

The anti-apoptosis effect of curcumin I on bax/bcl-2 ratio against 6-OHDA induced SH-SY5Y toxicity

Yamaratee Jaisin^{1*}, Benjawan Meesarapee¹, Anusorn Thampithak¹, Piyanee Ratanachamnong¹, Laddawan Phivthong-ngam³, Apichart Suksamrarn⁴, Sukumal Chongthammakun², Noppawan Phumala-Morales¹, Piyarat Govitrapong^{1,5}, Sanvarinda Y^{1,5}

¹Departmaent of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand.

²Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand.

³Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand.

⁴Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand.

⁵Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, Thailand.

* Presenting Author e-mail: yamarateej@hotmail.com

Abstract

Curcumin is a naturally occurring polyphenolic compound. It has been reported that it exerts anti-oxidative and anti-apoptotic activities. 6-Hydroxydopamine (6-OHDA) is used as a neurotoxin to generate a model of Parkinson's disease. In the present study, we investigate whether curcumin I (diferuloylmethane) could protect SH-SY5Y, dopaminergic cells from 6-OHDA-induced neurotoxicity. The results showed that pretreatment with curcumin I significantly prevented 6-OHDA induced cell viability reduction. Further experiments indicated that curcumin I could protect 6-OHDA-induced apoptosis signaling cascades activation. The results showed that pretreatment with curcumin I could prevent 6-OHDA-induced increasing of Bax/Bcl-2 ratio. This study suggested that curcumin I exerts its protective effects against 6-OHDA induced neurotoxicity. Therefore, curcumin I may be used as a potential compound for preventing oxidative stress-induced neurodegeneration.

Keywords: 6-OHDA, Curcumin I, Bax, Bcl-2, Phospho-P38.

Introduction

The generation of reactive oxygen species (ROS) has been well known to play a pivotal role in the pathogenesis of neurodegenerative diseases including Parkinson's disease (PD). In particular, 6-OHDA, a hydroxylated analogue of dopamine, is known to produce ROS [3] and widely used to mimic a model of PD both *in vivo* and *in vitro* studies[1]. Curcumin has been well known of its anti-oxidative, anti-inflammatory and anti-apoptotic properties. It has been reported that curcumin could prevent MPP⁺- induced neurotoxicity in PC-12 cells via its anti-oxidative activity [2]. Also, another study reported that pretreatment with curcumin could protect 6-OHDA-induced cytotoxicity by anti-oxidative modulation in MES23.5 cells[4]. However, little is known about the cytoprotective effects of pure compound isolated from *Curcuma longa* on preventing 6-OHDA-induced dopaminergic cell death. Therefore, this study was taken to investigate whether a pure compound isolated from *Curcuma longa* which is curcumin I has a neuroprotective effect for preventing 6-OHDA-induced neurotoxicity in SH-SY5Y cells.

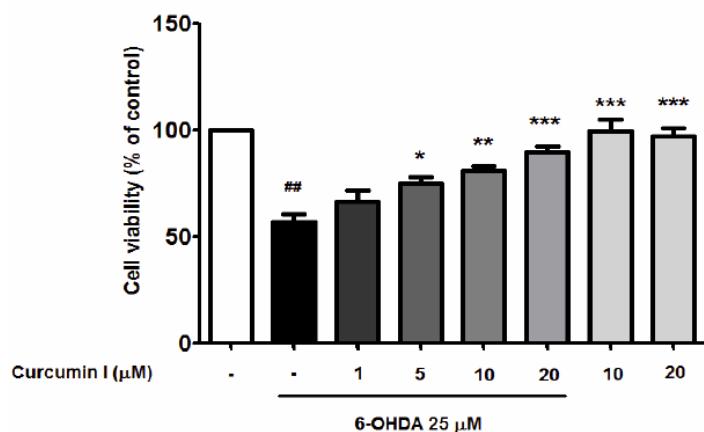
Methods

Cell cultures and cell viability assay

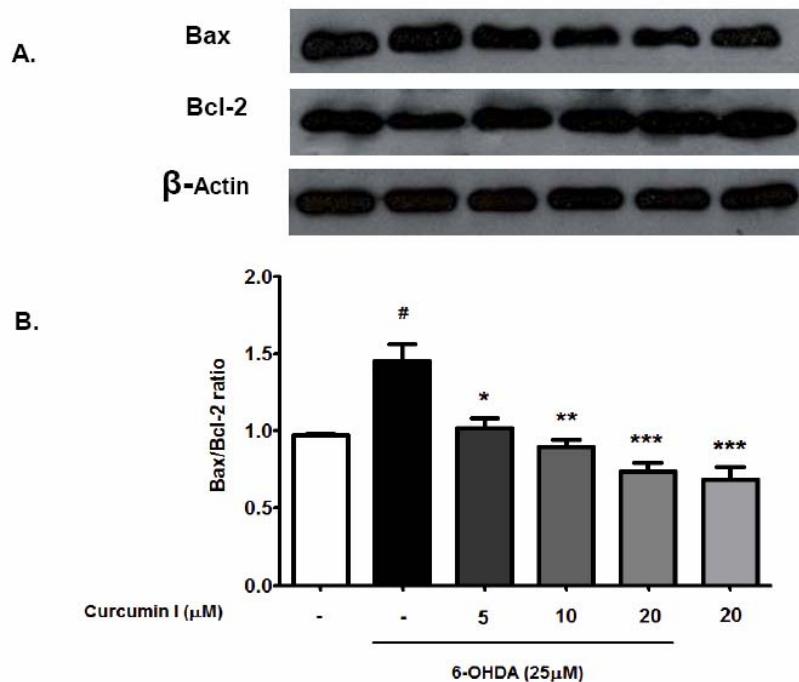
SH-SY5Y cells were maintained in MEM and Ham F-12 supplemented with 10% fetal bovine serum (FBS), 25 mg/ml of penicillin, 25 U/ml of streptomycin, 1 mM sodium pyruvate and 1 mM non-essential amino acids at 37 °C in an atmosphere of 5 % CO₂. 6-OHDA was dissolved in 0.01 % ascorbic acid in iced cold sterile water to give a stock

solution of 10 mM. Curcumin I was also dissolved in dimethylsulfoxide (DMSO) as a stock solution of 10 mM and the final concentration of DMSO was always less than 0.1 %. MTT (3-(4,5-dimethylthiazol-2,yl)2,5 diphenyltetrazolium bromide) assay was performed in order to determine the protective effect of curcumin I on cell viability in 6-OHDA treated cells. Cells were plated at a density of 3×10^4 cells/well in 96-well plate. After 24 h, cells were pretreated with curcumin I at the concentrations of 1, 5, 10 and 20 μ M for 30 min before exposure to 6-OHDA 25 μ M for 24 h. Then, 50 μ l of 10 mg/ml MTT solution was added to each well and incubated for 4 h at 37 °C.

Western blot analysis


After treatment, cells were lysed in freshly prepared lysis buffer solution. Lysates were centrifuged at 12,000 rpm for 15 min at 4°C and the equal amounts of protein were separated by 12.5 and 10 % SDS-PAGE and transferred to hybond ECL nitrocellulose membranes. Membranes were blocked with 5 % skimmed milk in TBST for 1 h and then incubated with primary anti-Bax, Bcl-2 and actin antibodies in TBST containing 3 % BSA. After incubation with HRP-conjugated anti-IgG antibody, detected proteins were visualized using an enhanced chemiluminescence assay kit. Protein bands were measured using densitometry analysis program.

Data analysis


All data are expressed as mean \pm SEM and analyzed using one-way ANOVA. Tukey's multiple comparison post-test was used to calculate the statistical significance. Differences were considered statistically significant when $p < 0.05$.

Results

Pretreatment with curcumin I could significantly prevent 6-OHDA induced cell death in a concentration dependent manner (Figure 1). The present study also found that curcumin I prevented 6-OHDA-induced increase in Bax/Bcl-2 ratio.

Figure 1 The protective effect of curcumin I on 6-OHDA- induced cell death. Values represent mean \pm SEM of at least three separate determinations. * = $p < 0.05$, ** = $p < 0.01$, and *** = $p < 0.001$ significant difference when compared with only 6-OHDA group, ## $p < 0.001$ significant difference when compared with control group.

Figure 2. Curcumin I reduces Bax/Bcl-2 ratio in 6-OHDA-treated cells. A. Levels of Bax, Bcl-2 and β -Actin expression. B. Values represent mean \pm SEM of Bax/Bcl-2 of at least three separate determinations. * = $p < 0.05$, ** = $p < 0.01$, *** = $p < 0.001$ significant difference when compared with only 6-OHDA group, # = $p < 0.001$ significant difference when compared with control group.

Discussion

6-OHDA-treated human neuroblastoma SH-SY5Y cells is a useful *in vitro* model for studying neurodegenerative events that may occur in PD. In this study, we demonstrated that curcumin I protects SH-SY5Y cells against 6-OHDA-induced cytotoxicity in apoptosis signaling pathway. The ratio between Bax and Bcl-2 has been used as an indicator for determining cell undergoing apoptosis. The ratio of the pro-apoptotic Bax to the anti-apoptotic Bcl-2 increases significantly upon treatment with 6-OHDA whereas curcumin I reduced the expression of Bax and increased the expression of Bcl-2 significantly, thereby ameliorating the 6-OHDA-induced Bax/Bcl-2 ratio elevation in SH-SY5Y cells. The present study showed that curcumin I has significant cytoprotection against 6-OHDA-induced apoptosis SH-SY5Y cells. The cytoprotection of curcumin I may be attributed from its inhibitory effect on the apoptotic signaling as evident from the decrease in Bax/Bcl-2 ratio. The antioxidant property of curcumin I may be one of the major mechanisms participated in its neuroprotection against cell death.

Conclusion

Our results show that curcumin I protects SH-SY5Y cells against 6-OHDA-induced cytotoxicity. Its anti-apoptotic activity of curcumin I may be useful as a potential compound for preventing oxidative stress-induced Parkinson's disease.

Acknowledgements

This work was supported by Strategic Scholarships Fellowships Frontier Research Networks, Thailand.

References

1. Blandini F, Armentero MT, Martignoni E. The 6-hydroxydopamine model: news from the past. *Parkinsonism Relat Disord* 2008; 14 Suppl 2: S124-9.
2. Chen J, Tang XQ, Zhi JL, Cui Y, Yu HM, Tang EH, Sun SN, Feng JQ, Chen PX. Curcumin protects PC12 cells against 1-methyl-4-phenylpyridinium ion-induced apoptosis by bcl-2-mitochondria-ROS-iNOS pathway. *Apoptosis* 2006; 11: 943-53.
3. Gomez-Lazaro M, Bonekamp NA, Galindo MF, Jordán J, Schrader M. 6-Hydroxydopamine (6-OHDA) induces Drp1-dependent mitochondrial fragmentation in SH-SY5Y cells. *Free Radic Biol Med* 2008; 44: 1960-9.
4. Wang J, Du XX, Jiang H, Xie JX. Curcumin attenuates 6-hydroxydopamine-induced cytotoxicity by anti-oxidation and nuclear factor-kappa B modulation in MES23.5 cells. *Biochem Pharmacol* 2009; 78: 178-83.