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Abstract

Cyclooxygenase (COX) is the key enzyme responsible for the production of
prostanoids. It plays important roles in the inflammatory process and pathogenesis
of several diseases, including malaria. However, there has been no information of
the inhibitory effects of COX inhibitors on inflammatory mediators and standard
antimalarial drugs. Therefore, in this study, both selective and non-selective COX-2
inhibitors (aspirin, ibuprofen, piroxicam, and naproxen), alone or in combination,
were investigated for their antimalarial activities in vitro. The antimalarial activity
was assessed using the SYBR Green | fluorescent-based technique. For mefloquine-
aspirin combination, the test wells consisted of mefloquine and aspirin at the ratios
of 200:0, 140:30000, 100:50000, 60:70000, and 0:100000 nM. The concentration
ratios for artesunate-aspirin were 50:0, 35:30000, 25:50000, 15:70000, and 0:100000
nM. The median (range) concentrations that inhibited parasite growth by 50% (ICso)
of aspirin for K1 and 3D7 clones were 1,889 (1,600-2,792) and 2,417 (912-2,630)
nM, respectively. The corresponding values of mefloquine were 10.1 (8.1-13.9)
and 23.4 (22.9-24.7) nM, respectively. The corresponding values of artesunate
were 2.5 (1.6-3.4) vs. 2.2 (1.2-3.2) nM, respectively. The corresponding values for
mefloquine were 10 (8-14) and 23 (23-25) nM, respectively. The corresponding
values for artesunate were 2.5 (2-3) vs. 2 (1-3) nM, respectively. The ICso values of
ibuprofen, piroxicam and naproxen were higher than 100,000 nM for both clones.
The median (range) sum fractional inhibitory concentrations (FIC) of mefloquine-
aspirin interaction for K1 and 3D7 P. falciparum clones were 0.82 (0.79-1.0) and
0.97 (0.83-1.1), respectively. The corresponding sum FICs of artesunate-aspirin were
0.94 (0.88-0.95) and 0.95 (0.92-0.97), respectively. Results indicate indifferent
antimalarial interaction between these two drugs when used in combination.
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Introduction

Inflammation is involved in pathological processes of several diseases,
including malaria and cancer. Prostaglandins (PGs) are metabolic products of
arachidonic acid (AA) via the cyclooxygenase (COX) pathway. COX-1 and COX-2
are two distinct enzyme isoforms encoded by separate genes.! COX-1 is
constitutively expressed in most tissues and generates PGs for physiologic
homeostasis. COX-2 is inducible by both inflammatory and mitogenic stimuli
resulting in increased PG synthesis in neoplastic and inflamed tissues. PGE, and
PGD, are the two PGs which play an essential role as mediators of fever? and
immunosuppression.® Both mediate inflammation and initiate physiological
responses similar to the symptoms observed during malaria infection. So far, there
has been no direct evidence of the existence of the COX gene in Plasmodium
falciparum. Kilunga et al.* reported a piece of indirect evidence for the involvement
of PGs in the inflammatory process in P. falciparum. The ability of the malarial
parasite to produce PGD>, PGE;, and PGF, was shown following exposure to 1 mM
AA. The production of these PGs in the parasite homogenate was not affected by the
non-steroidal anti-inflammatory drugs aspirin and indomethacin and was partially
heat-resistant. On the other hand, PG biosynthesis by mammalian COX was
completely inhibited by these chemicals including heat.*

The aim of the present study was to investigate antimalarial activities of
selective (naproxen) and non-selective (aspirin, ibuprofen, and piroxicam) COX
inhibitors, including the combination of aspirin with artemisinin-mefloquine
combination in the in vitro model.

Materials and Methods

Chemicals and reagents

Aspirin, piroxicam, ibuprofen, naproxen, mefloquine and artesunate were
purchased from Sigma-Aldrich Inc. (St. Louis, MO, USA). The culture medium and
chemical reagents were purchased from different sources; RPMI and gentamicin
from Gibco BRL Life Technologies (Grand Island, NY, USA), commercial-grade
ethanol from Labscan Co. Ltd., and SYBR Green | from Sigma-Aldrich Inc. (St.
Louis, MO, USA).

In vitro antimalarial activities of aspirin, ibuprofen, piroxicam and naproxen

The 3D7 (chloroquine-sensitive) and K1 (chloroquine-resistant) P. falciparum
clones were used in the study. The parasites were cultured according to the
methods of Trager and Jensen with modifications.> The antimalarial activities of
piroxicam, ibuprofen and naproxen were investigated in comparison with standard
antimalarial drugs, mefloquine and artesunate, using SYBR Green | assay.®’ The
highly synchronous ring-stage parasite was used in each assay. An aliquot of parasite
inoculum (50 pL) with 2% parasitemia and 1% hematocrit was added into each
well of the microtiter plate. The 96-well plates were added with tested drugs at a
total of eight final concentrations as follows: 781, 1,562, 3,125, 6,250, 12,500,
25,000, 50,000, and 100,000 nM for aspirin, piroxicam, ibuprofen and naproxen;
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1.56, 3.13, 6.25, 12.5, 25, 50, 100, and 200 nM for mefloquine; and 0.39, 0.78,
1.56, 3.13, 6.25, 12.5, 25, and 50 nM for artesunate.

The experiments were repeated three times and in triplicates for each
experiment. The antimalarial activity of each compound represented by ICso value
(drug concentration that inhibits the parasite growth by 50%) was determined from
a log dose-response curve plotted using the CalcuSyn™ version 1.1 (BioSoft, USA).

In vitro antimalarial activities of aspirin in combination with mefloquine or
artesunate

The antimalarial activities of aspirin when used in combination with
mefloquine or artesunate were investigated in vitro using the method described by
Fivelman et al.® For mefloquine-aspirin combination, the test wells consisted of
mefloquine and aspirin at the ratios of 200:0, 140:30000, 100:50000, 60:70000, and
0:100000 nM. The concentration ratios for artesunate-aspirin were 50:0, 35:30000,
25:50000, 15:70000, and 0:100000 nM. The control wells consisted of drug-free
parasitized erythrocytes. The experiments were repeated three times (in triplicates
for each experiment), and the ICso values were analyzed as described above. Two
ICso values of the partner drugs for each of the five combination curves were
calculated separately using the known concentration ratios of mefloquine,
artesunate and aspirin. The fractional inhibitory concentration (FIC) of mefloquine,
artesunate and aspirin were calculated for each point, and the isobolograms were
plotted. To obtain numeric values for the type of interaction, results were expressed
as sum FIC at the given IC (inhibitory concentration) using the formula: (ICx of
agent A in the mixture/ICx of agent A alone)+(ICx of agent B in the mixture/ICx of
agent B alone).® Sum FIC value indicates the type of antimalarial interaction as
follows: ‘synergism’ if sum FIC<I; ‘indifference’ if sum FIC=1; and ‘antagonism’
if sum FIC>1.

Results

In vitro antimalarial activities of aspirin, naproxen, ibuprofen, piroxicam

The antimalarial activities of aspirin, naproxen, ibuprofen, and piroxicam,
including the antimalarial drugs mefloquine and artesunate against K1 chloroquine-
resistant and 3D7 chloroquine-sensitive P. falciparum clones are presented in
Table 1. The ICso values of ibuprofen, naproxen and piroxicam for both clones
were higher than 100,000 nM. The median (range) ICsos of aspirin for K1 and 3D7
clones were 1,889 (1,600-2,792) and 2,417 (912-2,630) nM, respectively. The
corresponding values of mefloquine were 10.1 (8.1-13.9) and 23.4 (22.9-24.7) nM,
respectively. The corresponding values of artesunate were 2.5 (1.6-3.4) vs. 2.2 (1.2-
3.2) nM, respectively.

Antimalarial activities of aspirin in combination with mefloquine or artesunate
The antimalarial activities of mefloquine-aspirin and artesunate-aspirin
combinations were investigated in K1 and 3D7 P. falciparum clones. The median
(range) sum FICs for mefloquine-aspirin interaction for both P. falciparum clones
were 0.82 (0.79-1.0) and 0.97 (0.83-1.1), respectively. The sum FICs for artesunate-
aspirin interaction for both clones were 0.94 (0.88-0.95) and 0.95 (0.92-0.97),
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respectively. The sum FIC values close to 1.0 observed for both clones indicated
indifferent interactions for both combinations. The isobolograms representing the
interactions between the two combinations in both parasite clones are shown in
Figure 1 and 2.

Table 1. The median (range) ICso values of aspirin, ibuprofen, naproxen, and
piroxicam, in comparison with mefloguine and artesunate against K1 and
3D7 P. falciparum clones.

The median (range) 1Cso values (nM)

Drugs K1l 3D7
Aspirin 1,889 (1,600-2,792) 2,417 (912-2,630)
Ibuprofen > 100,000 > 100,000
Naproxen > 100,000 > 100,000
Piroxicam > 100,000 > 100,000
Mefloquine 10.1 (8.1-13.9) 23.4 (22.9-24.7)
Artesunate 2.5(1.6-3.4) 2.2(1.2-3.2)

Results were obtained from three independent experiments, in triplicates each.
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Figure 1. Isobolograms representing the antimalarial interactions between
mefloquine and aspirin.
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Figure 2. Isobolograms representing the antimalarial interactions between
artesunate and aspirin.
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Discussion

P. falciparum has been reported to produce PGD», PGE> and PGF2u
through a distinguishable pathway from that in human.* A large amount of hydroxy
derivatives of a diverse group of polyenoic fatty acids were separated from parasite
extracts.'® However, there has been no direct support for the existence of either the
gene(s) that encodes COX or lipooxygenase enzyme. Our results confirmed previous
reports that conventional COX inhibitors, both selective and non-selective COX-2
inhibitors, have no intrinsic antimalarial activities.* The indifferent interaction was
observed when the non-selective COX-inhibitor aspirin was used in combination
with the standard antimalarial drug mefloquine or artesunate. This suggested that
despite the lack of intrinsic antimalarial activities, COX-inhibitors at least did not
interfere with antimalarial activities of antimalarial drugs, implying distinct PGs
synthesis pathway from the mammalian host.

The PGs are important mediators of several host physiological processes
including macrophage activity, vascular permeability, fever, erythropoiesis and
proinflammatory responses to infection. Association between host PGE, and
severity of malaria pathogenesis especially cerebral malaria and severe anemia has
been reported in previous studies.!'"*> PGF,. has been demonstrated to be the major
PG produced by the malarial parasite, but its function remains unclear. Inhibition
of host monocyte function by PGs and hydroxyl fatty acids produced by malarial
parasite has previously been reported.!® This could modulate the host defense
mechanism by lowering the production of tumor necrosis factor-a. (TNF-c).1%7
Investigation of the link between the production of PGs by the malarial parasite and
the clinical manifestation of malaria should further provide supportive information
on the potential of COX-mediated PG synthetic pathway as a new target for anti-
malarial drug development.
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