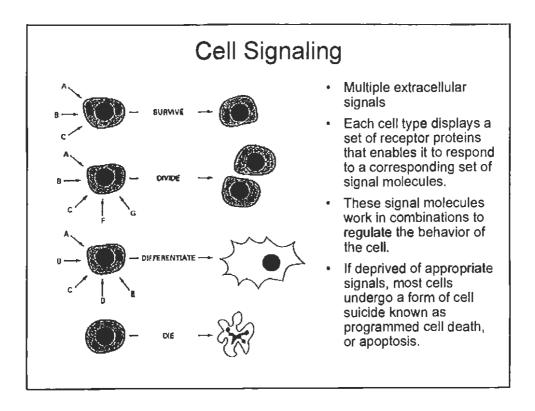
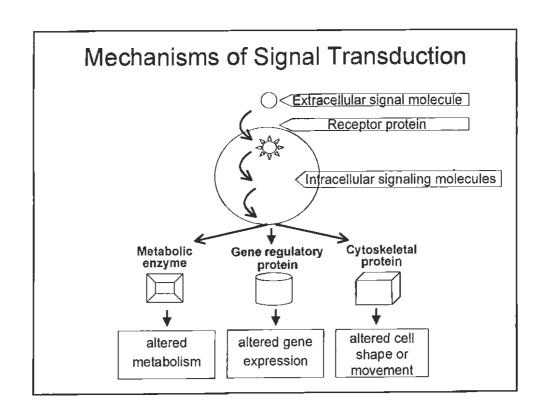

Overview of Signal Transduction




ดร. สูวรา วัฒนพิทยกุล ภาควิชาเภสัชวิทยา คณะแพทยศาสตร์ มหาวิทยาลัยศรีนครินทรวิโรฒ

OUTLINE

- General principles of cell communication
- · Receptor-effector systems
 - Receptors and their effector systems
 - Membrane receptors
 - Nuclear receptors
- Specific Signal Transduction System
 - Tyrosine kinase
 - G protein
 - Apoptosis

Thai J Pharmacol

Signal Transduction Receptors

I. RECEPTORS

- Membrane Receptors
 - G protein-coupled receptors
 - Ligand-gated ion channel receptors
 - Receptor tyrosine kinase
 - Cytokine receptors
- Intracellular receptors
 - Steroid hormone receptors
 - Thyroid hormone receptors
 - Vitamin D receptors
 - Retinoid receptors

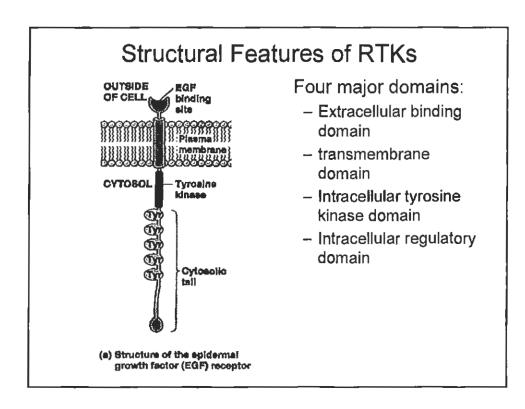
Receptor-Effector Systems

II. <u>EFFECTOR SYSTEMS</u> (Intracellular Signal Transduction Pathways)

- · second messengers
 - cAMP
 - cGMP
 - phospholipids and Ca2+
- third messengers
 - protein kinases (PKA, PKC)
 - protein tyrosine kinases
 - · serine/theronines kinases
- · forth messengers
 - transcription factors

Tyrosine Kinase Signaling

- · Receptor tyrosine kinases (RTKs)
 - Structural features
 - Classification
 - Activation
 - MAPK signaling pathway
- Non receptor protein tyrosine kinases (PTKs)
 - Classification
 - JAK/STAT pathway

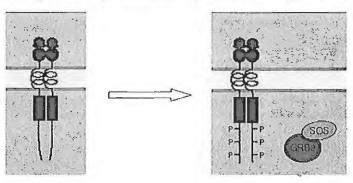

Important Abbreviations

CSF-1 colony-stimulation factor-1
EGF epidermal growth factor
ELAM-1 endothelial leukocyte adhesion
molecule 1
EPO erythropoietin
ERK extracellular signal-regulated
kinase
G-CSF granulocyte colony-stimulation
factor
GAP GTPase-activating proteins
GEF GTP exchange factor
GM-CSF granulocyte-macrophage
colony-stimulation factor
Grb2 growth factor receptor binding
protein-2
ICAM-1 intercellular cell adhesion
molecule 1
IFN interferon
IRF-1 interferon regulatory factor 1
MAP mitogen-activated protein
MAPK mitogen-activated protein kinase
MAPKK or MEK mitogen-activated
protein kinase kinase

MEK MAP kinase/ERK kinase
MKK MAPKK (humans)
PDGF platelet-derived growth factor
PH pleckstrin homology
PLC-Y phospholypase C-Y
ras rat sarcoma viruses
Rho Ras homology
SAPK/JNK stress-activated protein
kinase/Janus kinase or c-Jun N-terminal
kinase
SH2, SH3 Src homology domain 2, 3,
respectively
Shc Src homology and collagen
SOS son of seveniess
v-Src avian retroviral; Src Rous sarcoma
virus
TH Tec homology
Tyk2 tyrosine kinase 2
VCAM-1 vascular cell adhesion molecule 1

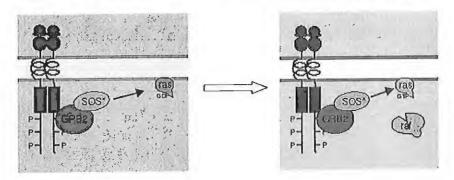

Receptor Tyrosine Kinases

- These receptors traverse the membrane only once
- Receptor has intrinsic enzyme activity (kinase domain)
- · Respond exclusively to peptide stimuli
 - cytokines
 - mitogen growth factors: e.g., platelet derived growth factor (PDGF), epidermal growth factor (EGF)

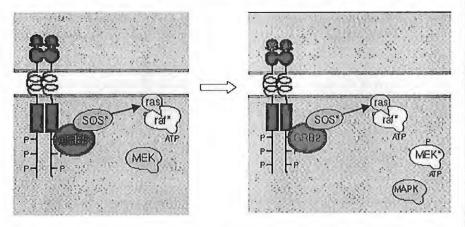


C	288	ifica	tion	of	RT	K۹
	a 33	IIIUa	LIOI I	U	$I \setminus I$	1/2

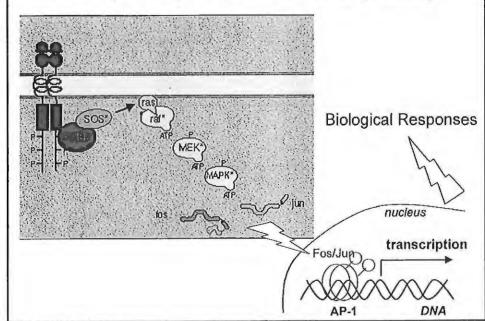
Class	Examples	Structural Features of Class
ļ	EGF receptor, NEU/HER2, HER3	cysteine-rich sequences
II	insulin receptor, IGF-1 receptor	cysteine-rich sequences; characterized by disulfide-linked heterotetramers
III	PDGF receptors, c-Kit	contain 5 immunoglobulin-like domains; contain the kinase insert
IV	FGF receptors	contain 3 immunoglobulin-like domains as well as the kinase insert; acidic domain
٧	vascular endothelial cell growth factor (VEGF) receptor	contain 7 immunoglobulin-like domains as well as the kinase insert domain
VI	hepatocyte growth factor (HGF) and scatter factor (SC) receptors	heterodimeric like the class II receptors except that one of the two protein subunits is completely extracellular. The HGF receptor is a proto-oncogene that was originally identified as the Met oncogene
VII	neurotrophin receptor family (trkA, trkB, trkC) and NGF receptor	contain no or few cysteine-rich domains; NGFR has leucine rich domain

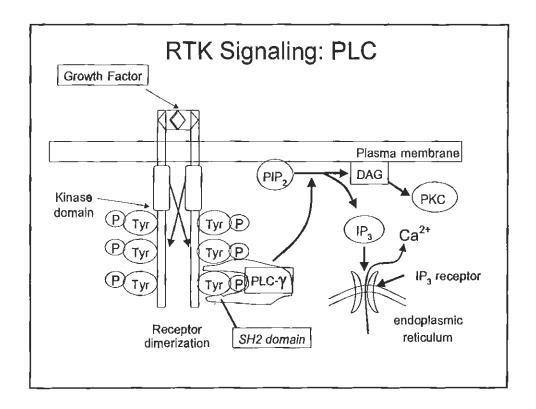


Receptor Tyrosine Kinase Signaling


- Ligand binding
- Receptor dimerization
 - increase activity of kinase domain
 - create "docking site"
- Autophosphorylation
- Recruitment of SH2-containing protein (adapter protein, e.g. GRB2)

Receptor Tyrosine Kinase Signaling

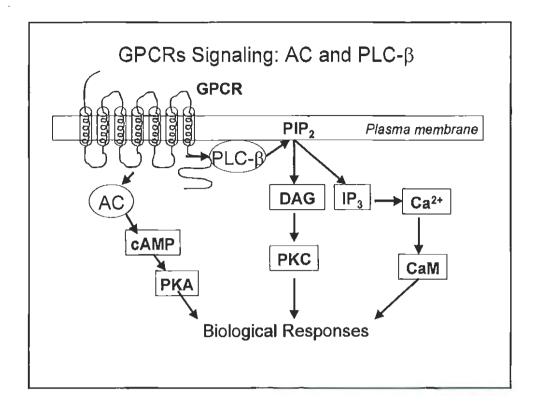

 Binding of the adaptor proteins to the phosphorylated tyrosine residues (docking sites) Ras is activated, followed by the activation of Raf


Receptor Tyrosine Kinase Signaling

 Activation of the proteins in the cascade of MAPK signaling pathway

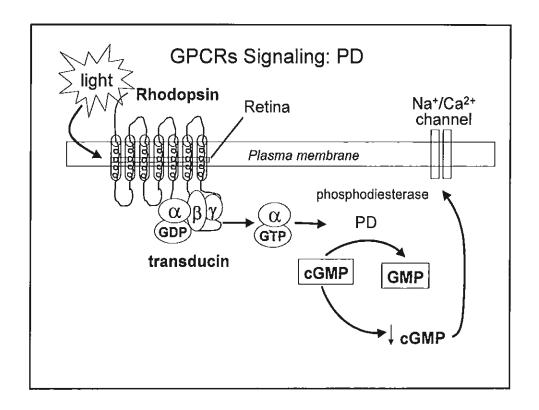
Receptor Tyrosine Kinase Signaling

Signaling Through Protein Tyrosine Kinases (phosphorylation & dephosphorylation)

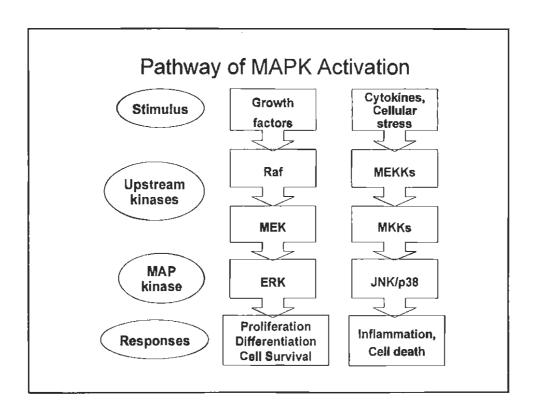

- Tyrosine kinase adds a phosphate group
 (Pi) specifically to tyrosine residue
- Phosphatase removes Pi
- Phosphorylation state alters shape (conformation) of protein and changes its function

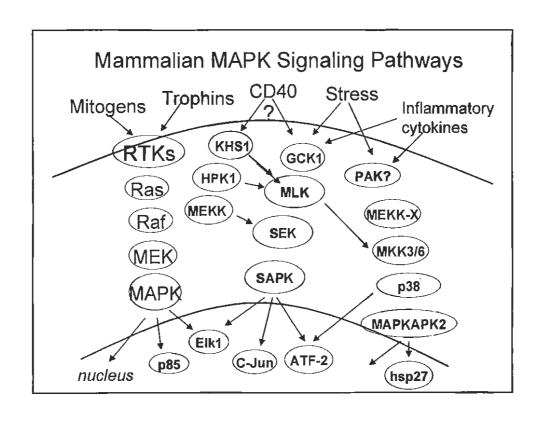
MAPK

- MAPK: a family serine/theronine kinases
- MAPK subfamilies
 - ERKs
 - Raf-MEK-ERK pathway
 - · Cell proliferation, survival and differentiation
 - SAPK/JNK
 - · Stress: e.g., UV
 - CD40: a receptor related to the TNF and IL-1 receptors which binds CD40 ligand and elicits a variety of effects in B cells
 - P38
 - Inflammation
 - · Cell death


Ras, Raf and MAP Kinase Pathway

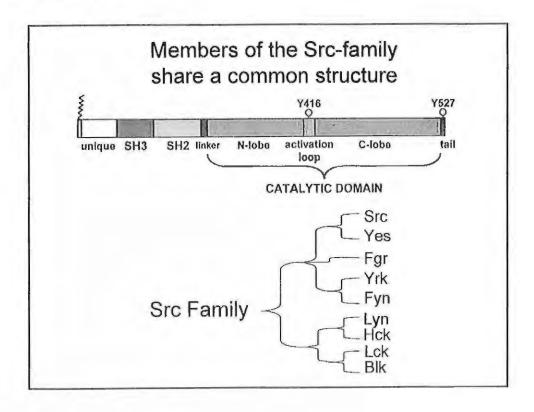
- Actvated in response to growth factors and other stimuli resulted in proliferation, differentiation, cell survival, inflammation, and cell death
- MAP Kinases (mitogen-activated protein kinases)
 is a family of protein-serine/threonine kinases
- The first effector protein of this pathway is Ras, a GTP-binding protein
- Activation of Ras leads to activation of Raf protein serine/threonine kinase, which phosphorylates and activates MAP Kinase and down stream signaling molecules

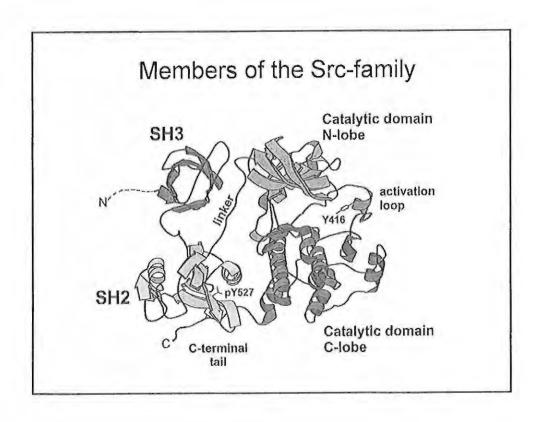

GPCR-linked Effector Systems


- 3. GPCRs that are coupled to transducin that activate a phosphodiesterase
 - 3.1 leading to a decrease in the level of cGMP
 - results in the closing of a Na⁺/Ca²⁺ channel
 - --> hyperpolarization of the cell
 - e.g., role of vitamin A in vision
 - 3.2 leading to increase in cGMP formation
 - e.g., angiotensin type II (AT₂) receptor

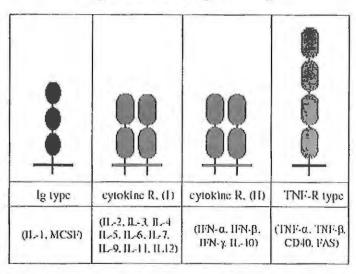
GPCR-linked Effector Systems

- 4. GPCRs signaling to MAPK/ERK
 - Proliferative pathway

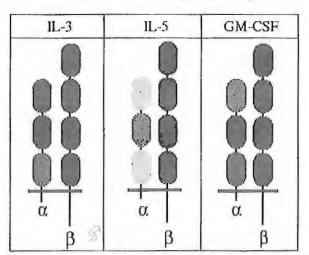

Thai J Pharmacol


Non-receptor protein tyrosine kinases (PTKs)

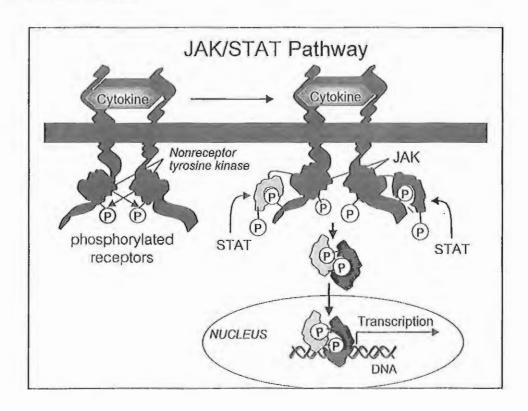
- Most PTKs couple to the receptors that lack intrinsic enzymatic activity e.g.,
 - cytokine recptors
 - CD4 and CD8 cell surface glycoprotein of T cells
 - T cell antigen receptor (TCR)
- · PTKs are classified into families
 - Src*
 - Jak*
 - Fps/Fes
 - Tec/Btk
 - Syk/ZAP70


PTKs: Src

- SH2 domain
 - ~ 100 amino acids ---> binding pocket
 - binds to phosphorylated tyrosine residues of the receptor
- SH3 domain
 - ~ 60 amino acids
 - protein-protein interaction
 - 10-residue consensus sequence:
 XPXXPPPFXP (X = any amino acid; P = proline; F = phenylalanine)



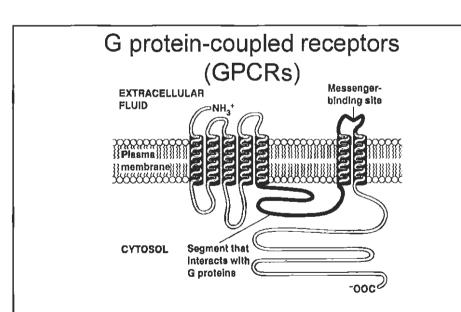
Cytokine Signaling



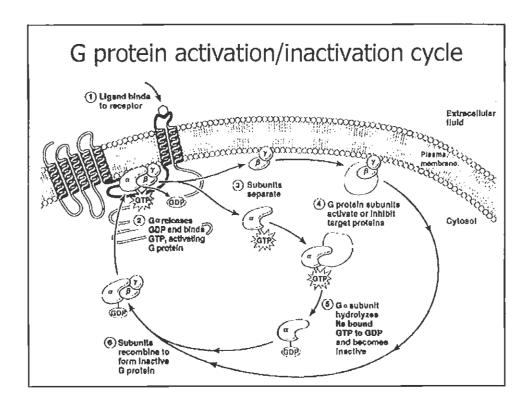
the domain structure of non chemokine, cytokine receptors

Cytokine Signaling

• different α chains but signal transduction is mediated by a common β chain.



JAK/STAT UTILIZATION

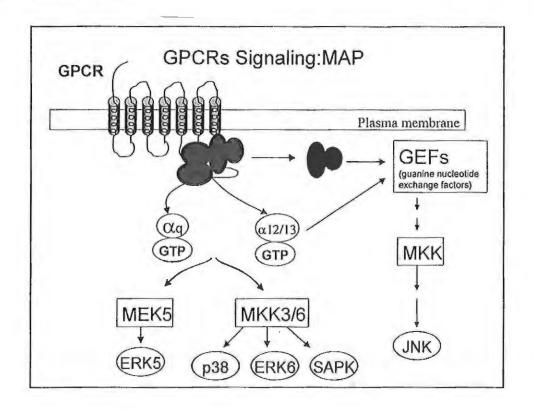

RECEPTOR FAMILY	RECEPTOR	JAKs	STATS
gp140	IL-3, IL-5, GM-CSF	Jak2	Stat5
gp130	IL-6, IL-11, OSM, CNTF G-CSF, LIF, CNTF, CT- 1 IL-12 Leptin		Stat1,-3,-5 Stat4 Stat3,-5
IL-2	IL-2, IL-7, IL-9, IL-15 IL-4 IL-13	Jak1, -3 Jak1, -3 Jak1, -2, Tyk2	Stat5, -3, -1 Stat6 Stat6
Growth Hormone	GH TPO PRO, EPO	Jak2 Jak2 Jak2	Stat5, -3, -1 Stat3,-5 Stat5
Interferon	IFNα, IFNβ IFNγ IL-10	Jak1, Tyk2 Jak1,-2 Jak1, Tyk2	Stat1, -2, -3, -5 Stat1 Stat3,-1
RTKs	EGF/ErbB, TGFα, PDGF CSF-1 Insulin bFGF HGF		Stal1, -3, -5 Stal5,-3 Stal1,-3 Stal3
GPCR	Anglotensin Serotonin a-Thrombin CXCR4	Jak2, Tyk2 Jak2 Jak2,-3	Stat1,-2,-3 Stat3 Stat3

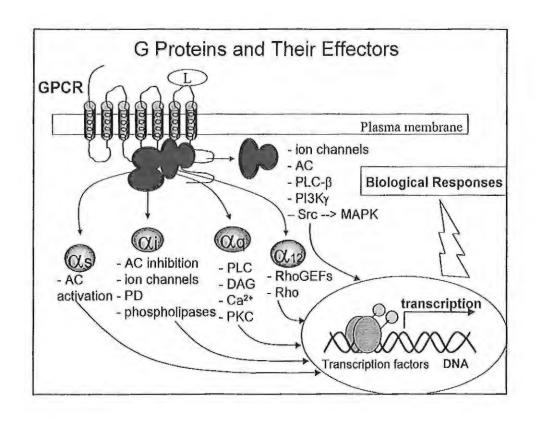
G protein-coupled receptors (GPCRs)

- · Diverse physiological functions
 - small biogenic amines: 5-HT, dopamine, acethylcholine (Ach)
 - glycoprotein hormones: TSH, FSH, luteinizing hormine/choriogonadotropin (LH/CG)
 - sensory systems: vision, smell and taste
 - miscellaneous ligands: neurotransmitters, nucleotides, prostanoids, Ca²⁺, and lipid
 - certain chemokine receptors: CCR-5 receptor

- · Seven transmembrane alpha helices
- The primary messenger binds to the extracellular portion of the receptor
- This binding causes an intracellular portion of the receptor to activate an adjacent G protein.

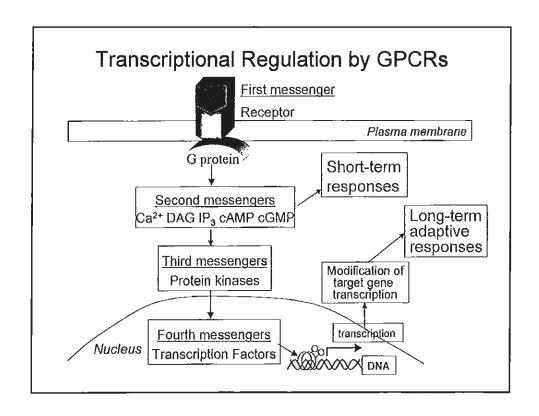
G protein

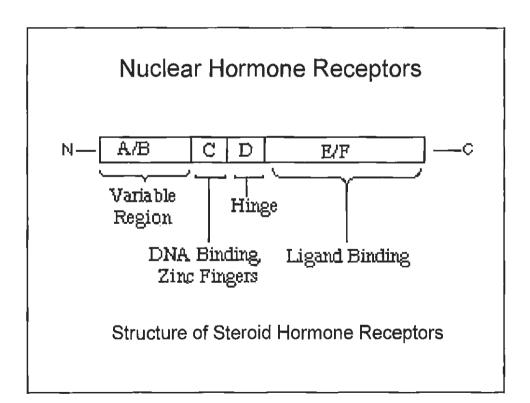

- · G protein subunits
 - alpha (G α)
 - beta $(G\beta)$
 - gamma ($G\gamma$)
- Inactive State: Gα-GDP
- Active State: Gα-GTP

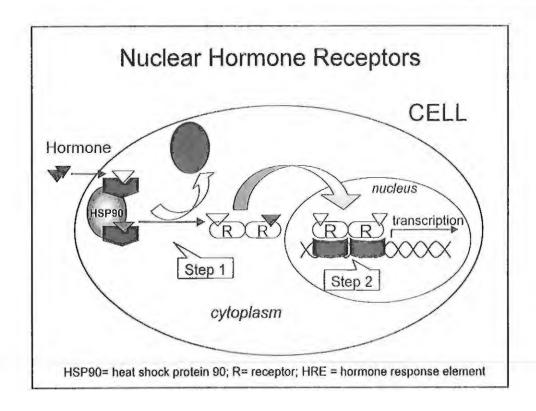

GPCR-linked Effector Systems

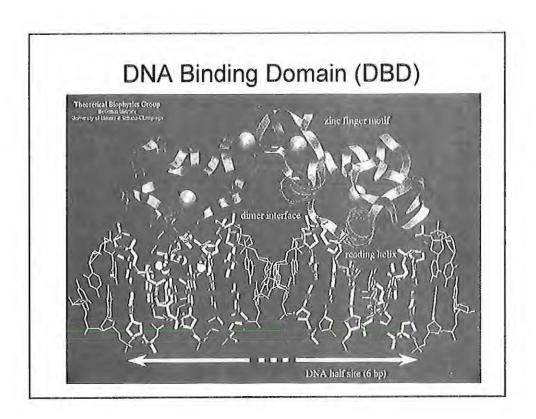
- GPCRs that modulate adenylate cyclase (AC) activity
 - 1) Gs: increase the production of cAMP
 - leading to an activation of protein kinase A (PKA)
 - e.g., beta-adrenergic receptors, glucagon, odorant molecule receptors
 - 2) Gi: decrease the production of cAMP
 - repress adenylate cyclase activity
 - e.g., alpha-adrenergic receptors

GPCR-linked Effector Systems


- GPCRs that activate phospholipase
 C-gamma (PLC-β)
 - leading to the hydrolysis of polyphosphoinositides (PIP₂) generating the second messengers, diacylglycerol (DAG) and inositoltrisphosphate (IP₃)
 - e.g., angiotensin type I (AT₁) receptor,
 bradykinin, vasopressin receptors

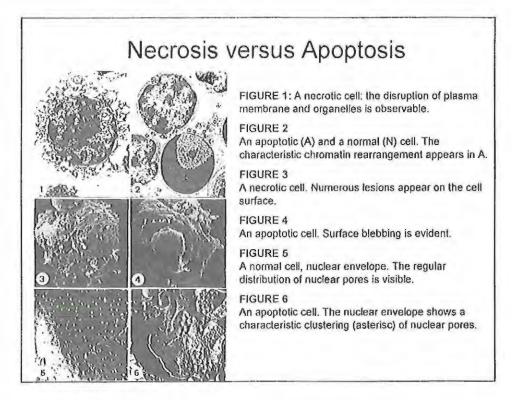

G Proteins and Their Effectors	G	Proteins	and	Their	Effectors
--------------------------------	---	-----------------	-----	-------	------------------

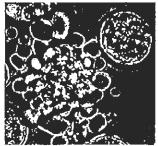

G	Protein	Effectors	Results
1.	αs	 Adenylate cyclase (AC), activation 	Increase cAMP
H.	αi	 AC, inhibition Phospholipases Phosphodiesterase lon channels 	 Decrease cAMP Increase or decrease enzyme activity Open or close
III.	αq	 Phospholipase C-gamma (PLC-γ) PLC-β 	 Hydrolysis of PIP₂ → DAG and IP₃ Activation of PKC
IV.	α12/13	 Rho, RhoGEFs (guanine nucleotide exchange factors) 	Catalyze the exchange of GDP for GTP
V.	βγ	Ion channelsPI3Kγ, PLC-β, AC, JNK	Open or closed Activation or Inhibition

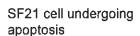


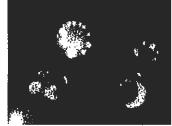
Intracellular Receptors

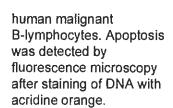
- · Nuclear hormone receptors
 - control development and differentiation of skin,
 bone and behavioral centers in the brain
 - continually regulate reproductive tissues
 - are ligand-activated transcription factors that regulate gene expression by interacting with specific DNA sequences upstream of their target genes
 - have a two-step mechanism of action
 - 1) binding of the hormone to its receptor
 - receptor binding to DNA and regulation of transcription

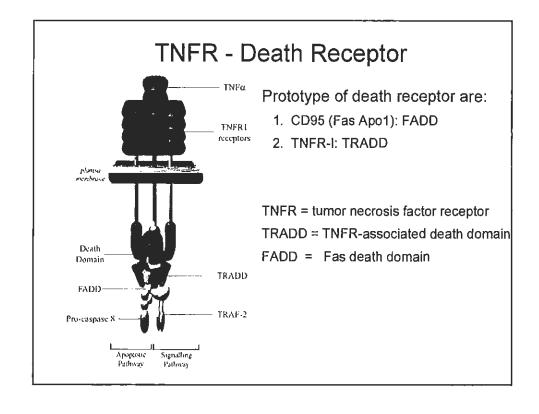





»Apoptosis


- · Programmed cell death
- Characeterized by blebbling, vacuole formation, chromatin condensation, and DNA fragmentation
- · Signaling pathways in apoptosis
 - External signals : death receptors death effectors
 - intracellular signals: cytochrome C
- · To die or not to die?




Apoptosis

