer follow-up, and more intensive therapy regimens will require greater dedication from both clinicians and patients. However, the benefits of aggressive lipid lowering are well established and the response to effective treatment is gratifying to both patient and provider. Thus this recently issued guidelines focus on lowering of low-density lipoprotein cholesterol (LDL-C) as a primary focus and using exercise, diet, and pharmacotherapy as a primary means of lowering patients' coronary heart disease (CHD) risks. The new guidelines recognize LDL-C levels of less than 100 mg/dL as optimal for all patients, and increase attention on high triglyceride levels (above 200 mg/dL). ATP III places more emphasis on identifying patients at risk for CHD and CHD events (e.g., myocardial infarction, revascularization procedures).

[<http://jama.ama-assn.org/issues/v285n19/full/jsc10094.html>]

### Promising New Treatment for Early Type 2 Diabetes

Although glucagon-like peptide-1 (GLP-1) has potential for treatment of type 2 diabetes, its short half-life prompts investigation of inhibitors of the GLP-1-degrading enzyme dipeptidyl peptidase IV (DPP IV), which improve glucose tolerance in insulin-resistant rats and mice. This study has been conducted by Bo Ahren, MD, and colleagues from Lund University in Malmo, Sweden. It provides the first evidence that pharmacological DPP IV inhibition is feasible for the treatment of type 2 diabetes in humans. A new treatment paradigm for early type 2 diabetes was tested in the double-blind, multicenter trial involved the selective, orally active DPP IV inhibitor NVP

DPP728. Over the 4-week treatment period, 61 men and 32 women with diet-controlled type 2 diabetes (mean age 64 years) received placebo or the inhibitor at a dose of 100 mg three times daily or 150 mg twice daily. There were no significant adverse effects. Compared with placebo, NVP DPP728 at 100 mg three times daily reduced mean fasting glucose by 1.0 mmol/L, post prandial glucose excursions by 1.2 mmol/L, and mean 24-hour glucose levels by 1.0 mmol/L (all  $P<0.001$ ). Reductions were similar in subjects receiving 150 mg twice daily, and mean 24-hour insulin levels were reduced by 26 pmol/L in both active treatment groups. An unexpected benefit was that HbA<sub>1c</sub> in the combined active treatment groups decreased by 0.6% ( $P<0.001$ ). There was no difference between a three-time daily treatment schedule versus a twice daily treatment schedule with NVP DPP728, indicating that either dosing regimen could probably be used with equal efficacy. However, further long-term studies will be needed to examine the long-term effects of DPP IV inhibition as well as to fully understand the mechanism of the effects and to define the use of this approach in patients with more advanced diabetes and in combination with other antidiabetic drugs.

[*Diabetes Care* 2002;25(5):869-875.]

#### Pentoxifylline is Helpful for Venous Ulcers

A meta-analysis of 8 trials has been done by Andrew Jull, from the University of Auckland in New Zealand. The results suggested that pentoxifylline gave additional benefit to the standard treatment for venous leg ulcers. It could be especially useful for patients with slow-to-heal ulcers and could be considered for patients who cannot be effectively treated with compression bandages. Up to one-third of patients might have persistent venous ulcers after 1 year of compression therapy. Jull's group identified 8 trials including 547 subjects; 5 trials compared pentoxifylline and compression with placebo and compression, and 3 compared pentoxifylline alone with placebo. Pentoxifylline was 49% more effective than placebo in complete healing or substantial improvement of venous leg ulcers. Pentoxifylline with compression was 30% more effective than placebo and compression in complete healing. Patients taking pentoxifylline reported no more adverse events than did those on placebo. Gastrointestinal disturbance was the most common adverse effect, seen in 43% of patients receiving pentoxifylline. But the recommendation of

pentoxifylline for every patient does not seem appropriate, although results from one trial have suggested that adding pentoxifylline to compression treatment is cost-effective.

[*Lancet* 2002;359:1550-1554.]

#### Smoking Accelerates Renal Deterioration in ACE Inhibitor-Treated Diabetics

The study involving 33 type 2 diabetics with kidney disease showed that smokers' kidney function declined more rapidly than nonsmokers', despite treatment with ACE inhibitors which was known to slow the decline in renal function associated with diabetic nephropathy. Researchers at Texas Tech University Health Sciences Center in Lubbock found that even though ACE inhibitors lowered smokers' blood pressure, these patients still experienced a greater decline in renal function than nonsmokers. Specifically, over 64 months' follow-up, plasma creatinine levels increased from 1.05 to 1.78 mg/dL in smokers and from 1.08 to 1.32 mg/dL in non smokers. The findings suggest that smoking cessation might delay complete renal failure in diabetics on ACE inhibitors.

[*Am J Kidney Dis* 2002;39:376-382.]

#### Proinsulin Levels Strongly Linked to Heart Disease in Nondiabetic Adults

Data from 1,456 older nondiabetic adults were analyzed by Dr. Elizabeth Barrett-Connor and colleagues, from the University of California at San Diego, to determine the link between insulin, proinsulin, and C-peptide levels and prevalent CHD. Nearly one-quarter of men and of women had CHD. Men and women with CHD had significantly higher proinsulin levels than their counterparts without CHD. C-peptide and insulin levels were directly linked to CHD risk in women but not in men. Only proinsulin was significantly and independently associated with prevalent CHD in both men (OR = 2.41) and women (OR = 1.80). There has been no previous study that has ever demonstrated an association between insulin and heart disease in women. In contrast, most, but not all, of the studies in men have shown an association. Furthermore, in older nondiabetic adults, proinsulin levels appeared to be a better predictor of CHD than levels of intact insulin. However, these studies were conducted at a time when only insulin assays that cross-reacted with proinsulin were available. Thus the current findings need to be replicated, preferably in a prospective fashion,

using direct markers of heart disease, such as coronary artery calcium scores.  
[Circulation 2002;105(11):1311-6.]

#### Soy Isoflavone May Be Safe, Effective Alternative to Estrogen Replacement

It has been reported that daily soy isoflavone use significantly reduces menopausal symptoms in postmenopausal women and may also help prevent cardiovascular disease. Furthermore, because isoflavones have estrogenic and anti-estrogenic effects depending on the target tissue, their use may not predispose to endometrial cancer as estrogen replacement therapy does.

The study was conducted by Dr. Edmund C. Baracat and colleagues, from the Federal University of Sao Paulo in Brazil, randomized 80 postmenopausal women with climacteric symptoms to receive placebo or 100 mg of soy isoflavone daily for 4 months. Isoflavone-treated women experienced a significant improvement ( $p < 0.01$ ) in menopausal symptoms relative to baseline scores and to improvement in the placebo group. Treatment with isoflavone was linked to a significant reduction in total cholesterol and LDL levels compared with baseline ( $p < 0.001$ ) and the placebo group ( $p < 0.01$ ), but appeared to have no effect on blood pressure, plasma glucose, HDL level, and triglyceride level. Transvaginal sonography revealed that isoflavone therapy was not associated with an increase in endometrial thickness.

These findings indicate that an isoflavone treatment regimen may be a safe and effective alternative therapy for postmenopausal symptoms. Another benefit is a decrease in LDL level, which suggests a positive effect on the cardiovascular system.

[Obstet Gynecol 2002;99:389-394.]

#### Third-Generation Oral Contraceptives (OCs) Could Be Less Safe Than Second-Generation Formulations

The RATIO Study, a multicenter study of 203 women between the ages of 18-49 with a first ischemic stroke was conducted by Dr. Ale Algra, of the University Medical Center, Utrecht. They were compared with 925 healthy, age-matched controls randomly selected from the community. It has been reported that OC use of any kind doubles the risk of stroke. Few women in the cohort were still using 1st generation OCs. They had a risk of stroke that was 1.7 times higher than non-

OC users. Women taking second-generation OCs had a risk of stroke 2.4 times higher than nonusers, and those taking third-generation OCs had a risk of first ischemic stroke 2.2-fold higher than nonusers. Women who smoked and used either second- or third-generation OCs had a fourfold higher risk of stroke than nonsmoking nonusers. There was no difference with regard to stroke or heart attack risk [between second- and third-generation OCs], but an increased risk of venous thrombosis with the third-generation pill was found in a study completed last year. The progestogen component was changed from levonorgestrel in the second-generation formulation to either desogestrel or gestodene in the third-generation pill because these progestogens were associated with a more favorable lipid profile. The aim was to reduce risk of atherosclerosis, but it did not translate into reduced risk of stroke. Risk of venous thrombosis has to be considered as well. It is advice for physicians who are starting a woman for the first time on an oral contraceptive to start with a second-generation. [Res Care 2002;25:298-302.]  
(<http://www.medscape.com/viewarticle/424289>)

#### Obesity and Glyburide Use is Associated With Acute Pancreatitis Risk

Using data from a population-based, case-control study of 1.4 million adult inhabitants of Sweden, Dr. Bengt E. Wiholm, of Karolinska Institute, Stockholm, and colleagues examined the risk factors for acute pancreatitis, particularly those associated with drug use. A total of 462 case subjects were hospitalized in surgery departments for their first episode of acute pancreatitis without previous gallbladder disease. A total of 1,781 control subjects were randomly selected from a population register. Review of case records and telephone interviews were conducted to collect information. Prevalent diabetes was observed in 27 cases (6%) and 55 controls (3%). Fifty-three cases (11%) had a body mass index (BMI) of greater than  $30 \text{ kg/m}^2$ , compared with 130 controls (7%).

Glyburide use was associated with a crude odds ratio of 3.2 for the development of acute pancreatitis. After adjusting for covariates, multivariate logistic regression showed an odds ratio of 2.5 for the use of glyburide. BMI had a continuous odds ratio of 1.2 per 5 units of BMI. Compared with patients with a BMI between 20 and  $25 \text{ kg/m}^2$ , those with a BMI

greater than  $30 \text{ kg/m}^2$  had a relative risk of 2.4 for hospitalization longer than 14 days or treatment in an intensive care unit.

It may still be prudent to carefully consider the choice of antidiabetes treatment in patients with risk factors for acute pancreatitis. It may

also be of clinical value to determine the BMI in addition to previous parameters, for prediction of the clinical course when patients with acute pancreatitis are hospitalized. [Diabetes Care 2002;25:298-302.]

# Thai Journal of Pharmacology

## Instruction for Authors

The Thai Journal of Pharmacology serves as the official journal of the Pharmacological and Therapeutic Society of Thailand. The journal is designed to contribute to the publication of researches and information exchanges in the field of pharmacology and related fields. The manuscripts should not have been published before. Original full length scientific research papers, short communication, case report, letter to editor, minireviews, pharmacological digest and new drugs profile will be included in this journal.

### Manuscripts

Three copies of manuscripts, diskette(s) and illustration(s) are required. Manuscript of research articles should be written in English, the others can be either English or Thai. The preparation of the manuscript should be in the form of Microsoft Word (front: Times New Roman size 10). Pages should be numbered consecutively, including the title page.

Table and illustration should be numbered with Arabic figures consecutively in the order of first citation in the text and supply a brief title for each. Explain in footnote all non-standard abbreviation that are used. Illustrations should be professionally drawn and photographed or produced on a laser printer.

Nomenclature should follow the recommendations of the International Union for Pure and Applied Chemistry (IUPAC), and the International Union for Biochemistry (IUB). All measurements must be in System International (SI) units.

### Research articles

The research papers should contain a) title, b) abstract, c) keywords, d) introduction, e) material and methods, f) result, g) discussion, and h) references.

**The title page:** Should contain the title of the article, author(s) name and affiliation (s) laboratory or institute of origin and address. Name and complete address of author responsible for correspondence about the manuscript should be also placed at the foot of the title page.

**An abstract:** Limited to approximately 250 words should be carried in this page. It should be informative and state concisely what was done, results obtained and conclusion.

**Keywords:** Three to ten keywords or short phrases appropriate for subject indexing should be typed at the bottom of abstract.

**Introduction:** State clearly the purpose of article, the rationale for the study or observation. Relevant previous study should be cited and do not review the subject extensively.

**Materials and Methods:** Describe the sufficient detail of the method, experimental subjects ( patients or experimental animals, including controls) clearly. Identify the method, apparatus (manufacturer's name and address in parenthesis). Give references to established method, study design and statistical method.

**Results:** Present your results in logical sequence in the text, tables, and illustrations. Only important observations should be summarized and emphasized. Do not repeat in the text all the data in the tables or illustrations.

**Discussion:** Comment on the results and integrate them with the existing knowledge and point out the field. Recommendation may also be included.

**Acknowledgement:** Persons, financial or technical helps which have contributed to the paper should be acknowledged in a paragraph.

**References:** Place the numbered references consecutively in the order in which they are first mention in the text. Use the style of the examples below:

### Examples

#### Articles in journals

- (1) Standard journal article (List all authors, but if the number exceeds three, give three followed by et al)

You CH, Lee KY, Chen RY, et al. Electrogastrographic study of patients with unexplained nausea, blotting and vomiting. *Gastroenterology* 1980; 79:311-314.

(2) Organisation as author

The Royal Marsden Hospital Bone-marrow Transplantation Team. Failure of syngeneic bone-marrow graft without preconditioning in post-hepatitis marrow aplasia. *Lancet* 1977;2:742-744.

(3) No author given

Coffee drinking and cancer of the pancreas (editorial). *BMJ* 1981;283-286.

(4) Volume with supplement

Magni F, Borghi S, Berti F. BN-52021 protects guinea-pig from heart anaphylaxis. *Pharmacol Res Commun* 1988;20 suppl 5:75-78.

(5) Books and other monographs

5.1 Personal author(s)

Colson JH, Armour WJ. *Sports injuries and their treatment*. 2<sup>nd</sup> rev ed. London: St. Paul, 1986.

5.2 Editor(s), compiler as author

Diener HC, Wilkinson M, editors. *Drug-induced headache*. New York: Springer-Verlag, 1988.

5.3 Chapter in a book

Jaffe JH, Martin WR. Opioid analgesics and antagonists. In: Gilman AG, Goodman LS, Gilman A, editors. *The Pharmacological Basis of Therapeutics*. 6<sup>th</sup> ed. New York: MacMillan Publishing, 1980:494-543.

5.4 Conference proceedings

Vivian VL, editor. Child abuse and neglect: a medical community response. *Proceeding of the first AMA National Conference on Child Abuse and Neglect*; 1984; Mar 30-31; Chicago. Chicago: American Medical Association, 1985.

(6) Dissertation

Youseff NM. *School adjustment of children with congenital heart disease* (dissertation). Pittsburgh (PA): Univ of Pittsburgh, 1988.

(7) In press

Lillywhite HB, Donald JA. Pulmonary blood flow regulation in an aquatic snake. *Science*. In press.

**Reviews**

All reviews are usually peer-reviewed. If the manuscript is written in Thai, English title and abstract are also required.

**Short communication**

Short communication should contain new and unpublished results in a short form. It should not exceed 2 print pages and may contain one table and one illustration.

**Manuscript submission**

All manuscripts are to be submitted to editor or associate editors, Thai Journal of Pharmacology, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Chulalongkorn Hospital, Rama IV Road, Bangkok 10330, Thailand. All papers will be critically reviewed by invited referees.

Reviewers' comments are usually returned to the authors. The editorial board will decide upon the time of publication and retain the right to modify the style of contribution. However, major changes will be agreed with the authors. Authors will receive 25 reprints free.

#### **Copyright**

The Pharmacological and Therapeutic Society of Thailand holds the copyright on all material appearing in the journal.

## ใบบอกรับวารสารสารเสชวิทยา

วันที่.....

เรียน ผู้จัดการวารสารสารเสชวิทยา

ข้าพเจ้า .....  
ที่อยู่ .....  
โทรศัพท์ .....

e-mail: .....

มีความประสงค์จะรับ วารสารสารเสชวิทยา ปีที่ ..... ฉบับที่ ..... เป็นต้นไป เป็นเวลา ..... ปี  
พร้อมกันนี้ได้แนบเช็คไปรษณีย์หรือธนาณัติในนาม “ผู้จัดการวารสารสารเสชวิทยา”  
สั่งจ่าย ป.ล. จพฯ เป็นจำนวนเงิน ..... บาท มาเป็นค่าสนับสนุนการจัดทำวารสารด้วยแล้ว

ลงชื่อ.....  
( )

หมายเหตุ อัตราค่าบอกรับวารสารสารเสชวิทยา

|                                                   |                                  |
|---------------------------------------------------|----------------------------------|
| 1. สมาชิกสมาคมสารเสชวิทยา                         | ไม่ต้องชำระค่าวารสาร             |
| 2. สมาชิกวารสารสารเสชวิทยา                        | อัตราบอกรับปีละ 200 บาท (3 ฉบับ) |
| 3. นิสิต/นักศึกษา (แสดงสำเนาบัตรประจำตัวนักศึกษา) | อัตราบอกรับปีละ 100 บาท (3 ฉบับ) |



## ทะเบียนประวัติ

นาย

1. ชื่อ นาง ..... ชื่อสกุล .....  
นางสาว  
ชื่อภาษาอังกฤษ (ตัวพิมพ์ใหญ่) .....

2. เกิดวันที่ ..... เดือน ..... พ.ศ. ....

3. ตำแหน่งหน้าที่หรือตำแหน่งทางวิชาการในปัจจุบัน

4. สถานที่ทำงาน

..... โทรศัพท์/แฟกซ์ .....  
e-mail: .....

5. ที่อยู่ปัจจุบัน

..... โทรศัพท์/แฟกซ์ .....

6. ประวัติการศึกษาขั้นอุดมศึกษา (เรียงลำดับจากต่ำสูงสุด)

ปี พ.ศ.

ชื่อสถานศึกษา

วุฒิที่ได้รับ

.....  
.....  
.....  
.....

7. สาขาวิชาหรือแขนงวิชาที่สนใจหรือเชี่ยวชาญเป็นพิเศษ

.....  
.....  
.....  
.....



สมาคมเกสชวิทยาแห่งประเทศไทย  
ใบสมัครเข้าเป็นสมาชิก

เขียนที่ .....  
วันที่ ..... เดือน ..... พ.ศ. .....

นาย ..... ชื่อสกุล .....  
ข้าพเจ้า นาง ..... นางสาว

อาชีพ ..... ขอสมัครเข้าเป็นสมาชิกสมาคมเกสชวิทยาแห่งประเทศไทยและขอรับรอง  
ว่าจะปฏิบัติตามระเบียบข้อบังคับของสมาคมทุกประการ

ข้าพเจ้ายินดีที่จะชำระค่าบำรุงสมาคมโดย

เป็นรายปี ปีละ 200 บาทถ้วน สำหรับสมาชิกรายปี

ครั้งเดียว 1,000 บาทถ้วน สำหรับสมาชิกตลอดชีพ  
มีความประสงค์จะรับ วารสารเกสชวิทยา ปีที่ ..... ฉบับที่ ..... เป็นต้นไป เป็นเวลา .....ปี  
พร้อมกันนี้ได้แนบเช็คไปรษณีย์หรือธนาณัติในนาม “ผู้จัดการวารสารเกสชวิทยา”  
สั่งจ่าย ป.ณ. จุฬาฯ เป็นจำนวนเงิน ..... บาท มาเป็นค่าสนับสนุนการจัดทำวารสารด้วยแล้ว

ลงชื่อ .....

( )

เรียน

รศ.สุพิชา วิทยาลัยปัญญา  
ภาควิชาเกสชวิทยา  
คณะแพทยศาสตร์  
จุฬาลงกรณ์มหาวิทยาลัย  
ปทุมวัน กรุงเทพฯ 10330

# รายนามคณะกรรมการที่ปรึกษาและบริหารสมาคมเภสัชวิทยาแห่งประเทศไทย

วาระประจำปี พ.ศ. 2545-2547

## คณะกรรมการที่ปรึกษา

พล.ต.สุนันท์ ใจนวิกาต  
ศ.ดร.อัมนาวย ถิรรัพน์  
รศ.พ.อ.ดร.บพิตร กลังกัลยา  
รศ.พล.ต.ดร.ทัศนัย สุริยจันทร์  
รศ.พญ.สุมนา ชมพูทวีป  
ดร.อุดม จันทรารักษ์  
รศ.ดร.เมธี สรรพาณิช  
รศ.น.สพ.พีระพล อุยส์สวัสดิ์

## คณะกรรมการบริหาร

นายกสมาคม

รศ.ดร.ศรีจันทร์ พรจิราศิลป์

อุปนายก

รศ.ดร.ธุพิน สังวินทะ

ผู้รับตำแหน่งนายกสมาคม

รศ.ดร.ชัยชาญ แสงดี

เลขธิการ

รศ.สุพิชา วิทยาลีศปัญญา

ฝ่ายวิชาการ

รศ.ดร.สุพัตรา ศรีไชยรัตน์

เหตุยุติ

รศ.ดร.จงกล เที่ยงดาว

ปฎิคม

ผศ.ดร.พยองค์ วัณเกียรติ

บรรณาธิการวารสาร

รศ.ดร.สุพัตรา ศรีไชยรัตน์

นายทะเบียน

รศ.สมใจ นครชัย

กรรมการกลาง

รศ.ดร.ไชแสง ใจนวิกาต  
รศ.ดร.นพ.ประวิทย์ อัครเสรีนนท์  
ผศ.ดร.ลัดดาวลักษณ์ ผิวทองงาม  
ผศ.ประภาวดี พัวไพรโจน  
รศ.ดร.มยุรี ตันติสิริ  
ผศ.ทัญญาวรางคณา ชิดช่วงชัย

New

once daily

# Reductil®

sibutramine



10  
20  
30

## effective weight control

- Enhances satiety, patients eat less
- Up to 5x higher response than diet and exercise\*
- Benefits in diabetes, dyslipidaemia
- Once daily, at any time, fits patient's needs-10 or 15mg

Prescribing information available upon request



ABBOTT LABORATORIES

2/4 Nai Lert Tower 5th and 9th Wireless Road, Lumpini,  
Pathumwan, Bangkok 10330 Tel. 0-2252-1789 Fax. 0-2252-1790

\*K.Fujioka, et al, Weight loss with sibutramine improves glycaemic control and other metabolic parameters in obese patients with type 2 diabetes mellitus. *Diab, obes & meta* 2000; 2: 175-187