

THE TIME REQUIRED FOR ABSORPTION AND URINARY EXCRETION OF ACETYLSALICYLIC ACID AND METHYL SALICYLATE

Prasert Songkittiguna and Wanee Thaweesap

Department of Pharmacology, Faculty of Dentistry Chulalongkorn University,
Bangkok, Thailand

The two salicylates (acetylsalicylic acid and methyl salicylate) are well absorbed. The time required to be eliminated into urine after oral administration and dermal application of these two drugs was compared in female and male. The renal elimination time after skin application of methyl salicylate was shown to be longer than that after oral administration of acetylsalicylic acid ($P<0.025$) in an empty stomach (without food). When administer with meal, it took longer time to eliminate the oral salicylate into urine than that of the empty stomach ($P<0.001$). No difference in absorption and excretion time of the two salicylates was observed between female and male ($P>0.05$).

It is suggested, therefore, that the gastrointestinal absorbable form of salicylates (acetylsalicylic acid) enters and leaves the body faster than topically applied as methyl salicylate. No sex difference was observed on the three phenomena. Presence of food in the stomach delays the body entry and leaving time of oral acetylsalicylic acid in both sexes.

INTRODUCTION

Inspite of the introduction of many new analgesic drugs, acetylsalicylic acid (ASA) is still one of the widely prescribed analgesic-antipyretic and anti-inflammatory agents. It is also the standard drug employed for the comparison and evaluation of others.⁽¹⁾ Regarding, the cardiovascular disorders in elderly patients

such as thromboembolic diseases, this drug is used for both preventive and curative purposes. Acetylsalicylic acid and other derivative such as methyl salicylate are known to be extensively metabolized in the liver and excreted by kidneys. Salicylic acid is an active metabolite of both drugs in blood. The detection of salicylic acid in urine is simple. The extent and time-

course of absorption and excretion of per oral ASA or topical application of methyl salicylate in Thais have not yet been reported. Therefore, an experiment on the oral administration of

acetylsalicylic acid and skin application of methylsalicylate was performed with a view to estimate and compare the length of times of the drugs in human body.

Table 1 The time required to detect salicylic acid in the urine after orally-administered acetylsalicylic acid in empty stomach ; stomach with meal and topical application of methyl salicylate.

Salicy- lates	Routes of Administration	Length of time required for the presence of salicylic acid in urine (minute)						
		Female	n	Male	n	Both sex	N	
Acetyl- salicylic Acid	Per oral with empty stomach	33.00	\pm 2.99	5	31.36	\pm 1.36	11	32.65 \pm 1.43 16 (A)
	Per oral after a standard meal	47.50	\pm 2.49	6	45.00	\pm 2.24	11	45.88 \pm 1.56 17 (B)
Methyl- salicylate	Per cutaneous	36.25	\pm 2.33	12	36.75	\pm 2.25	20	38.44 \pm 1.64 32 (C)

The results were expressed as mean \pm standard error of the mean

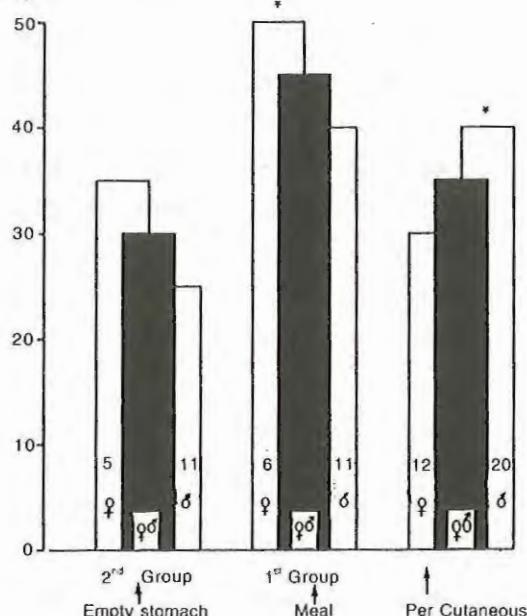
Note:

1. n=number of subjects either male or female
2. N=number of both sexes (male and female)
3. (A)is significant different from (B)(P<0.001)
4. (A)is significant different from (C)(P<0.025)
5. (B)is significant different from (C)(P<0.025)

Table 2 The data of age and body weight of male and female volunteers.

Subject	Male		Female		Female (cont.)		
	Age(Yr)	Weight(Kg)	Age(Yr)	Weight(Kg)	Subject	Age(Yr)	Weight(Kg)
1	22	44.0	23	41.5	32	20	55.5
2	22	62.0	19	55.0	33	21	47.0
3	21	65.5	22	40.5	34	22	46.5
4	21	62.0	22	46.5	35	22	41.7
5	21	61.0	22	49.0	36	20	64.5
6	22	52.5	21	46.0	37	21	39.5
7	21	58.0	22	50.0	38	22	53.5
8	22	63.0	22	48.0	39	23	44.0
9	21	47.5	21	44.5	40	21	42.0
10	21	54.5	22	38.5	41	21	43.5
11	22	64.5	22	50.0	42	21	44.0
12	21	51.2	22	46.5	43	20	41.5
13	21	65.5	22	52.0	44	22	46.0
14	21	53.0	22	44.5	45	22	45.0
15	22	71.5	21	41.5	46	21	49.5
16	22	59.0	22	43.0	47	21	51.0
17	22	57.0	22	48.5	48	21	-
18	26	63.0	21	42.5	49	22	49.0
19	21	59.5	21	51.5	50	21	60.0
20	20	56.5	20	55.5	51	21	41.5
21	21	58.5	22	51.5	52	22	46.0
22	20	54.5	21	45.0	53	21	46.0
23	22	61.0	21	44.5	54	22	47.5
24	21	61.0	21	62.0	55	22	41.5
25	21	73.0	22	47.5	56	21	52.0
26	21	68.5	21	44.5	57	21	45.0
27	21	59.0	22	37.5	58	21	43.5
28	22	61.0	23	48.0	59	22	42.5
29	22	64.0	21	56.0	60	20	41.5
30	22	59.0	21	46.5	61	21	43.0
31	19	66.0	22	41.5	62	21	44.0

Table 3 The mean age and body weight of the volunteers with standard error of the mean.


Mean \pm Standard error of the mean		
Sex	Age(year)	Weight (kilogram)
Male	21.42 \pm 0.02 (n=31)	59.90 \pm 1.50 (n=31)
Female	21.39 \pm 0.10 (n=62)	46.85 \pm 0.72 * (n=61)
Both male and female	21.39 \pm 0.094 (n=93)	51.24 \pm 0.89 (n=92)

Note: 1. An asterisk(*) means statistically significant difference from the mean weight of male subject ($P<0.001$)
2. n in the brackets represents number of volunteers

Time for the presence of

salicylic acid in urine

(min)

Note: 1. The asterisks(*) show the statistical difference from each other ($P<0.05$ upto 0.005).
2. The numbers present in the bar graph represents the number of volunteers.
3. The solid columns are the averages of males and females.
4. ♀♂ represents male and female average; ♀=female average; ♂=male average.

Fig. 1 The lengths of time commencing from either the ingestion of acetylsalicylic acid (empty or stomach with meal) and per cutaneous application of methyl salicylate until salicylic acid appearance in urine.

MATERIALS AND METHODS

Human volunteers of either sex, weighing 51.24 ± 0.89 Kg, were fasted 24 hr prior to the commencement of experiment. They never underwent any recent medical treatment within a week. Each volunteer emptied their urinary bladder before drug administration urine samples were tested for the presence of salicylates. If the test was positive, such volunteer will be omitted. The volunteers were randomly divided into groups as follows:

A. Group

After emptying of the bladder with a negative salicylate test, subjects' forearms of either side were rubbed upon with 2 ml of oil of wintergreen B.P. for 3 min until most of the drug was absorbed. Then, timing was started, and the volunteers were allowed to drink water ad libitum. At 15-min intervals, a urine sample was collected and tested for the presence of urinary salicylates by a chemical identification test.⁽²⁾ The time in minutes from the completeness of skin application to last urine sample with the detectable urinary salicylates was recorded.

B. Group

After a test for the absence of urinary salicylates was performed as in A., the second group of the volunteers was randomly divided into two subgroups of 17 and 16; the first group of volunteers ate about 300 gm of fried rice with pork, whereas the second group was starved; but all of them could drink water freely. The first group served as the stomach with meal; the second was the empty stomach group.

Acetylsalicylic acid (300 mg) in gelatin capsule was taken orally with 250 ml of drinking water by all of the volunteers; then the urine sample was collected at 15-min interval and tested for salicylates as in A.

RESULTS

The average age of female and of male were 21.39 ± 0.10 years (n=62) and 21.42 ± 0.20 years (n=31), respectively. The average age of both sex was 21.39 ± 0.094 years (n=93). The body weight of female and of male was 46.85 ± 0.72 kilograms (n=61) and 59.90 ± 1.50 kilograms (n=31) respectively. The average weight of both sexes was 51.24 ± 0.89 kilograms (n=92) (table 2 and table 3).

The length of time required to detect urinary salicylic acid after oral and dermal administration was shown in the table 1. The average time for the presence of urinary salicylic acid after oral administration in fasting subjects female and male were 33.00 ± 2.99 min (n=5) and 31.36 ± 1.36 min (n=11) respectively. After meal, the time required for excretion of salicylate was 47.50 ± 2.49 min (n=6) for female and 45.00 ± 2.24 min (n=11) for male. The average time of both sexes was 45.88 ± 1.56 min (n=17). The dermal application of methylsalicylate, the excretion time was 36.25 ± 2.33 (n=12) for female and 39.75 ± 2.25 min (n=20) for male; whereas the average time of both sexes was 38.44 ± 1.64 min (n=32).

DISCUSSION

It has been nearly a century since acetylsalicylic acid has been replaced sodium salicylate

for rheumatic disease and used as an antipyretic. The mechanisms of action as well as its use were extensively reported.^(3,4,5,.....11) The side effects and toxicities of acetylsalicylic acid were also revealed.^(12,13,.....16) The gastro-intestinal absorption and urinary excretion of both acetylsalicylic acid and methyl salicylate^(17,18,19,20) were also studied in man. It is known that food can influence the gastro-intestinal absorption of a number of drugs.⁽²¹⁾ However, there has been no report on the effect of Thai food on the absorption and the acetylsalicylic acid and methyl salicylate.

In the present study, no sex difference in the length of time taken from either ingestion (acetylsalicylic acid) or dermal application (methyl salicylate) until its appearance in urine was found in all of the experimental conditions (empty and food stomach) (Table 1, Fig.1). Food delayed gastrointestinal absorption of acetylsalicylic acid. Thus food either by itself might directly affect the rate and extent of absorption and excretion or alter pH in stomach as well as in urine as seen after administration of antacid.⁽²²⁾ Acidic drugs such as salicylic acid (an active form of the salicylates in blood) are less ionized in acidic urine but more ionized in alkaline urine.⁽²³⁾ At present, the dermal dosage form of drug is of great interest; it is not only convenient for use but also is without first-pass drug metabolism. In the contrary, the environmental toxic chemicals and the counter irritants containing methyl salicylate may be absorbed through skin and cause kidney failure which should be taken into a consideration. The

slowness of skin absorption in comparing with gastrointestinal absorption might be due to the absorbing surface area upon which the drug was applied (the forearm) is very small comparing with that of the whole gastrointestinal absorbing area.

REFERENCES

1. Insel PA. Analgesic-antipyretics and antiinflammatory agents; drugs employed in the treatment of rheumatoid arthritis and gout. In: Goodman and Gilman, The Pharmacological Basis of Therapeutics 8th ed. New York: Macmillan Publishing, 1991: 638-681.
2. Anonymous. General Identification Tests; Appendix 5 Chemical Test. In : Thai Pharmacopoeia. 1st ed. Department of Medical Sciences, Ministry of Public Health, Bangkok, Thailand, 1987. 400-403.
3. Krantz JC, Jr. Felix Hoffman and aspirin. In: Historical Medical Classics Involving New Drugs. Waverly Press, 1974. 37-41.
4. Tainter, HL, Ferris AJ. Aspirin in modern therapy. In: A review by Bayer Co., Division of Sterling Drug Inc., New York 1969.
5. Ferreira SH, Vane, JR. New aspects of the mode of action of nonsteroid antiinflammatory drugs. Annual Review of Pharmacology, 1974 ; 14:57-73.
6. Vane JR. The mode of action of aspirin and similar compounds. Hospital Formulary, 1976;10: 618-629.

7. Skelbred P, Album, B, and Lokken P. Acetylsalicylic acid vs. paracetamol : effects on post-operative course. *European Journal of Clinical Pharmacology*. 1977 ; 12: 257-264.
8. Bloomfield SS, Barden TP, and Mitchell J.: Naproxen, Aspirin, and codeine in postpartum uterine pain. *Clinical Pharmacology and Therapeutics*. 1977 ; 21: 414-421.
9. Cooper SA, Needle, SE, and Kruger GO. Comparative analgesic potency of aspirin and ibuprofen. *Journal of Oral Surgery* 1977 ; 35 : 898-903.
10. Cooper SA, Breen JE, and Giuliani RL. Replicate studies comparing the relative efficacies of aspirin and indoprofen in oral surgery outpatients. *Journal of Clinical Pharmacology*. 1979 ; 19 : 151-159.
11. Halpin TJ, Holtzauer FT, Campbel RJ, Hall LT, Correa-Villana A., Lanese, R., Rice, J., and Hurwitz, E.S.: Reye's syndrome and medication use. *Journal of the American Medical Association*. 1982;248: 687-691.
12. Tenney SM, and Miller RM. The respiratory and circulatory action of salicylates. *American Journal of Medicine*. 1955 ; 19 : 498-508.
13. Winters RW, White JS, Hughes MC, Ordway, NK. Disturbances of acid-base equilibrium in salicylate intoxication. *Pediatrics*, 1959;23: 260-285,
14. Miller FF. Aspirin-induced bronchial asthma. *Journal of the Oklahoma State Medical Association*. 1967 ; 60: 122-124.
15. Szezeklik A, Gryglewski RJ. Prostaglandins and aspirin-sensitive asthma. *American Review of Respiratory Disease*. 1978 ; 118: 799-800.
16. Fowler PD. Aspirin, paracetamol and nonsteroidal antiinflammatory drugs. A comparative review of side effects. *Medical Toxicology Adverse Drug Exp*. 1987 ; 2: 338-366.
17. Levy G, and Leonards JR. Absorption, metabolism, and excretion of salicylates, In: *The Salicylates*, Edited by M.J.H. Smith and P.K. Smith, Interscience Publisher, 1966.
18. Lange WE, and Bell SA. Fluorometric determination of acetylsalicylic acid in blood. *Journal of Pharmaceutical Sciences*. 1966 ; 55 : 386-389.
19. Levy G, and Hollister LE. Dissolution rate limited absorption in man: factors influencing drug absorption from prolonged-release dosage form. *Journal of Pharmaceutical Sciences*. 1965 ; 54,: 1121-1125.
20. Leonards JR. The influence of solubility on the rate of gastrointestinal absorption of aspirin. *Clinical Pharmacology and Therapeutics*. 1963 ; 4: 476-479.
21. Hussar DA. Drug Interactions : the effect of food. In : *Pharmaceutical Sciences*. Edited by the Philadelphia College of Pharmacy

and Science. Mack Publishing Company, Pennsylvania, 1990 ; 1842-1858.

22. Hussar DA. Drug Interactions : alteration of urinary pH. In : Pharmaceutical Sciences. Edited by the Philadelphia College of Pharmacy. Mack Publishing Company, Pennsylvania, 1990 ; 1854.

23. Bowman WC. Rand MJ. Absorption, distribution, excretion and metabolism of drugs : Biopharmaceutics and Pharmacokinetics. 2nd ed. Blackwell Scientific Publications, Melbourne. 1980 ; 40. 1-40.45.