on the property of the state of the state of the

SHORT COMMUNICATION

DECREASE IN PITUITARY GROWTH HORMONE LEVEL IN RAT

AFTER PROLONG ADMINISTRATION OF BOVINE THYROTROPIN

Sasitorn Sasaluxnanon*, Reon Somana*,
Vijittra Leardkamolkarn* and Wanida Sripairojthikoon**

*Department of Anatomy, Faculty of Science and **Department of Anatomy,
Faculty of Dentistry, Mahidol University, Bangkok 10400.

SUMMARY

Female Fisher rats aged 35 days were injected intraperitoneally with 50 μg and 100 μg per day of bovine thyrotropin(TSH) for 44 days. GH content and concentration in the TSH treated groups were significantly lower than that of the control group. Wet weight of anterior pituitary and thyroid gland were not altered by TSH treatment, while the doses of 100 μg TSH significantly lowered adrenal, ovarian and uterine weights. The formation of antibodies to bovine TSH after chronic administration, which can cross react to rat endogenous TSH, may lead to thyroid hypofunction which in turn lower pituitary GH synthesis. The bovine TSH antiserum may also cross react with rat FSH and LH and lead to adrenal and ovarian hypofunction.

The biological role of TSH in stimulating thyroid function has been well documented. Acute effects of TSH include the stimulation of adenylate cyclase and cyclic-AMP formation (1,2), increasing the height of thyroid follicular cells (3,4) and the stimulation of thyroid hormone secretion (5,6). Thyrotropin may also cause subsequent enzyme induction leading to T_3 and T_4 synthesis (7). However, chronic administration of TSH has been reported to cause a suppression of metabolic rate and T_3 and T_4 levels (8,9) The serum of animals that had been treated chronically with TSH, when given to other animals for a prolong period, caused

a drop in the basal metabolic rate. Werner et al (10) suggested that the antibodies to bovine TSH in the rabbit can neutralize the thyrotropic effect of the hormone. Passcasio and Selenkow (11) reported that antisera to bovine TSH was capable in neutralizing the biologic effects of endogenous guinea pig and rat TSH. Hays et al (12) also showed that highly purified heterologous TSH was an antegenic substance in man. Thus, it is interesting to examine the chronic effects of bovine TSH on rat pituitary GH content as presented in this study.

MATERIALS AND METHOUS

Female Fisher rats aged 35 days were used in this study. They were kept in room temperature of 25-30° c with 12 hours of daily light. Zuelling diet (Gold Coin Mills) and tap water were available ad libitum. The animals were injected intraperatoneally and daily with 50 µg or 100 µg of bovine TSH for 44 days. The control animals were injected with equivalent volume of sterile normal saline solution. They were sacrified one day after the last injection and the pituitary GH was assayed by the quantitative compliment fixation immunoassay (see 13 for detail description). Body length (from nose to tip of tail) and wet weight of the ovary, uterus, thyroid and adrenal glands were also measured. A student t-test was used to determine for the difference between several mean values.

RESULTS

The final body weight and length and pituitary wet weight of animals treated with bovine TSH were not different from control animals. Significant decreases in pituitary GH content and concentration were produced by prolong administration of either 50 μg or 100 μg of bovine TSH (Table 1). The absolute and relative weights of thyroid gland, absolute adrenal weight, and ovarian weight of rats treated with 50 μg of TSH

Table 1 Effects of prolong treatments with bovine thyrotropin (TSH) in female rats.

	Control	TSH injected 50 µg/day	
Final Body Weight (g)	150.0± 1.9	154.0± 3.6	161.0± 4.0
Final Body Length (cm)	35.4± 0.43	34.8± 3.16	34.3± 0.31
Anterior Pituitary Wet Weight	ing and the second second		
Absolute (mg)	6.75± 0.41	6.78± 0.38	6.30± 0.33
Relative (mg/100 g BW)	4.41± 0.24	4.26± 0.23	3.90± 0.16
Anterior Pituitary GH			
Content (µg/g1and)	285,0± 17,6	151.0± 9.9	
Level (µg/mg tissue)	39.7± 3.94	23.5± 1.64**	27.4± 2.56**
Thyroid Gland Weight	en en journaliste.	er er en er	
Absolute (mg)	9.94± 0.76	9.98± 0.60	7.16± 0.29
Relative (mg/100 g BW)	6.64± 0.56	6.63± 0.37	4.45± 0.17
Adrenal Gland Weight	e en la region de des	$\varphi(\chi)(X) = \varphi(\chi(x))$	the water of
Absolute (mg)	46.24± 2,47	42.18± 2.46	40.04± 2.31
Relative (mg/100 g BW)	30.68± 1.38	28.45± 1.56	24.68± 0.96
Ovary Weight	a facilities to the property of	Section 1	process and second
Absolute (mg)	87.58± 5.40°	81.52± 5.10	70.97± 3.16 [*]
Relative (mg/100 g BW)	58.48± 3.97	52.59± 2.45	43.60± 2.78
Uterus Weight	ight i		A.
Absolute (mg)	331.1± 16.6	250.0± 18:.3	224.6± 27.2**
Relative (mg/100 g BW)	218.7± 11.7	173.4± 10.1 **	137.9± 15.1**

^{*} and * represent significant differences from control group with p < 0.05 and p < 0.01 respectively. All values are mean \pm S.E. of 10 rats in each experimental group.

were not significantly changed; but those of the 100 µg TSH treated group were significantly lower than the corresponding values in the saline-injected controls. The uterine weight in both TSH treated groups were significantly lower than the corresponding control values.

DISCUSSION

It is shown in the present experiments that pituitary GH content and concentration in rats decreased significantly following chronic administrations of bovine TSH. The reduction in pituitary GH in this study may be due to the formation of antibodies to bovine TSH and neutralization of the thyrotropic effect of endogenous rat TSH leading to thyroid hypofunction. Cross reactivity of bovine TSH antiserum against endogenous rat TSH has been suggested by investigators (see 8, 11, 12). The decreases in pituitary GH and growth rate due to low serum thyroid hormone have been well documented (see 13-18).

The formation of antibodies to bovine TSH may also responsible for the suppression of ovarian and uterine weight in rats found in this study, as cross reactivities between TSH antiserum and the endogenous LH or FSH may occur since LH, FSH and TSH molecules posses similar α - chain. Koneff (19) and Wong (18) had demonstrated decreases in pituitary LH and FSH following the decrease in serum thyroid hormone level. Additionally, the decrease in serum thyroid hormone level may lead to lowering of cell metabolism in general, including the gonadal cells and the FSH and LH cells. Further investigations are necessary to elaborate the mechanisms responsible for the reduction of pituitary GH and ovarian and uterine weight observed in the present study.

ACKNOWLEDGEMENT

This work was supported in part by the National Research Council of Thailand.

REFERENCES

- 1. Burke, G. On the role of adenyl cyclase activation and endocytosis in thyroid slice metabolism. Endocrinology. 86:353-359, 1970.
- Gafni, M. and Gross, J. The effect of elevated doses of thyrotropin on mouse thyroid. Endocrinology. 97:1486-1493, 1975.
- 3. Slebodzinski, A, Mach, Z. and Malinowska, W. The development of TSH hormone releasing factor activity in the meanatal rabbit.

 J. Endocrinol. 49:559-569, 1971.
- Rapopart, B. and Jones, A.L. Acute effect of thyroid stimulating hormone on cultured thyroid cell monolayer. Endocrinology. 102:175-181, 1978.
- 5. Dumont, J.E. and Rocmans, P.A. In vivo effects of thyrotropin on the metabolism of the thyroid gland. J. Physiol. 174:26-44, 1964.
- 6. Pastan, K, Roth, J. and Macchia, V. Binding of hormone to tissue: the first step in polypeptide hormone action. Proc. Nat. Acad. Sci. 56:1802-1809, 1966.
- 7. Sherwin, J.R. and Tong, W. Stimulatory actions of thyrotropin and dibutyryl cyclic AMP on transcription and translation in the regulation of thyroidal protein synthesis. Biochem. Biophy. Acta. 425:502-569, 1971.
- 8. Somana, R. Decreased thyroid function after the chronic administration of thyrotropin. Master thesis, University of California,
 Berkeley, 1966.
- 9. Collip, J.P. and Anderson, E.M. Studies on the anterior pituitary.

 JAMA 104:965-969, 1935.
- 10. Werner, S.C., Seegal, B.C. and Osserman, E.F. Immunologic and Biologic characterization of antisera to beef thyrotropin preparation. J. Clin. Invest. 40:92-104, 1961.
- 11. Pascasio, F.M. and Selenkow, H.A. Immunologic and biologic properties of thyrotropin antiserums. Endocrinology. 71:254-266, 1962.

- 12. Hays, M.T., Solomon, D.H. pierce, J.G. and Carsten, M.E. The effect of purified bovine thyroid stimulating hormone in man: II.

 Loss of effectiveness with prolong administration. Endocrinology. 21:1475-1481, 1961.
- 13. Somana, R. Evans, E.S. Ching, M. et al. Inconsistency of the tibia test for estimating of growth hormone in crude pituitary extracts.

 Acta. Endocrinol. 81:658-696, 1976.
- Contopoulos, A.N., Simpson, M.E. and Koneff, A.A. Pituitary function in the thyroidectomized rat. Endocrinology. 65:642-653, 1958.
- 15. Solomon, J. and Greep, R.O. The effect of alterations in thyroid function on the pituitary growth hormone concentration and acidophil cytology. Endocrinology. 65:158-164, 1959.
- 16. Ieiri, T. Effects of thyroidectomy and triiodothyronine T₃) on the synthesis and release of growth hormone (GH) and prolactin. Jap. J. Physiol. 21:551-562, 1971.
- 17. Peake, G.T., Birge, C.A. and Daughaday, W.H. Alterations of radioimmunoassayable growth hormone and prolactin during hypothyroidism Endocrinology. 92:487-493, 1973.
- 18. Wong, C.C., Dohler, K.D. and Von Zur Muhlen, A. Effects of triiodothyronine, thyroxine and isopropyl di-iodothyronine, thyroxine and isopropyl di-iodothyronine on thyroid stimulating hormone in serum and pituitary gland and on pituitary concentrations of prolactin, growth hormone, leutenizing hormone and follicle stimulating hormone in hypothyroid rats. Endocrinology. 87:255-263, 1980.
- 19. Contopoulos, A.N. and Koneff, A.A. Pituitary hormone production and release in the thyroidectomized rat after thyroxine administration. Acta. Endocrinol. 42:275-292, 1963.

Proceedings Fills and Participal, H.A. Hydridae and in the List and