

P21: STRUCTURE-ACTIVITY RELATIONSHIPS OF *TRANS*-CINNAMIC ACID DERIVATIVES ON α -GLUCOSIDASE INHIBITION

Sirichai Adisakwattana^{a*}, Amorn Petsom^b, Sophon Roengsumran^b,
Sirintorn Yibchok-anun^a

^aDepartment of Pharmacology, Faculty of Veterinary Science, ^bResearch Centre for Bioorganic Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.

ABSTRACT

Trans-Cinnamic acid and its derivatives were investigated for the α -glucosidase inhibitory activity. 4-Methoxy-*trans*-cinnamic acid and 4-methoxy-*trans*-cinnamic acid ethyl ester exerted the highest potent inhibitory activity among those of *trans*-cinnamic acid derivatives ($IC_{50} = 0.04 \pm 0.01$ mM, 0.05 ± 0.03 , respectively). The presence of hydroxy or methoxy group at 4-position on *trans*-cinnamic acid moiety is necessary to enhance α -glucosidase inhibitory activity. However, compounds having larger alkoxy substituent were found to have little effect on α -glucosidase inhibition ($IC_{50} > 5$ mM). The mode of inhibition of 4-methoxy-*trans*-cinnamic acid on α -glucosidase activity was non-competitive with K_i value of 0.06 ± 0.01 mM. In contrast, 4-methoxy-*trans*-cinnamic acid ethyl ester was a competitive inhibitor with K_i value of 0.02 ± 0.01 mM. Furthermore, 4-methoxy-*trans*-cinnamic acid also inhibit sucrase and maltase, α -glucosidase enzymes derived from rat intestine, with IC_{50} of 10.9 ± 0.75 mM and 8.75 ± 0.80 mM, respectively. These results indicated that *trans*-cinnamic acid derivatives should be further evaluated as a new group of potent α -glucosidase inhibitors for the treatment of various diseases, including diabetes, anti-viral infection, and AIDS.

Key words: cinnamic acid, α -glucosidase inhibition, structure-activity relationships