

Thai Journal of Pharmacology

www.pharterst.or.th

Official Publication of
Pharmacological and Therapeutic Society of Thailand

Proceedings of **25th Pharmacological and Therapeutic Society of Thailand Meeting**

20-21 March 2003

Jan-Apr 2003, Vol. 25, No.1

ISSN 0125-3832

Thai Journal of Pharmacology

is owed and published every four months by the Pharmacological and Therapeutic Society of Thailand.

Board of Editors

Editor Supatra Srichairat

Associate Editors Pravit Akarasereenont Laddawal Phivthong-ngam
Suwat Wimolwattanapan Somjai Nakornchai

Editorial Board

Adisak Wongkajornsilp	Nisamanee Satayapan
Amnuay Thithapandha	Pornpen Pramyothin
Borpit Klangkalya	Prasan Dhuma-Upakorn
Bunkerd Kongyingyoes	Prasert Songkittiguna
Chaichan Sangdee	Sopit Thamaree
Chandhanee Itthipanichpong	Sumana Chompootawee
Dhasanai Suriyachan	Supeecha Wittayalertpanya
Karnjana Ketsa-ard	Srichan Phornchirasilp
Krongtong Yoovathaworn	Wacharee Limpanasithikul
Monthira Tankeyoon	Wittaya Tonsuonnont
Nongluk Sookvanichsilp	Yupin Sanvarinda

Manager Supeecha Wittayalertpanya

Office Department of Pharmacology
Faculty of Medicine, Chulalongkorn University,
Chulalongkorn Hospital, Rama 4 Road, Bangkok 10330,
Thailand. Tel/Fax 2511965

Notice The opinions expressed here in are those of the authors and do not necessarily reflect the views of the editors or the publisher.

Printed at Ruen Kaew Press, 947 Arun-Amarin Road, Bangkok 10700. Tel: 02-4126552

วารสารเภสัชวิทยา (*Thai Journal of Pharmacology*) นี้เป็นลิขสิทธิ์ของสมาคมเภสัชวิทยาแห่งประเทศไทย ไม่อนุญาตให้นำส่วนใดส่วนหนึ่งของเอกสารฉบับนี้ไปถ่ายเอกสาร ผลิตหรือพิมพ์ข้า หรือนำไปใช้เพื่อประโยชน์ทางการค้าโดยปราศจากการยินยอมเป็นลายลักษณ์อักษรจากบรรณาธิการ

Thai Journal of Pharmacology

Vol. 25, No. 1, Jan-Apr 2003

CONTENTS

6 Preface

Chiravat memorial lecture:

The role of nuclear receptors in drug toxicology and cancer research

19	PL1	Serotonin and depression: recent advances in understanding
21	PL2	Overview of signal transduction
49	PL3	Porcine brain: facts or fiction
57	PL4	Bioinformatics
64	PD1	Current perspectives on major depressive disorder
72	PD2	Sexual dysfunction: drugs and treatment
74	PD3	Drugs in ED
80	O1	Evaluation of CYP1A2 activity in Thalassemia patients
81	O2	Amyloid beta1-42 induced glial activation and cell death in corpus callosum <i>in vivo</i>
82	O3	Beneficial effects of Piperine on spatial memory impairment and brain lipid peroxidation increase induced by transient cerebral ischemia in mice
83	O4	Effect of <i>Acacia catechu</i> extract on isolate human umbilical vein

84 P1 Susceptible of zoonotic dermatophytes to ethanolic extract of *Piper betle* leaves

85 P2 Antifungal activity of *Alpinia galanga* and *Allium ascalonicum* extracts

86 P3 Analgesic activity and genotoxicity of *Morinda citrifolia*

87 P4 Antioxidative effect of *Pueraria mirifica*

88 P5 Effect of barakol on blood pressure in spontaneously hypertensive rats

89 P6 Effect of barakol on Cytochrome P450, UDP-glucuronyltransferase and glutathione S-transferase in isolated rat hepatocytes

90 P7 Inhibition of human neutrophil function of pure compounds from *Ventilago harmandiana*

91 P8 The effects of estrogen on intracellular calcium release and amyloid beta 1-42- induced cytokine expression in human microglia

92 P9 The effects of *Ganoderma lucidum* extracts on P388 leukemic cells and N18 neuroblastoma cells

93 P10 Study comparing the effects of sibutramine and phentermine on psychomotor performance

94 P11 Effects of Piperine on lipopolysaccharide-induced injuries and oxidative changes in cultured glial cells from rat brains

95 P12 Effect of CU-18-07, CU-18-09 and CU-18-12 on the smooth muscle contraction of isolated rats vas

deferens

96 P13 Effects of volatile oil from the leaves of *Clausena anista* hook on smooth muscle contractions

97 P14 Pharmacological characterization of NMDA receptor in the human platelet

98 P15 The influence of vitamin E on platelet functions and lipid peroxidation in β -Thalassemia/Hemoglobin E patients

99 P16 The effects of G-protein activators, mastoparan and compound 48/80, on serotonin secretion and signaling pathway in human platelets

100 P17 Characterization of imidazoline receptors on porcine renal cortex membranes

101 P18 Modification of lipoprotein in acute falciparum malaria infection

102 P19 Paraquat is not a direct hepatotoxin at low level of exposure

103 P20 Effects of midazolam and nitric oxide synthase inhibitor, L-NAME on the elevated plus maze behavior in stress rats

104 P21 Effect of stress during brain development on the Behavioral despair in lithium treated rats

รายงานคณะกรรมการจัดงานประชุมวิชาการประจำปี ครั้งที่ 25
สมาคมเภสัชวิทยาแห่งประเทศไทย
ณ ห้องราชเทวี โรงแรมเอเชีย
วันที่ 20-21 มีนาคม 2546

คณะกรรมการที่ปรึกษา

1. พลตรี สุนันท์	รองนวิภาต
2. ศ.ดร. ยานวย	ตีฐาพันธ์
3. รศ. ดร. พลตรี ทัศนัย	สุริยจันทร์
4. รศ. พญ. สุมนา	ชุมพูทวีป
5. รศ. น.สพ. พิระพล	อัญสวัสดิ์
6. คณบดีคณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล	
7. หัวหน้าภาควิชาเภสัชวิทยาทุกสถาบัน	

คณะกรรมการจัดประชุม

ประธาน	ดร. อุดม	จันทรารักษ์ศรี
รองประธาน	รศ. ดร. ยุพิน	สังวิรินทร์
	รศ. ดร. พ.บพิตร	กลางกัลยา
เลขานุการ	รศ. ดร. พรทิษฐ์	ศุภวิไล

อนุกรรมการฝ่ายวิชาการ

1. รศ. ดร. ศรีจันทร์	พรจิราศิลป์	ประธานฯ
2. ดร. อุดม	จันทรารักษ์ศรี	
3. รศ. ดร. ชัยชาญ	แสงศรี	
4. รศ. ดร. นพมาศ	วงศ์วิทย์เดชา	
5. ดร. นพ. สุรินทร์	พลเสน	
6. ดร. นพ. ณัฐรุ่ง	สินหมื่น	

อนุกรรมการฝ่ายเอกสาร

1. ผศ. ดร. อรทัย	อร่ามพงษ์พันธ์	ประธานฯ
2. รศ. ดร. สุพัตรา	ศรีไชยรัตน์	
3. รศ. ดร. นพ. กำพล	ศรีวัฒนกุล	
4. ผศ. ดร. สุกันธ์	อัญเชิญ	
5. รศ. ดร. กร่องทอง	บุญกาล	
6. ผศ. ดร. ลักษดาลย์	ผิวทองงาม	

ឧប្បក្រមការដោយហារាយໄត់

1. នគ. គរ. ឈុយមាសុ	សេងតី	ប្រចាំខែ
2. នគ. គរ. សីវិជ្ជនុ	ព្រះរីរាជីលីបី	
3. នគ. គរ. ឲុុពិន	ស៉ាងវិនធម៌	
4. នគ. គរ. សុខុំពុរា	សីវិមិយុវតិន៍	

ឧប្បក្រមការដោយលេងខាងបើមិន

1. ធម. គរ. ឃុំយុក	វណ្ណិកីឃុំយុក	ប្រចាំខែ
2. នគ. សមិទ្ធិ	ឯករាជ្យ	
3. ធម. ធមុន. ឃុំសាមណី	សំពាលាបរណ៍	
4. ិាជារី ឯុទ្ធយា	រួមឱ្យាយធម៌	
5. ិាជារី ធមុនី	កិច្ចិក្យត	
6. គុណបីយានី	វិណុនខាងក្រោម	

ឧប្បក្រមការដោយខេរីយុត្តិក

1. ធម. គរ. ធមាររណ៍	បំពង	ប្រចាំខែ
2. នគ. គរ. ឯករាជ្យ	ពីំយិងគាត់	
3. ធម. ធមាររណ៍	រួមមាតា មօរាគេស	
4. គុណបីយានី	ិមានានី	

ឧប្បក្រមការដោយសាការណីនិងជ័តុលីយេង

1. នគ. សុខុំ	វិធយិតិកប័ណ្ណុណ្ណា	ប្រចាំខែ
2. ធម. គរ. ប្រភាគវតិ	ឃុំផែវិនិ	
3. ធម. ឃុំសុខុំ	ិធមេខេរីយុត្តិក	
4. ធម. ឲុុគុលរាង	សិនុំធមានានី	
5. ធម. ឲុុកុល	ឲុុកុល	

ឧប្បក្រមការដោយប្រជាសម័ព្ទន៍

1. នគ. សមិទ្ធិ	ឯករាជ្យ	ប្រចាំខែ
2. នគ. គរ. សីវិជ្ជនុ	ព្រះរីរាជីលីបី	
3. នគ. គរ. ឲុុសេង	វិធយិតិកប័ណ្ណុណ្ណា	

**คำกล่าวรายงานในพิธีเปิดการประชุมวิชาการประจำปี ครั้งที่ 25
ของสมาคมเภสัชวิทยาแห่งประเทศไทย**

โดย
ดร. อุดม จันทรรักษ์ศรี
ประธานกรรมการจัดการประชุมวิชาการ

กราบเรียน ท่านอธิการบดี มหาวิทยาลัยมหิดล
(ศ. ดร. พรชัย นาถวงศ์มนบดี)

กระผมในนามของสมาคมเภสัชวิทยาแห่งประเทศไทย และผู้เก้าอี้ประชุม ไดรับเชิญให้เป็นคุณผู้ที่ท่านอธิการบดี ให้เกียรติมาเป็นประธานเปิดการประชุมวิชาการประจำปีของสมาคมเภสัชวิทยาแห่งประเทศไทยในวันนี้

สมาคมเภสัชวิทยาแห่งประเทศไทย ได้ก่อตั้งขึ้นเมื่อปีพุทธศักราช 2519 ทั้งนี้เพื่อให้เป็นศูนย์กลางในการประสานความสัมพันธ์และส่งเสริมความร่วมมือทางวิชาการระหว่างนักเภสัชวิทยาและนักวิชาการสาขาอื่นที่เกี่ยวข้อง ทั้งภาครัฐและภาคเอกชน กิจกรรมหลักอันหนึ่งของสมาคมฯ คือการจัดประชุมวิชาการประจำปีต่อเนื่องในครั้งนี้เป็นครั้งที่ 25 โดยมีวัตถุประสงค์เพื่อเผยแพร่ความรู้วิชาการที่ทันสมัย รวมถึงก่อให้เกิดการแลกเปลี่ยนข้อมูลและประสบการณ์ระหว่างสมาชิกสมาคมฯ และบุคลากรด้านสาธารณสุขอื่นๆ ซึ่งจะนำไปสู่ความร่วมมือระดับชาติในการศึกษาค้นคว้าวิจัยผลงานที่มีประโยชน์ต่อประเทศไทยต่อไปในอนาคต

สำหรับการประชุมวิชาการครั้งนี้ ภาควิชาเภสัชวิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล ได้รับเกียรติให้เป็นเจ้าภาพร่วมกับทางสมาคมฯ โดยจัดการประชุมขึ้นในระหว่างวันที่ 20-21 มีนาคม 2546 หัวข้อการประชุมครั้งนี้ หัวข้อแรกเป็นการบรรยายเกี่ยวกับ Pharmacogenomics ซึ่งจัดขึ้นเพื่อวิเคราะห์ วศ. ดร. จิรวัฒน์ สถาวงศิริวัฒน์ ผู้ริเริ่มก่อตั้งสมาคมเภสัชวิทยา และจะมีการบรรยายความรู้ในมุ่ง ทาง Molecular Biology ที่สามารถนำมาประยุกต์ใช้ในทางเภสัชกรรม เช่น Signal Transduction, และ Bioinformatics การบรรยายและอภิปรายกตุ่นในหัวข้อที่อยู่ในความสนใจของทุกๆ คนในขณะนี้ได้แก่สารสกัดจากมันสมองหมู, ยาภัชาริโคลเกี่ยวกับสมรรถภาพทางเพศและโภชีมเศรษฐ นอกจากนี้ยังได้จัดให้มีการแสดงผลงานและการประกวดผลงานวิชาการการศึกษาวิจัยของนักเภสัชวิทยาไทยอีกด้วย

ท้ายที่สุดนี้ กระผมในนามของคณะกรรมการจัดการประชุมขอขอบพระคุณท่านวิทยากรผู้ทั้งคุณภาพ ผู้เข้าร่วมประชุมทุกท่านตลอดจนผู้ให้การสนับสนุนการประชุมครั้งนี้ บัดนี้ได้เวลาอันสมควร แล้ว กระผมขอกราบเรียนเชิญท่านอธิการบดีมหาวิทยาลัยมหิดล กรุณากล่าวเปิดประชุมด้วย จักเป็นพระคุณยิ่ง

ดร. อุดม จันทรารักษ์ศรี
ประธานจัดการประชุมวิชาการ

คำปราศรัยของ ศ. ดร. พรชัย มาตั้งคสมบัติ

อธิการบดีมหาวิทยาลัยมหิดล

เนื่องในพิธีเปิดการประชุมวิชาการประจำปี ครั้งที่ 25
สมาคมเกสชวิทยาแห่งประเทศไทย

เรียน ท่านประธานจัดการประชุมฯ ท่านนายกสมาคมเกสชวิทยาแห่งประเทศไทย
และท่านผู้มีเกียรติทุกท่าน

กระผมรู้สึกเป็นเกียรติและมีความยินดีอย่างยิ่งที่ สมาคมเกสชวิทยาแห่งประเทศไทย ได้จัดการประชุมวิชาการชั้นทุกปีเพื่อพัฒนาความรู้ทางวิชาการให้ก้าวไกลทันสมัย ทันเหตุการณ์ และทันโลก เนื่องจากโลกนี้จัดว่าเป็นยุคโลกไร้พรมแดน ความก้าวหน้าด้านวิชาการและเทคโนโลยีก้าวกระโดดหน้าไปอย่างรวดเร็ว จำเป็นอย่างยิ่งที่นักเกสชวิทยาและบุคลากรด้านการแพทย์และสาธารณสุขต้องหันมาพัฒนาความรู้ความสามารถให้ทันสมัย ทันเหตุการณ์อยู่เสมอ จึงจะทำให้ประสบความสำเร็จเป็นหน้าที่รับผิดชอบได้ การประชุมวิชาการเป็นเวทีหนึ่งที่ทำให้นักวิชาการได้รับทราบข้อมูลข่าวสารใหม่ๆ ได้รวดเร็วขึ้น รวมทั้งก่อให้เกิดความร่วมมือด้านงานวิจัย ซึ่งเป็นสิ่งจำเป็นในการพัฒนาประเทศไทย กระผม因此ถือโอกาสนี้ ยื่นเชิญให้การประชุมวิชาการของสมาคมเกสชวิทยาในครั้งนี้ บรรลุตามวัตถุประสงค์และสำเร็จตามที่คาดหมายของการจัดงานทุกประการ บัดนี้ได้เวลาอันสมควรแล้ว กระผมขอเปิดการประชุมวิชาการของ สมาคมเกสชวิทยาแห่งประเทศไทย ครั้งที่ 25 ณ บัดนี้

ศ. ดร. พรชัย มาตั้งคสมบัติ

อธิการบดีมหาวิทยาลัยมหิดล

สารจากประธานจัดงานประชุมวิชาการ

เรียน ท่านสมาชิกชาวเกสชวิทยาและผู้เข้าร่วมประชุมทุกท่าน

ภาควิชาเกสชวิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล มีความยินดีเป็นอย่างยิ่งที่ได้มีโอกาสร่วมเป็นเจ้าภาพกับสมาคมเกสชวิทยาแห่งประเทศไทย ในการจัดการประชุมวิชาการ และประชุมสามัญ ครั้งที่ 25 ในระหว่างวันที่ 20-21 มีนาคม 2546 นี้ ทั้งนี้พากเราทุกคน ได้พยายามอย่างเดิมกำลังความสามารถที่มีอยู่ทุ่มเท่าที่จะกระทำได้ในระยะเวลาอันจำกัด และภาระงานประจำซึ่งมีอยู่อย่างมากหมายทั้งนี้เพื่อให้การประชุมครั้งนี้ เป็นการประชุมที่จะก่อให้เกิดประโยชน์อย่างสูงสุดแก่ผู้เข้าร่วมประชุมทุกท่าน เพื่อให้ได้ความรู้ใหม่ๆ รับทราบความก้าวหน้าเกี่ยวกับงานวิจัย และเปลี่ยนความรู้ทัศนะพร้อมแบ่งปันให้กับผู้อื่น รวมถึงความร่วมมือองานวิจัยระหว่างสถาบันฯ ซึ่งจะเกิดขึ้นในอนาคตอันใกล้นี้

คณะกรรมการจัดการประชุมทุกท่าน คาดหวังที่จะให้การประชุมประจำปีของสมาคมฯ เป็นเวลาริทีชาวเกสชวิทยา (รวมทั้งครอบครัว) และผู้สนใจในแวดวงใกล้เคียง ได้มีโอกาสพบปะสัมมาร์ทกันฉันท์ “เพื่อน-พี่-น้อง” เสมือนหนึ่งครอบครัวเดียวกัน เพื่อสามารถมิตรไมตรีให้มีอยู่ตลอดไป

กระผมได้ขอแสดงความขอบคุณจากใจจริงแด่กรรมการทั้งผู้ที่มีส่วนช่วยจัดการประชุมทุกๆ ท่านที่ได้อุทิศแรงกายแรงใจในการจัดงานครั้งนี้ ความสำเร็จที่เกิดขึ้นคือผลงานของทุกๆ ท่านอย่างแท้จริง การประชุมครั้งนี้ได้รับการสนับสนุนจากหน่วยงานเอกชนหลายแห่ง ซึ่งจะสนับสนุนให้การประชุมสำเร็จลุล่วงด้วยดี หากมีข้อผิดพลาดและข้อบกพร่อง ต่างๆ ที่อาจเกิดขึ้นกระผมด้วยขออภัยไว้ล่วงหน้า และขอรับคำแนะนำด้วยความยินดี

ดร. อุดม จันทรรักษ์ศรี
ประธานกรรมการจัดการประชุมฯ

สารจากนายกสมาคมเภสัชวิทยาแห่งประเทศไทย

เรียน ท่านสมาชิกสมาคมฯและผู้เข้าร่วมประชุมวิชาการทุกท่าน

ในฐานะนายกสมาคมเภสัชวิทยาแห่งประเทศไทย ดิฉันรู้สึกยินดีเป็นอย่างยิ่งที่ท่านให้ความสนใจเข้าร่วมประชุมวิชาการประจำปีของสมาคมเภสัชวิทยา และเป็นที่ประยินดีเป็นอย่างยิ่งที่มีผู้ให้ความสนใจในกิจกรรมทางวิชาการของสมาคมฯมากเช่นเรื่อยๆ ซึ่งสังเกตเห็นได้จากจำนวนผู้เข้าร่วมประชุมในครั้งนี้และเป็นที่ผ่านมา

ในวาระที่สมาคมฯมีอายุครบ 25 ปี การประชุมวิชาการประจำปีในปีนี้ จึงจัดให้เป็นพิเศษ กว่าทุกครั้งที่ผ่านมา ดังจะเห็นได้จากองที่ระลึกที่ทางสมาคมฯได้จัดทำโดยเฉพาะเพื่อมอบให้แก่สมาชิกสมาคมฯที่ลงทะเบียนล่วงหน้า วิทยากรจากต่างประเทศที่มากกว่าทุกปีที่ผ่านมา ซึ่งแน่นอนว่า ท่านผู้มีเกียรติทุกท่านที่เข้าร่วมประชุมในครั้งนี้จักได้รับความรู้ด้านเภสัชวิทยาอย่างคุ้มค่าที่สุด

แน่นอนว่าค่าใช้จ่ายในการดำเนินงานครั้งนี้นั้นย่อมไม่เพียงพอเมื่อเก็บค่าลงทะเบียนในอัตราเช่นนี้ การสนับสนุนจากภาคเอกชนจึงเป็นส่วนสำคัญที่ทำให้สมาคมฯสามารถจัดงานในครั้งนี้ได้ ในฐานะกรรมการบริหารสมาคมฯ ขอขอบพระคุณอย่างจริงใจที่ท่านได้กรุณาสนับสนุนค่าใช้จ่ายในการจัดประชุมในครั้งนี้ ขอขอบพระคุณคณะกรรมการดำเนินงานทุกท่าน โดยเฉพาะอย่างยิ่งคณาจารย์และบุคลากรทุกท่านในภาควิชาเภสัชวิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล ที่ร่วมแรงร่วมใจกันเป็นเจ้าภาพจัดงานทำให้การประชุมวิชาการ 25 ปีสมาคมเภสัชวิทยาแห่งประเทศไทยในครั้งนี้ประสบความสำเร็จขึ้นมาได้ และขอขอบพระคุณทุกท่านที่ให้เกียรติเข้าร่วมประชุมวิชาการในครั้งนี้

รศ.ดร.ศรีจันทร์ พรจิราศิลป์
นายกสมาคมเภสัชวิทยาแห่งประเทศไทย

บรรณาธิการแต่ง

เรียน ท่านสมาชิกเกสชีวิทยาและผู้เข้าร่วมประชุมทุกท่าน

ในวาระครบ 25 ปีของสมาคมเกสชีวิทยาแห่งประเทศไทย ได้จัดทำวารสารเกสชีวิทยา (*Thai Journal of Pharmacology*) รู้สึกมีความยินดีเป็นอย่างยิ่งที่ได้รับโอกาสมีส่วนร่วมจัดทำ Proceeding ของการประชุมในครั้งนี้ ต้องขอยอมรับว่างานนี้ ได้จัดให้ดียังน้อยกว่าทุกครั้งที่ผ่านมา ทั้งนี้ เพราะความช่วยเหลือของทีมงานฝ่ายเอกสารที่แข็งขันของประธานฝ่ายเอกสาร ผศ.ดร.อรทัย อรุ่ำพงษ์พันธ์ ภาควิชาเกสชีวิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล เจ้าภาพของการประชุมวิชาการในครั้งนี้ ที่ได้คุยติดตามและจัดเตรียมตั้งแต่บันจนกระทั่งเสร็จสมบูรณ์และทันการประชุมวิชาการในครั้งนี้

ดังที่เคยແດลงไว้แล้วว่าวารสารเกสชีวิทยาจะออกปีละ 3 ฉบับ โดยที่ฉบับแรกจะเป็น proceeding ของการประชุมวิชาการซึ่งเป็นฉบับที่ท่านได้รับในการประชุมวิชาการครั้งนี้ คาดว่า จัดสองฉบับที่จะตามมาจะเสร็จและถึงมือท่านมาภายในเดือนสิงหาคมและอั่นวความตามลำดับ

สำหรับสมาชิกที่พำนักการประชุมวิชาการในครั้งนี้ ยังสามารถติดตามเนื้อหาของการประชุมวิชาการในครั้งนี้ได้ไม่ขาดตอน เพราะจะจัดส่งให้ท่านสมาชิกทางไปรษณีย์ดังเช่นเคยหลังการประชุม

เพื่อให้วารสารเกสชีวิทยามีเนื้อหาวิชาการที่เข้มข้นอย่างต่อเนื่อง ได้จัดข้อเสนอแนะ สมาคมฯและผู้สนใจทุกท่านส่งผลงานวิชาการ ไม่ว่าจะเป็นนิพนธ์ต้นฉบับ ทบทวน วรรณกรรมและอื่นๆตามที่ระบุไว้ใน *Instruction for Authors* ที่อยู่ตอนท้ายวารสารทุกเล่ม

ขอขอบพระคุณสปอนเซอร์ที่ช่วยให้การจัดงานครั้งนี้ลุล่วงไปได้โดยดี ได้จัดหวังเป็นอย่างยิ่งว่า proceeding ฉบับนี้จะมีส่วนทำให้สมาคมฯทุกท่านได้มีโอกาสสร้างรากฐานของสมาคมฯได้อย่างต่อเนื่องดังเช่นเคย

รศ.ดร.สุพัตรา ศรีไชยรัตน์

บรรณาธิการ

รายงานสรุปผลการดำเนินงานของ สมาคมเภสัชวิทยาแห่งประเทศไทย ประจำปี 2545

ເວັບໄນທ່ານສາມາຕິກສາມາຄນາສັງລິຖາຍາແໜ່ງປະເທດໄທ

สมาคมเภสัชวิทยาแห่งประเทศไทยขอเราก่อตั้งมารอบ 25 ปีแล้ว และ ปัจจุบัน
เรามีสมาคมประจำปี 500 ท่าน ในวาระครบรอบ 25 ปี ทางสมาคมฯได้จัดการบำเพ็ญ
กุศลเนื่องในวาระครบรอบ 25 ปีของสมาคมฯ ที่อาคารมูลนิธิ ชั้น 2 ห้อง 2 โรงพยาบาลสงเคราะห์ ถนน
ศรีอยุธยา เขตราชเทวี กรุงฯ ในวันที่ 27 ธันวาคม 2545 ซึ่งในพิธีเราได้อุทิศส่วนกุศลให้อาจารย์
เภสัชวิทยาที่ล่วงลับไปแล้ว และทางสมาคมฯได้ให้พระสงฆ์เจิมป้ายสมาคมฯ ด้วย ท่านสมาชิกคง
จะได้เห็นป้ายสมาคมนี้ในโอกาสต่อๆไปเมื่อเราจัดกิจกรรม ซึ่งกิจกรรมหลักของสมาคมคือจัด
ประชุมวิชาการปีละครั้ง นอกจากรายการจัดบรรยายพิเศษโดยวิทยากรที่มีชื่อเสียงด้วย

สำหรับปี 2545 ที่ผ่านมา ตั้งแต่กรรมการบริหารสมาคมฯดูปัจจุบันรับงานเมื่อเดือน เมษายน 2545 กิจกรรมที่สมาคมฯจัดคือ

1. การพิสูจน์ทางวิทยาศาสตร์ เรื่อง Update on Clinical Pharmacokinetics ซึ่งจัดเมื่อวันที่ 10 ตุลาคม 2545 ที่คณะเภสัชศาสตร์ มหาวิทยาลัยมหิดล มีผู้เข้าอบรมทั้งที่เป็นสมาชิกของสมาคม และมิได้เป็นสมาชิก รวมทั้งหมดเกือบ 200 ท่าน ซึ่งค่าใช้จ่ายในการจัดประชุม และรายรับจากการลงทะเบียนเกือบเท่ากัน โดยคิดที่เราได้รับความเมตตาจากภาครัฐและเอกชนสนับสนุนค่าใช้จ่ายบางส่วน ทำให้ได้กำไรมากจากการจัดครั้งนี้นั่นเอง บททั้งนี้ผู้จัดทั้งหมดมิได้หักภาษีได้เข้าภาควิชาได้เลย ถือว่าเป็น contribution ให้สมาคมฯ จึงขอขอบคุณท่านกรรมการบริหารสมาคมฯ ที่กรุณาร่วมกันจัดการอบรมครั้งนั้นมา ณ ที่นี่ด้วย
2. โครงการ "สมาคมเภสัชวิทยา มอบวิชาการก้าวหน้า เพื่อนำพาประเทศไทยสู่สังคม" โครงการนี้มีวัตถุประสงค์ที่จะสร้างประเทศไทยต่อสังคม ด้วยการจัดบรรยายทางวิชาการให้บุคลากรทางสาธารณสุข โดยสมาคมฯ เป็นผู้รับผิดชอบค่าใช้จ่าย ผู้เข้าฟังการบรรยายไม่ต้องเสียค่าลงทะเบียน แต่จะได้นิวยกิตศึกษาต่อเนื่อง มีการแจกเอกสาร และเลี้ยงอาหารว่างด้วย ในครั้งที่ 1 เป็นการบรรยาย เรื่อง Current Concept in Breast Cancer

Therapy ที่ห้องประชุมสำนักงานคณะกรรมการอาหารและยา ซึ่งการประชุมครั้งนี้เนื่องจากจัดขึ้นอย่างกะทันหันผู้จัดจึงไม่สามารถประชาสัมพันธ์ให้ทั่วถึง จึงขอภัยมาณ ที่นี้ด้วย อย่างไรก็ต้องการบรรยายครั้งที่ 1 นี้มีผู้เข้าฟังการบรรยายจำนวนมากเกินจำนวนที่นั่งที่จัดไว้

3. การประชุมวิชาการประจำปีของสมาคมเภสัชวิทยาแห่งประเทศไทย ในวันที่ 20-21 มีนาคม 2546 ที่ โรงแรมเอเชีย ซึ่งเป็นการประชุมเนื่องในวาระครบ周年 25 ปีของสมาคมฯ โดยมีภาควิชาเภสัชวิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดลเป็นผู้ร่วมจัดการประชุม ขอขอบคุณภาควิชาเภสัชวิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล และกรรมการจัดการประชุมทุกท่าน
4. สมาคมเภสัชวิทยาแห่งประเทศไทยจะจัดให้มีการบริการหารือระหว่างผู้แทนจากภาควิชาเภสัชวิทยาต่างๆในเย็นวันที่ 20 มีนาคม 2546 ที่โรงแรมเอเชีย เพื่อเสริมสร้างความร่วมมือในการสอนและการวิจัย ซึ่งตลอดมาด้วยกันการก่อตั้งเครือข่ายเภสัชวิทยาที่ภาควิชาเภสัชวิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดลรับเป็นแก่นนำในการก่อตั้ง และมีผู้แทนจากภาควิชาเภสัชวิทยาต่างๆไปร่วมกันนำเสนอความคิดเห็นและร่วมจัดทำเอกสารเพื่อเสนอทบทวนมหาวิทยาลัย สมาคมเภสัชวิทยาแห่งประเทศไทยขอเชิญชวนภาควิชาเภสัชวิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดลมาในรายงานฉบับนี้ด้วย ศุดท้ายนี้ดีฉันขอขอบคุณทุกๆท่านที่กรุณาช่วยงานของสมาคมฯทำให้กิจกรรมต่างๆของสมาคมฯดำเนินไปอย่างราบรื่น และหวังว่าผลงานในปีที่ผ่านมาของสมาคมเภสัชวิทยาแห่งประเทศไทยคงจะไม่ทำให้ท่านสมาคมฯผิดหวัง

รศ.ดร.ศรีจันทร์ พรจิราศิลป์

นายกสมาคมเภสัชวิทยาแห่งประเทศไทย

ผู้สรุปรายงาน

กำหนดการประชุมวิชาการและประชุมสามัญประจำปีครั้งที่ 25

สมาคมเภสัชวิทยาแห่งประเทศไทย

วันที่ 20-21 มีนาคม 2546

ณ ห้องราชเทวี โรงแรมเอเชีย เขตราชเทวี กรุงเทพฯ

20 มีนาคม 2546

08.30-09.00 น.	ลงทะเบียน
09.00-09.30 น.	พิธีเปิด
09.30-10.00 น.	พัก น้ำชา-กาแฟ
10.00-11.30 น.	ปาฐกถาพิเศษ ดร. จิรวัฒน์ สดารวงศ์วิวัฒน์ : "The role of nuclear receptors in drug toxicology and cancer research" โดย Dr. Frank J. Gonzales (PL1)
11.30-12.00 น.	ประชุมธุรการสมาคมฯ
12.00-13.00 น.	อาหารกลางวัน
13.00-14.30 น.	ปาฐกถา 1 : "Serotonin and depression-Recent advances in understanding" โดย Dr. Charles A. Marsden (PL2)
14.30-14.45 น.	พัก น้ำชา-กาแฟ
14.45-16.30 น.	อภิปราย 1: Current concept of depression and management รศ. นพ. มาโนช หล่อตระกูล (PD1) ผศ. นพ. สุรชัย เกื้อสิริกุล แพทย์หญิง สุทธิพร เจนนาวาสิน
18.00-22.00 น.	Welcome Dinner

21 มีนาคม 2546

08.30-10.00 น.	ประชุม 2 : Overview of Signal transduction โดย ดร. สุรรา วัฒนพิทยกุล (PL3)
10.00-10.15 น.	พัก น้ำชา-กาแฟ
10.15-11.00 น.	ประชุม 3 : Porcine Brain : Fact or Fiction โดย ดร. ชัยชาญ แสงดี (PL4)
11.00-12.00 น.	Oral Presentation
12.00-13.00 น.	อาหารกลางวัน
13.00-14.30 น.	ประชุม 4 : Bioinformatics โดย ศ. ดร. วรชาติ สิริวรรารัตน์ (PL5)
14.30-14.45 น.	พัก น้ำชา-กาแฟ
14.45-16.00 น.	อภิปราย 2 : Sex Dysfunction : Drugs and treatment. รศ. พญ. สุมนา ชมพูทวีป (PD2) รศ. นพ. อภิชาติ คงกานันท์ รศ. ดร. ชัยชาญ แสงดี (PD3)
16.00-16.15 น.	พิธีมอบรางวัล Oral / Poster presentation
16.15-16.30 น.	พิธีปิด

รายนามวิทยากร

1. Dr. Frank J. Gonzalez	National Cancer Institute, Bethesda MD, USA 20892
2. Dr. Charles A. Marsden	School of Biomedical Sciences Institute of Neuroscience, E Floor Medical School, Queens Medical Centre, Nottingham, NG 72 UH
3. ดร. ศุภรา รัตนพิทยกุล	ภาควิชาเภสัชวิทยา คณะแพทยศาสตร์ มหาวิทยาลัยศรีนครินทรวิโรฒ
4. รศ. ดร. ชัยชาญ แสงดี	ภาควิชาเภสัชวิทยา คณะแพทยศาสตร์ มหาวิทยาลัยเชียงใหม่
5. ศาสตราจารย์ วราชาติ ศิริวราภรณ์	ภาควิชาชีวเคมีและนวัตกรรมชีวสารสนเทศและ จีโนมประยุกต์ คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล
6. รศ. พญ. ศุภนนา ชุมพูร์วีป	ภาควิชาเภสัชวิทยา คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
7. รศ. นพ. อภิชาต คงกะนันท์	คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
8. รศ. นพ. นาโนนช หล่อตระกูล	ภาควิชาจิตเวชศาสตร์ คณะแพทยศาสตร์ โรงพยาบาลรามาธิบดี มหาวิทยาลัยมหิดล
9. ผศ.นพ.สุรัสย เกื้อสิริกุล	ภาควิชาจิตเวชศาสตร์ คณะแพทยศาสตร์ โรงพยาบาลรามาธิบดี มหาวิทยาลัยมหิดล

10. อ. พญ.สุทธิพร เจริญนาสิน

ภาควิชาจิตเวชศาสตร์ คณะแพทยศาสตร์ศิริราชพยาบาล
มหาวิทยาลัยมหิดล

คณะกรรมการตัดสินการประกวดผลงาน oral / poster presentation

รศ. ดร. พลทิรี ทศนัย อธิบดีจันทร์

รศ. ดร. พันเอก บพิตร กลางกัลยา

ดร. จุดน จันทรารักษ์ศรี

Dr. Chiravat Sadavongvivad's Memorial Lecture

**“ The role of nuclear receptors in drug
toxicology and cancer research”**

by

Dr. Frank J. Gonzales

Serotonin & Depression – Recent Advances in Understanding

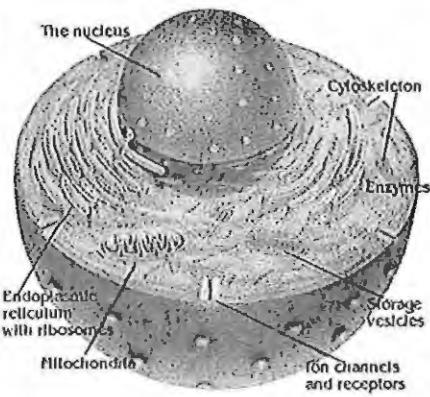
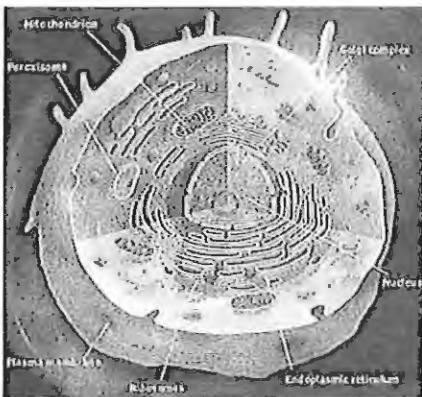
Professor Charles A Marsden

School of Biomedical Sciences, Institute of Neuroscience, E Floor, Medical School,
Queens Medical Centre, Nottingham, NG72UH

Depression is the fourth major illness in the western world and is predicted to rise to number two. More days are lost at work through depression and related illness than from any other cause. While drug treatment has improved over the years, mainly due to a reduction in side-effects rather than increased clinical efficacy, we still lack effective fast acting drug therapy. The great need is to understand the mechanisms involved in the long-term action of existing drugs so that we might more effectively target the key events. This talk will review our current understanding of depression with particular reference to the mechanism of action of antidepressant drugs.

The interest in serotonin and depression dates from the time when it was first shown that tricyclic antidepressant drugs prevented the reuptake of both serotonin and noradrenaline back into the pre-synaptic nerve endings. Studies on human suicide victims also indicated low serotonergic function. More recently the advent of the serotonin selective reuptake inhibitors (SSRIs) as successful antidepressant drugs has increased research activity into the role of serotonin in depression from two stand points: Is there evidence for serotonin dysfunction in depression and why do antidepressants take so long to be clinically effective when they work via activation of serotonergic systems in the brain?

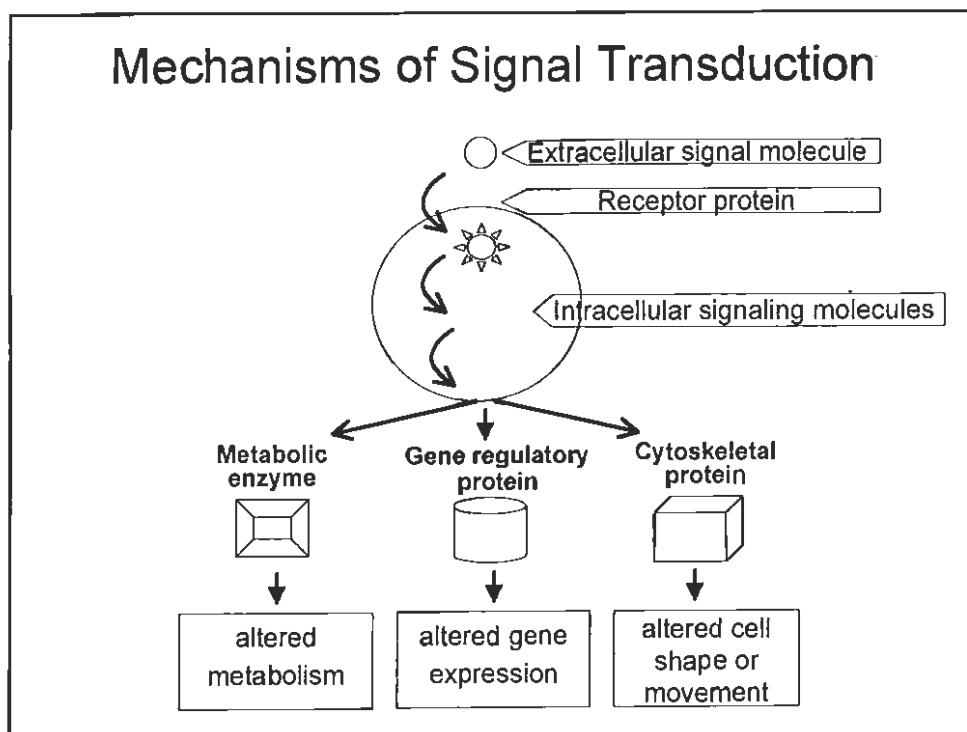
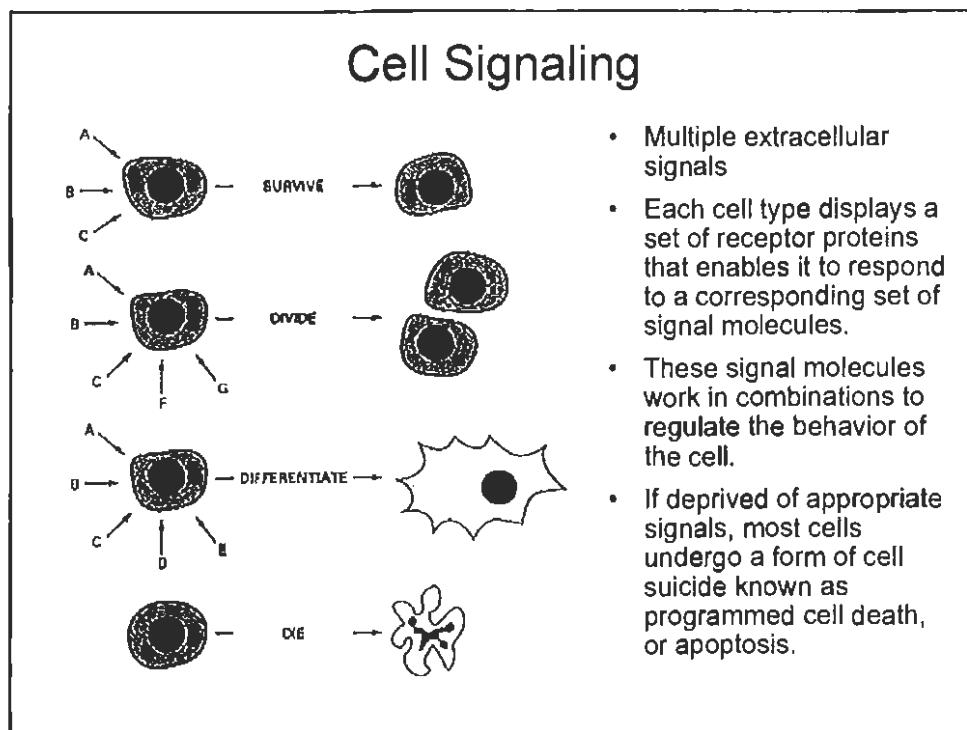
Human studies using tryptophan depletion clearly indicate when brain serotonin levels are reduced by preventing brain access to tryptophan relapse can be induced in patients in remission from depressive symptoms. Neuroendocrine studies have shown 5HT_{1A} receptor activation increases prolactin and ACTH release and these neuroendocrine responses are blunted in depressives when activated by treatments that increase pre-synaptic serotonin release but not when using direct agonists indicating reduced pre-synaptic serotonin function in depression. Overall there is strong evidence for a



serotonergic dysfunction in depression involving decreased pre-synaptic depression at least there is also decreased noradrenergic and possibly dopaminergic function.

The SSRIs are rather similar in clinical efficacy to the older tricyclic drugs but with the advantage that they have fewer side-effects notably no muscarinic antagonism. They do however have other side-effects reflecting increased serotonergic function at 5HT₂ (loss of libido) and 5HT₃ (nausea) receptors. The real scientific interest in the SSRIs is whether by studying selective serotonin uptake inhibition we can understand the delay in clinical effect.

Blockade of serotonin reuptake results in increased synaptic serotonin and consequently activation of the inhibitory somatodendritic (5HT_{1A}) and terminal (5HT_{B/D}) autoreceptors resulting in reduced serotonergic function. It is suggested that increased serotonin function is only observed following desensitisation of these autoreceptors. The resultant increased serotonin release can then activate post-synaptic serotonin receptors, in particular 5HT_{1A}, important in regulating responses to stress and aversive situations so increasing resilience and causing disinhibition to improve mood. It is now clear that this is not the complete story as SSRIs and other antidepressants also alter gene expression through activation of CREB and an effect of this is to increase release of BDNF as well as other neurotrophic factors. These effects appear to occur in animals particularly within the hippocampus and dentate gyrus. This raises the concept that long-term antidepressant treatment may increase synaptic contacts and remodel 'brain wiring' in areas of the limbic system. It is interesting to note that analysis of the clinical data indicates that 2 years of treatment may be required for maximal benefit from antidepressant drugs.

There is increasing use of antidepressant drugs in children and if these drugs can alter gene expression and release of neurotrophic factors there is an obvious need to very carefully evaluate their effect on the developing brain. This will be briefly discussed in the talk.



Overview of Signal Transduction

ดร. สุวรา วัฒนพิทยกุล
ภาควิชาเคมีชีววิทยา คณะแพทยศาสตร์
มหาวิทยาลัยศรีนครินทร์วิโรฒ

OUTLINE

- General principles of cell communication
- Receptor-effector systems
 - Receptors and their effector systems
 - Membrane receptors
 - Nuclear receptors
- Specific Signal Transduction System
 - Tyrosine kinase
 - G protein
 - Apoptosis

Signal Transduction Receptors

I. RECEPTORS

- Membrane Receptors
 - G protein-coupled receptors
 - Ligand-gated ion channel receptors
 - Receptor tyrosine kinase
 - Cytokine receptors
- Intracellular receptors
 - Steroid hormone receptors
 - Thyroid hormone receptors
 - Vitamin D receptors
 - Retinoid receptors

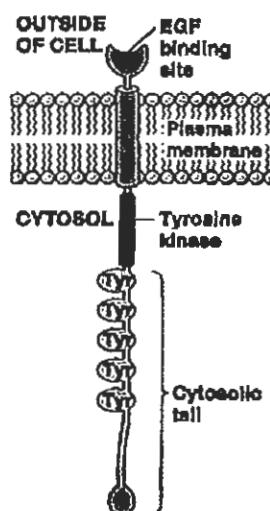
Receptor-Effector Systems

II. EFFECTOR SYSTEMS (Intracellular Signal Transduction Pathways)

- second messengers
 - cAMP
 - cGMP
 - phospholipids and Ca^{2+}
- third messengers
 - protein kinases (PKA, PKC)
 - protein tyrosine kinases
 - serine/threonine kinases
- forth messengers
 - transcription factors

Tyrosine Kinase Signaling

- Receptor tyrosine kinases (RTKs)
 - Structural features
 - Classification
 - Activation
 - MAPK signaling pathway
- Non receptor protein tyrosine kinases (PTKs)
 - Classification
 - JAK/STAT pathway


Important Abbreviations

CSF-1 colony-stimulation factor-1	MEK MAP kinase/ERK kinase
EGF epidermal growth factor	MAPKK MAPKK (humans)
ELAM-1 endothelial leukocyte adhesion molecule 1	PDGF platelet-derived growth factor
EPO erythropoietin	PH pleckstrin homology
ERK extracellular signal-regulated kinase	PLC- γ phospholipase C- γ
G-CSF granulocyte colony-stimulation factor	ras rat sarcoma viruses
GAP GTPase-activating proteins	Rho Ras homology
GEF GTP exchange factor	SAPK/JNK stress-activated protein kinase/Janus kinase or c-Jun N-terminal kinase
GM-CSF granulocyte-macrophage colony-stimulation factor	SH2, SH3 Src homology domain 2, 3, respectively
Grb2 growth factor receptor binding protein-2	Src Src homology and collagen
ICAM-1 intercellular cell adhesion molecule 1	SOS son of sevenless
IFN interferon	v-Src avian retroviral; Src Rous sarcoma virus
IRF-1 interferon regulatory factor 1	TH Tec homology
MAP mitogen-activated protein	Tyk2 tyrosine kinase 2
MAPK mitogen-activated protein kinase	VCAM-1 vascular cell adhesion molecule 1
MAPKK or MEK mitogen-activated protein kinase kinase	

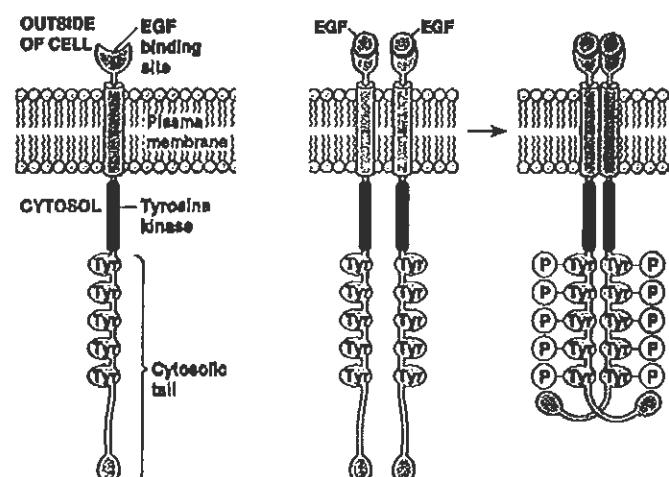
Receptor Tyrosine Kinases

- These receptors traverse the membrane only once
- Receptor has intrinsic enzyme activity (kinase domain)
- Respond exclusively to peptide stimuli
 - cytokines
 - mitogen growth factors: e.g., platelet derived growth factor (PDGF), epidermal growth factor (EGF)

Structural Features of RTKs

(a) Structure of the epidermal growth factor (EGF) receptor

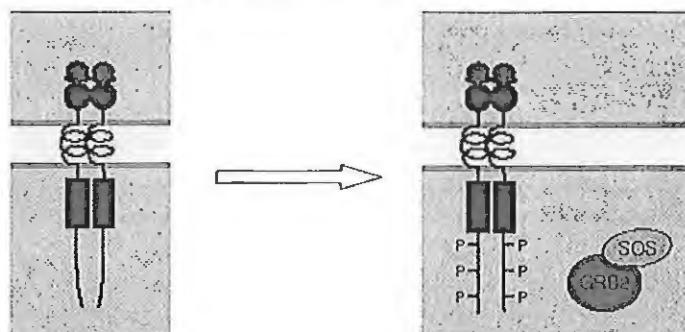
Four major domains:


- Extracellular binding domain
- transmembrane domain
- Intracellular tyrosine kinase domain
- Intracellular regulatory domain

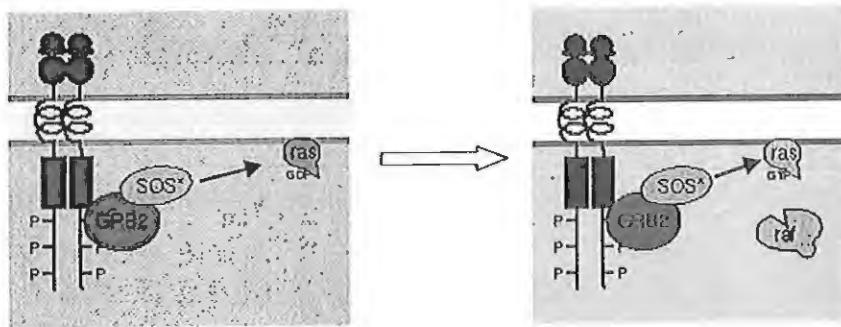
Classification of RTKs

Class	Examples	Structural Features of Class
I	EGF receptor, NEU/HER2, HER3	cysteine-rich sequences
II	insulin receptor, IGF-1 receptor	cysteine-rich sequences; characterized by disulfide-linked heterotetramers
III	PDGF receptors, c-Kit	contain 5 immunoglobulin-like domains; contain the kinase insert
IV	FGF receptors	contain 3 immunoglobulin-like domains as well as the kinase insert; acidic domain
V	vascular endothelial cell growth factor (VEGF) receptor	contain 7 immunoglobulin-like domains as well as the kinase insert domain
VI	hepatocyte growth factor (HGF) and scatter factor (SC) receptors	heterodimeric like the class II receptors except that one of the two protein subunits is completely extracellular. The HGF receptor is a proto-oncogene that was originally identified as the Met oncogene
VII	neurotrophin receptor family (trkA, trkB, trkC) and NGF receptor	contain no or few cysteine-rich domains; NGFR has leucine rich domain

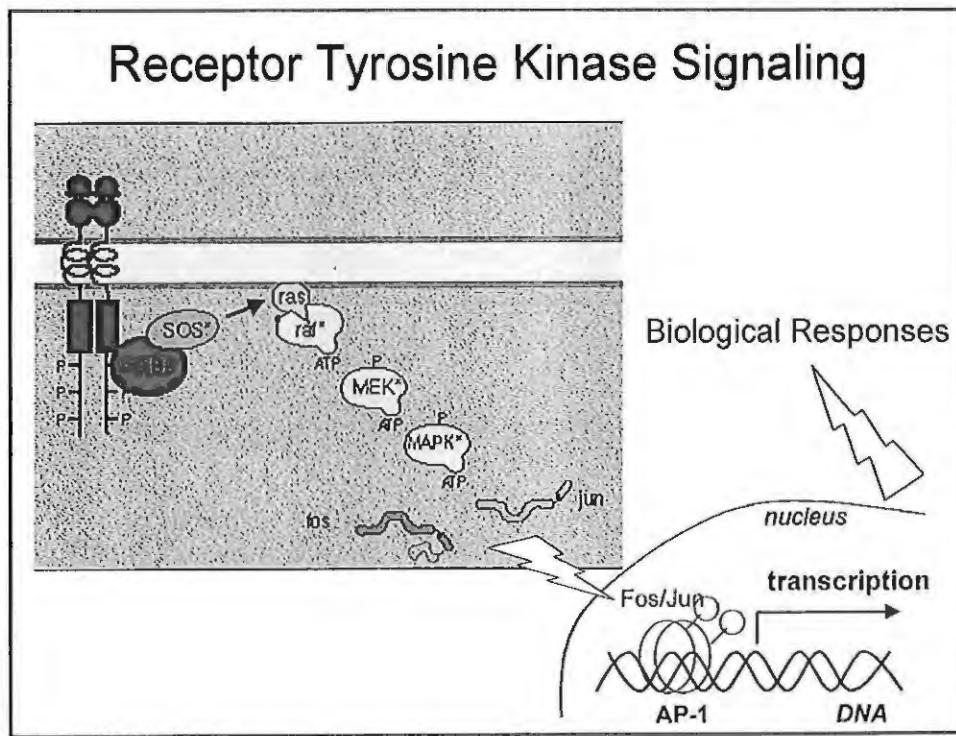
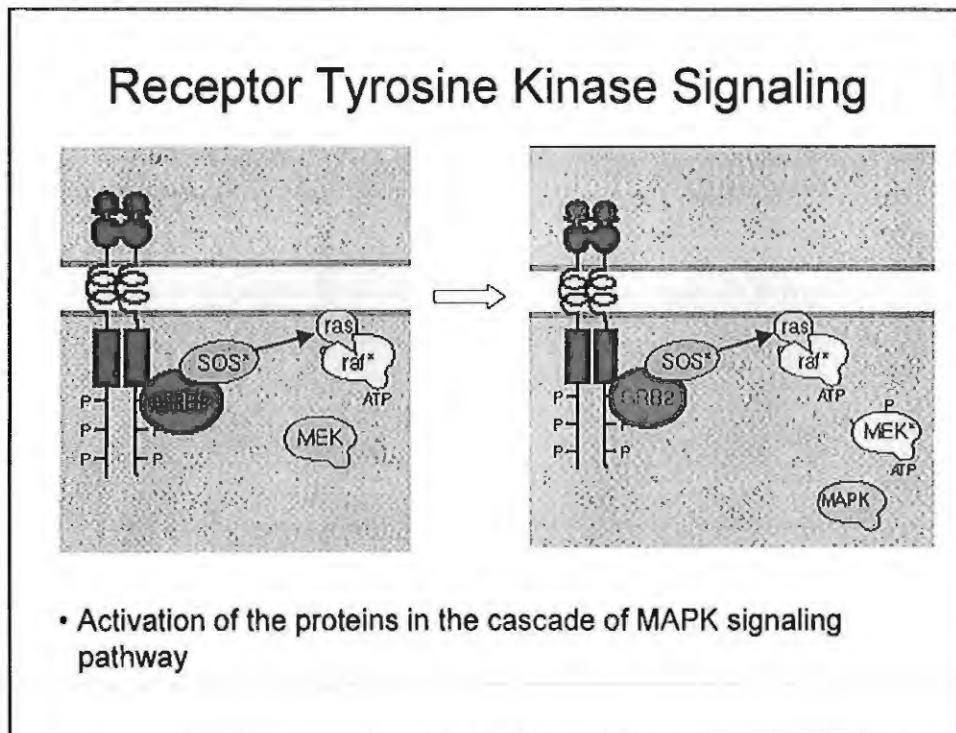
Receptor Tyrosine Kinases

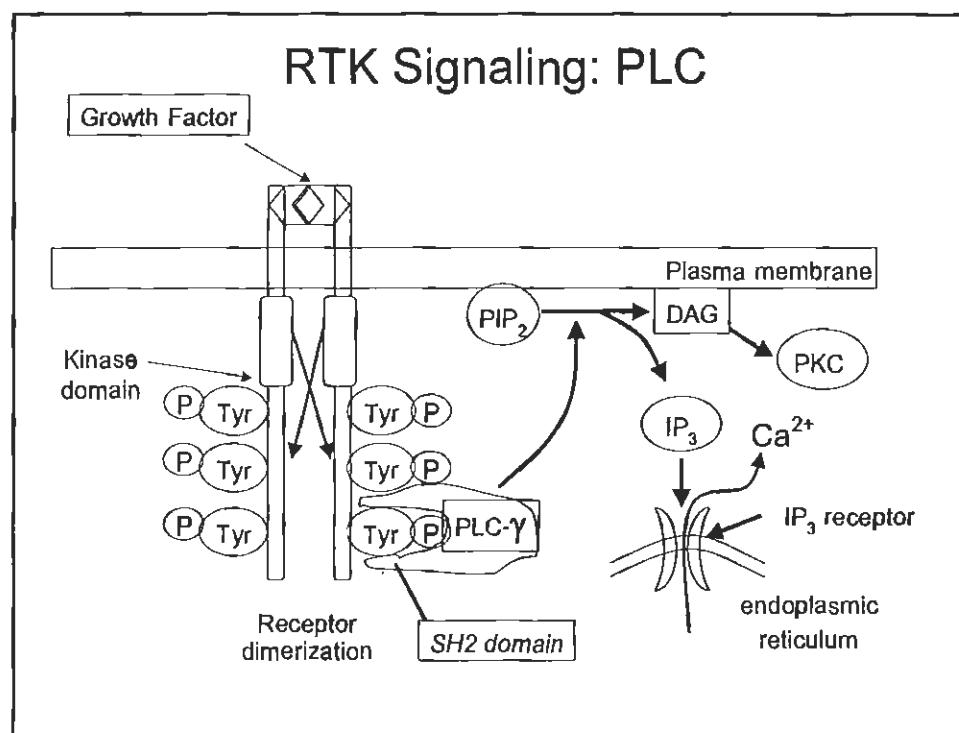

Structure of RTK dimerization autophosphorylation

(a) Structure of the epidermal growth factor (EGF) receptor


(b) Activation of the EGF receptor

Receptor Tyrosine Kinase Signaling

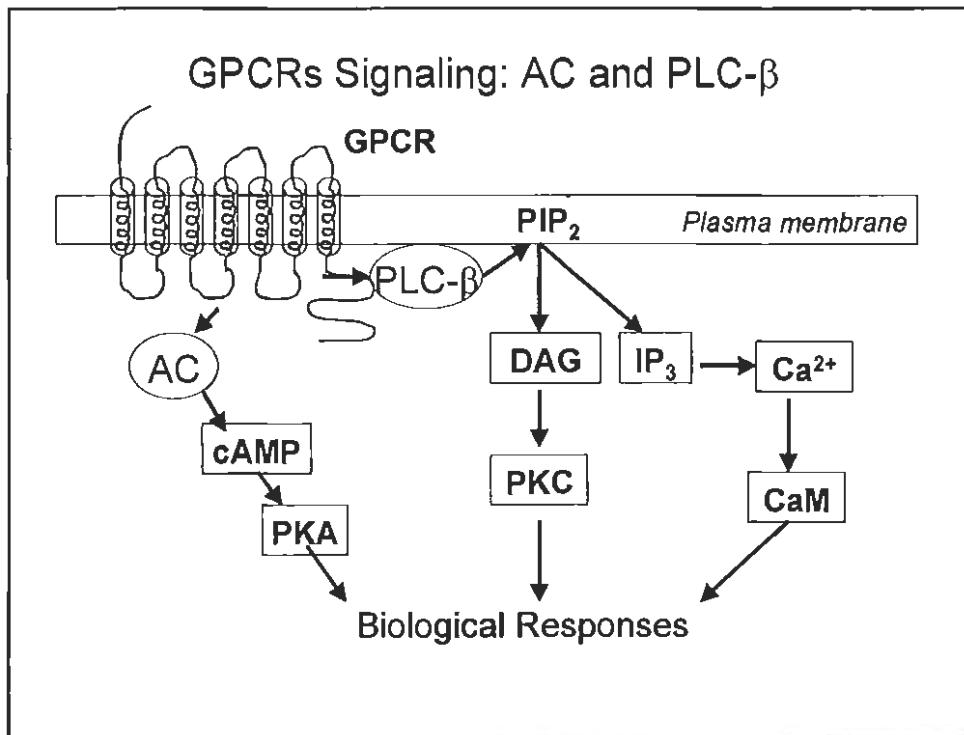




- Ligand binding
- Receptor dimerization
 - increase activity of kinase domain
 - create "docking site"
- Autophosphorylation
- Recruitment of SH2-containing protein (adapter protein, e.g. GRB2)

Receptor Tyrosine Kinase Signaling

- Binding of the adaptor proteins to the phosphorylated tyrosine residues (*docking sites*)
- Ras is activated, followed by the activation of Raf

**Signaling Through Protein Tyrosine Kinases
(phosphorylation & dephosphorylation)**


- Tyrosine kinase adds a phosphate group (Pi) specifically to tyrosine residue
- Phosphatase removes Pi
- Phosphorylation state alters shape (conformation) of protein and changes its function

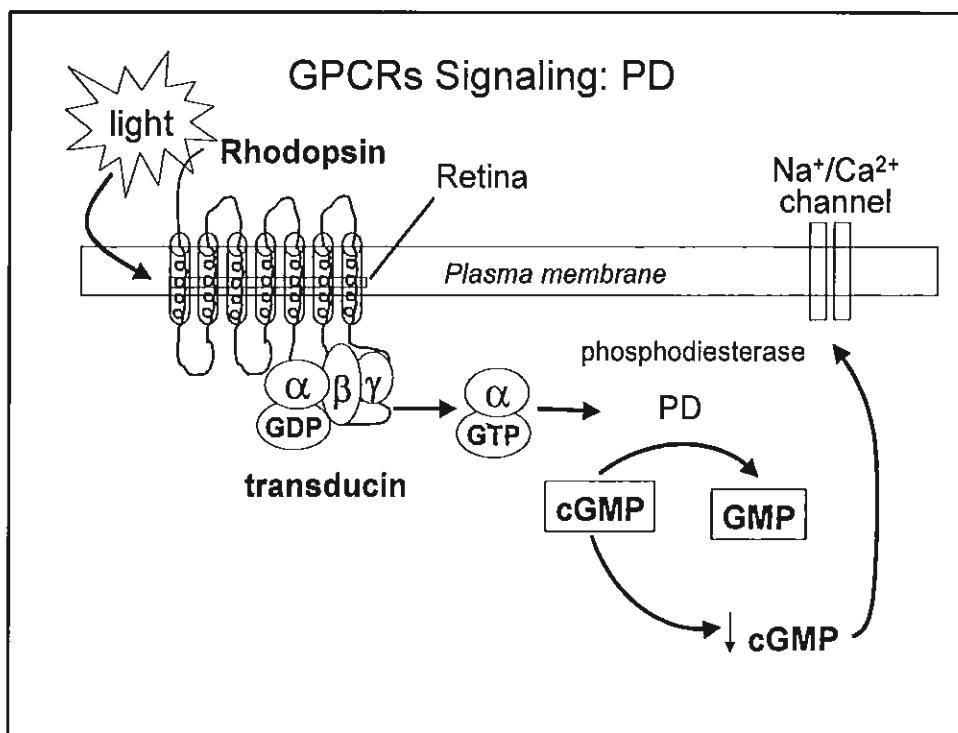
MAPK

- MAPK: a family serine/threonine kinases
- MAPK subfamilies
 - ERKs
 - Raf-MEK-ERK pathway
 - Cell proliferation, survival and differentiation
 - SAPK/JNK
 - Stress: e.g., UV
 - CD40: a receptor related to the TNF and IL-1 receptors which binds CD40 ligand and elicits a variety of effects in B cells
 - P38
 - Inflammation
 - Cell death

Ras, Raf and MAP Kinase Pathway

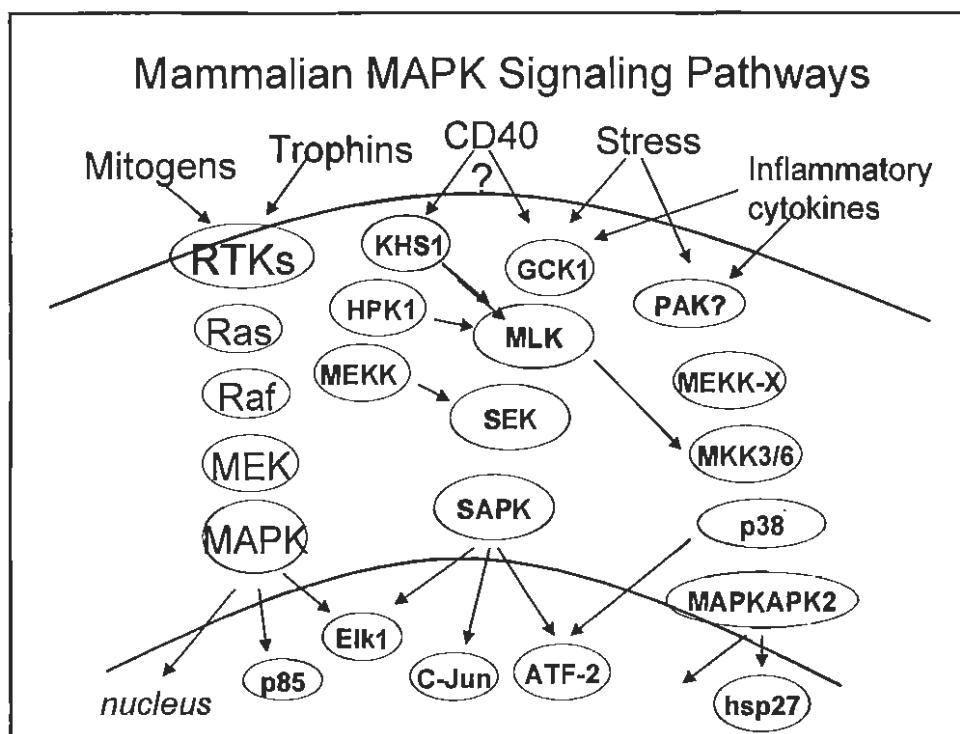
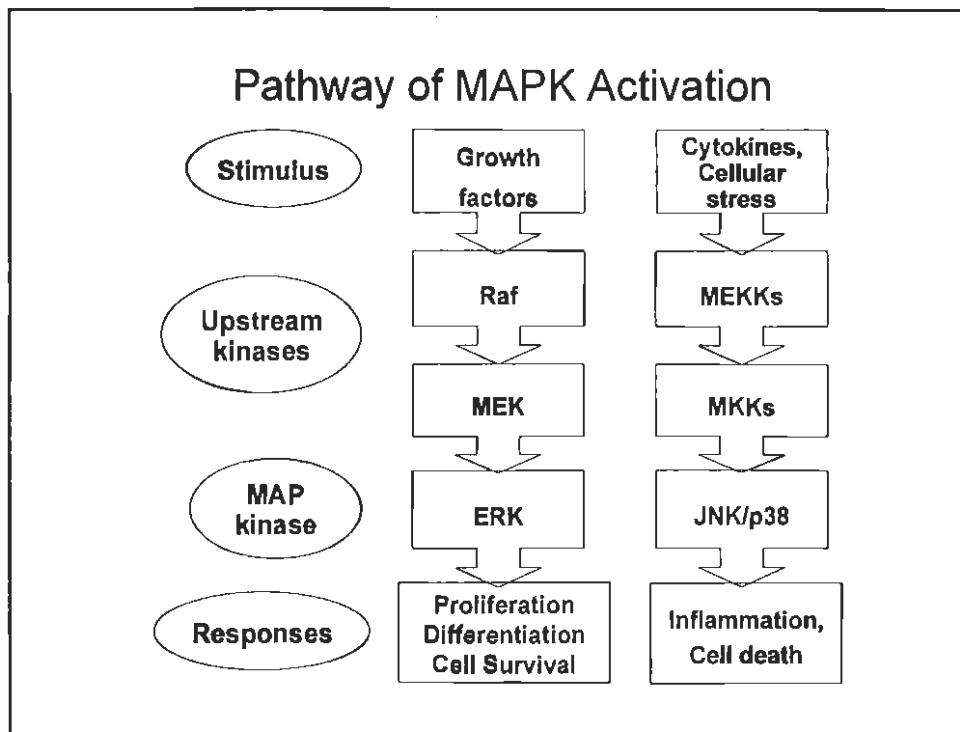
- Activated in response to growth factors and other stimuli resulted in proliferation, differentiation, cell survival, inflammation, and cell death
- MAP Kinases (mitogen-activated protein kinases) is a family of protein-serine/threonine kinases
- The first effector protein of this pathway is Ras, a GTP-binding protein
- Activation of Ras leads to activation of Raf protein serine/threonine kinase, which phosphorylates and activates MAP Kinase and down stream signaling molecules

GPCR-linked Effector Systems


3. GPCRs that are coupled to transducin that activate a phosphodiesterase

3.1 leading to a decrease in the level of cGMP

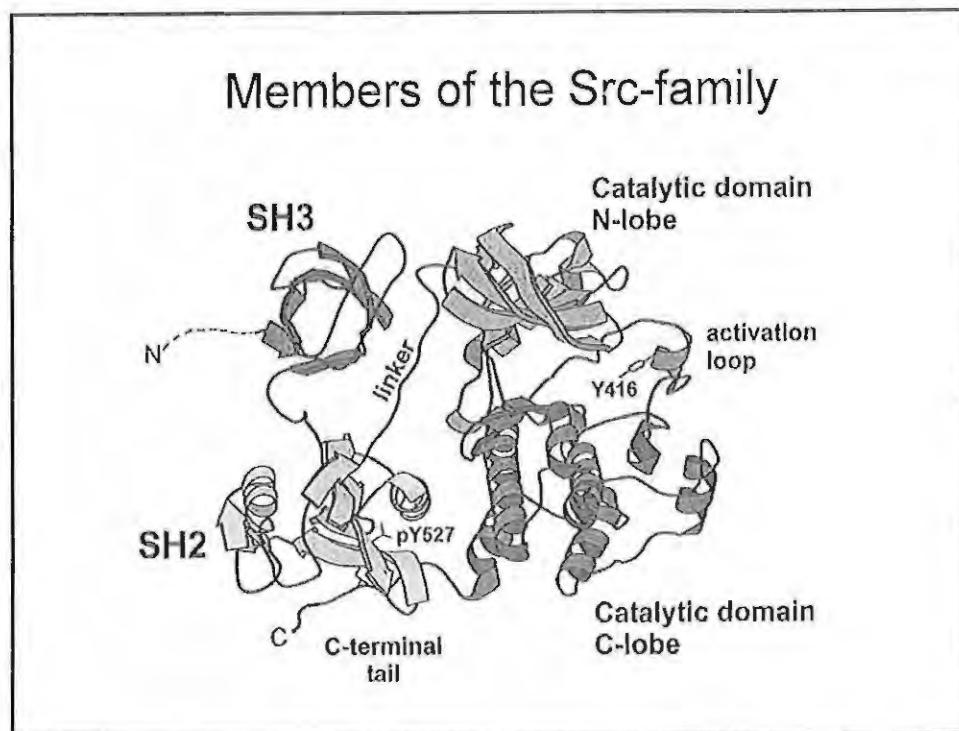
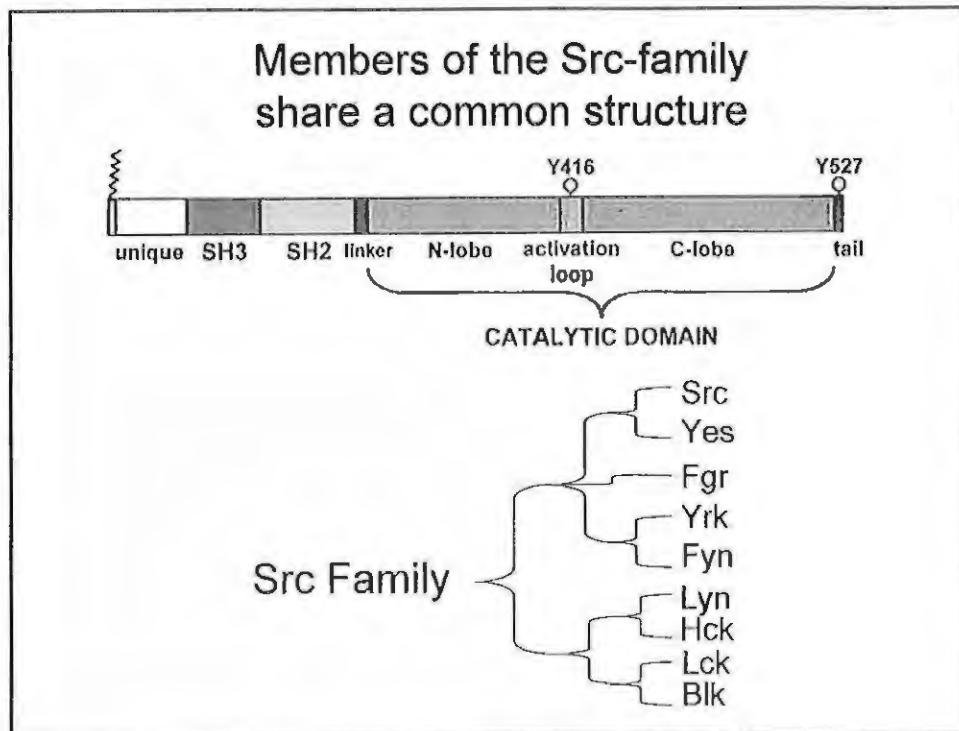
- results in the closing of a $\text{Na}^+/\text{Ca}^{2+}$ channel
--> hyperpolarization of the cell
- e.g., role of vitamin A in vision

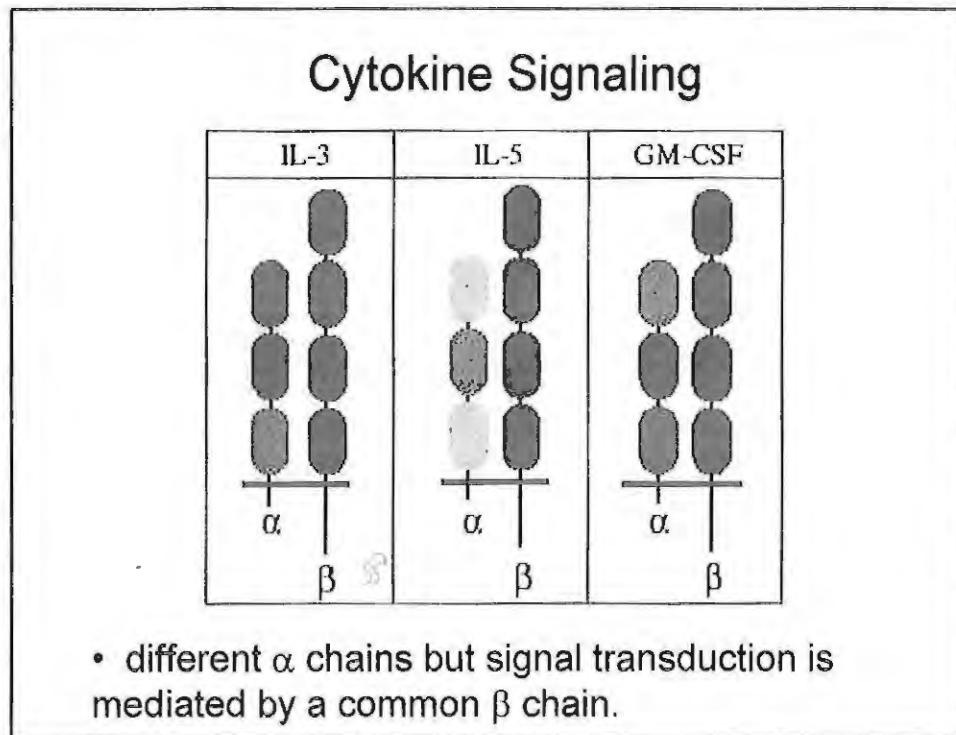
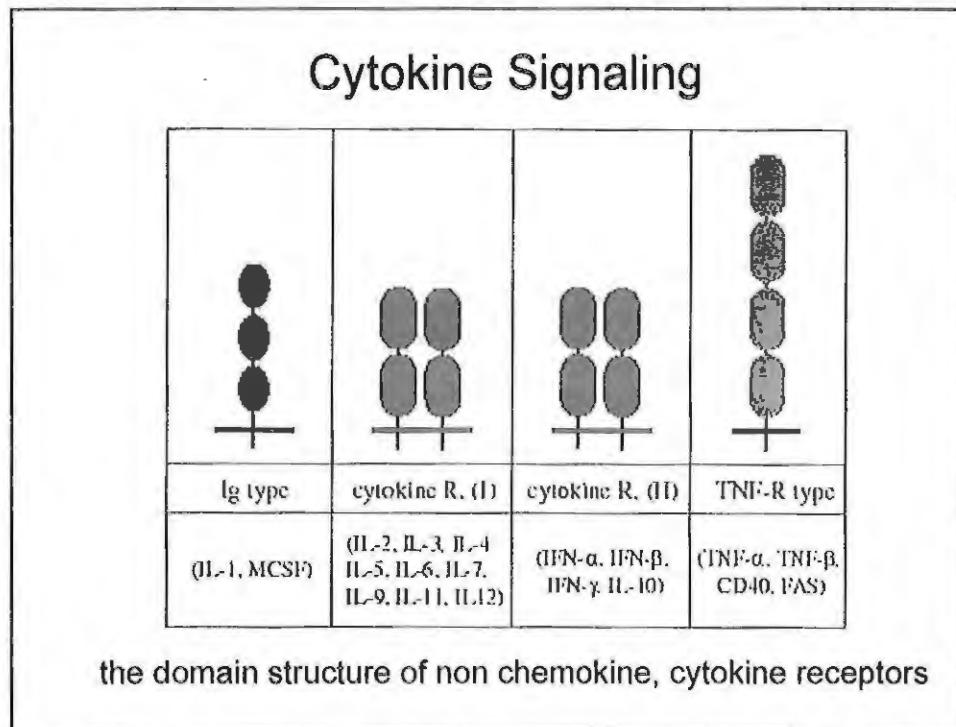


3.2 leading to increase in cGMP formation

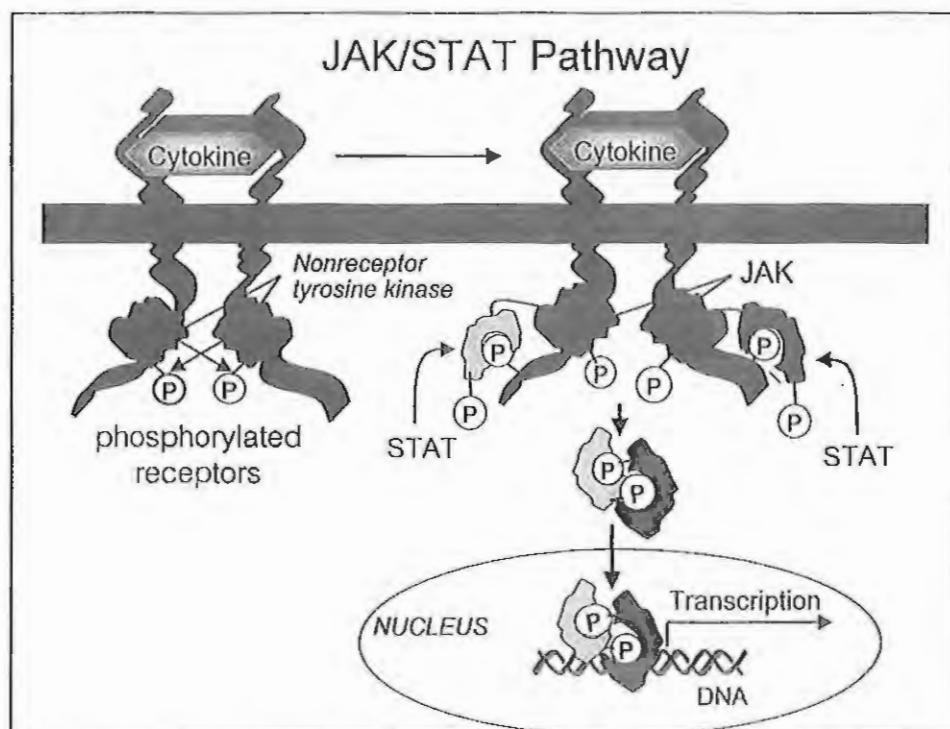
- e.g., angiotensin type II (AT_2) receptor

GPCR-linked Effector Systems

4. GPCRs signaling to MAPK/ERK
 - Proliferative pathway

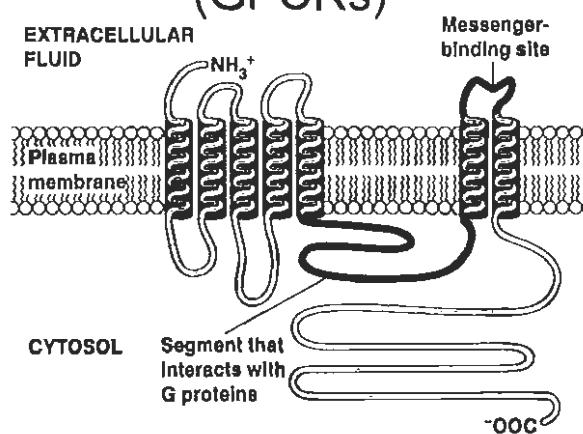





Non-receptor protein tyrosine kinases (PTKs)

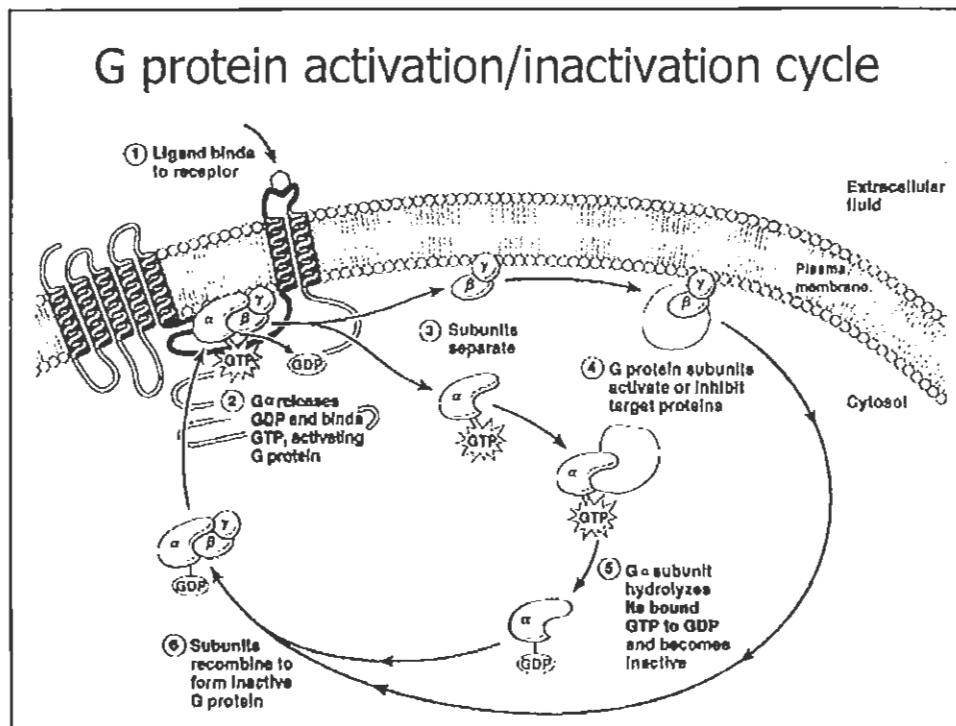

- Most PTKs couple to the receptors that lack intrinsic enzymatic activity e.g.,
 - cytokine receptors
 - CD4 and CD8 cell surface glycoprotein of T cells
 - T cell antigen receptor (TCR)
- PTKs are classified into families
 - *Src**
 - *Jak**
 - *Fps/Fes*
 - *Tec/Btk*
 - *Syk/ZAP70*

PTKs: Src

- SH2 domain
 - ~ 100 amino acids ---> binding pocket
 - binds to phosphorylated tyrosine residues of the receptor
- SH3 domain
 - ~ 60 amino acids
 - protein-protein interaction
 - 10-residue consensus sequence:
 $XPXXPPPFXP$ (X = any amino acid; P = proline; F = phenylalanine)


JAK/STAT UTILIZATION

RECEPTOR FAMILY	RECEPTOR	JAKs	STATs
gp140	IL-3, IL-5, GM-CSF	Jak2	Stat5
gp130	IL-6, IL-11, OSM, CNTF G-CSF, LIF, CNTF, CT- 1 IL-12 Leptin	Jak1, -2, Tyk2 Jak2, Tyk2 Jak2	Stat1, -3, -5 Stat4 Stat3, -5
IL-2	IL-2, IL-7, IL-9, IL-15 IL-4 IL-13	Jak1, -3 Jak1, -3 Jak1, -2, Tyk2	Stat5, -3, -1 Stat6 Stat6
Growth Hormone	GH TPO PRO, EPO	Jak2 Jak2 Jak2	Stat5, -3, -1 Stat3, -5 Stat5
Interferon	IFN α , IFN β IFN γ IL-10	Jak1, Tyk2 Jak1, -2 Jak1, Tyk2	Stat1, -2, -3, -5 Stat1 Stat3, -1
RTKs	EGF/ErbB, TGF α , PDGF CSF-1 Insulin bFGF HGF		Stat1, -3, -5 Stat5, -3 Stat1, -3 Stat3
GPCR	Angiotensin Serotonin a-Thrombin CXCR4	Jak2, Tyk2 Jak2 Jak2, -3	Stat1, -2, -3 Stat3 Stat3


G protein-coupled receptors (GPCRs)

- Diverse physiological functions
 - small biogenic amines: 5-HT, dopamine, acetylcholine (Ach)
 - glycoprotein hormones: TSH, FSH, luteinizing hormone/choriogonadotropin (LH/CG)
 - sensory systems: vision, smell and taste
 - miscellaneous ligands: neurotransmitters, nucleotides, prostanoids, Ca^{2+} , and lipid
 - certain chemokine receptors: CCR-5 receptor

G protein-coupled receptors (GPCRs)

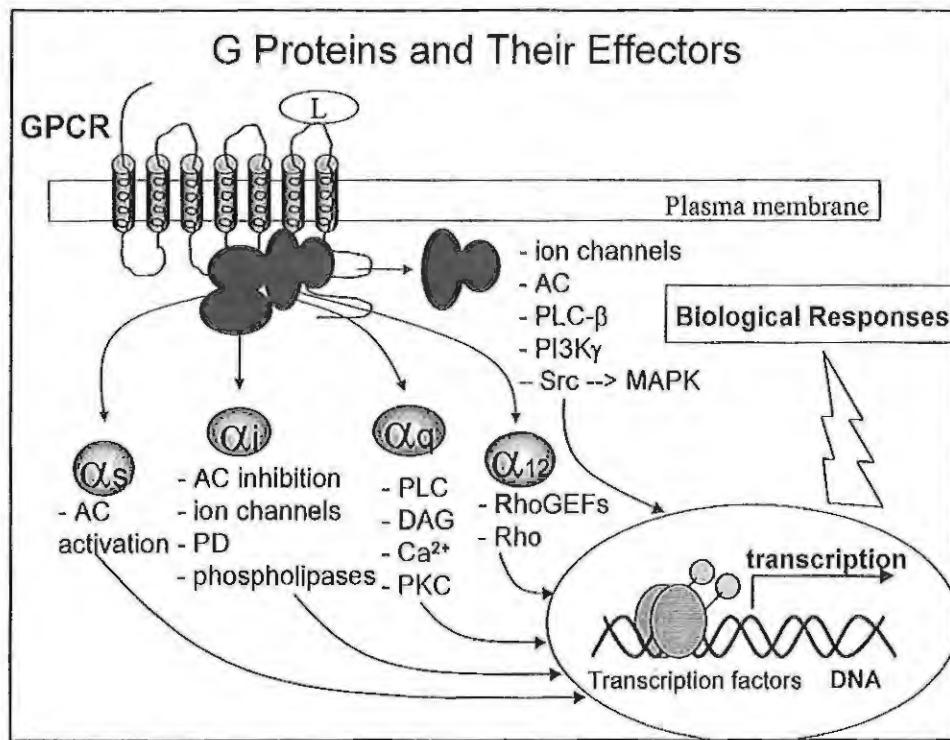
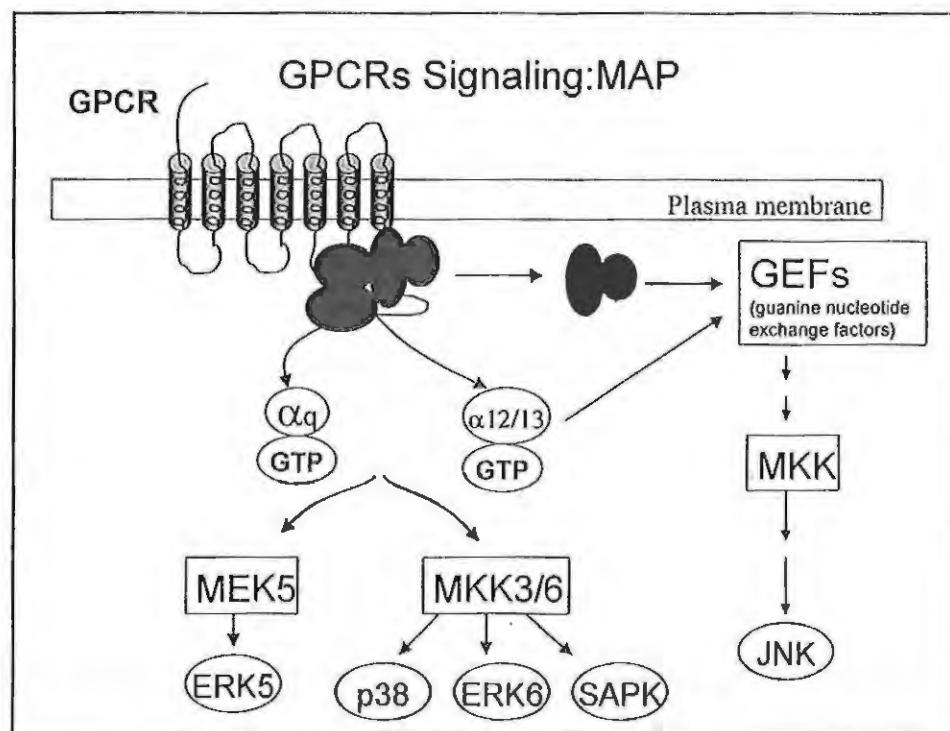
- Seven transmembrane alpha helices
- The primary messenger binds to the extracellular portion of the receptor
- This binding causes an intracellular portion of the receptor to activate an adjacent G protein.

G protein

- G protein subunits
 - alpha (G_α)
 - beta (G_β)
 - gamma (G_γ)
- Inactive State: G_α-GDP
- Active State: G_α-GTP

GPCR-linked Effector Systems

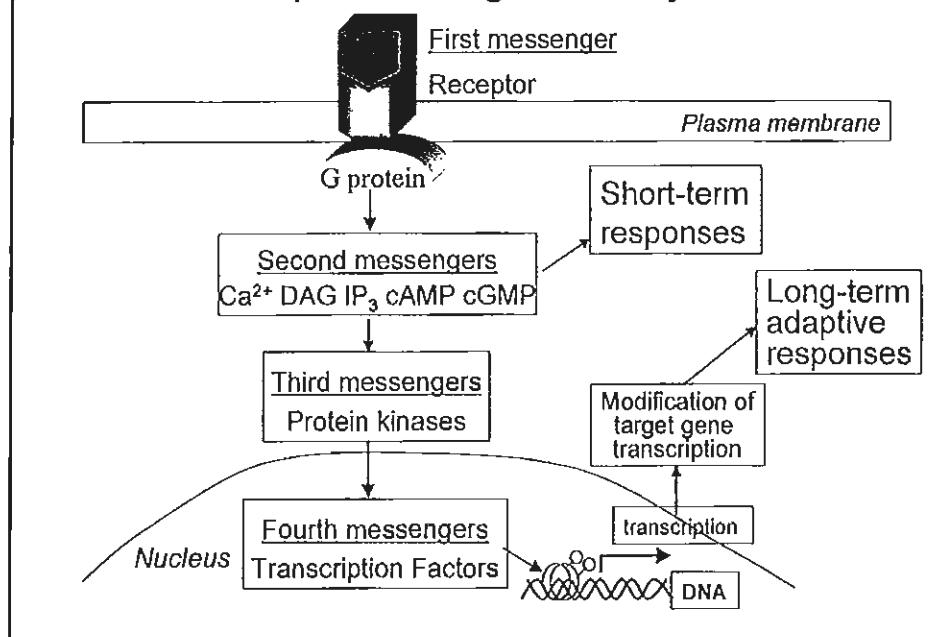
1. GPCRs that modulate adenylate cyclase (AC) activity



- 1) Gs: increase the production of cAMP
 - leading to an activation of protein kinase A (PKA)
 - e.g., beta-adrenergic receptors, glucagon, odorant molecule receptors
- 2) Gi: decrease the production of cAMP
 - repress adenylate cyclase activity
 - e.g., alpha-adrenergic receptors

GPCR-linked Effector Systems

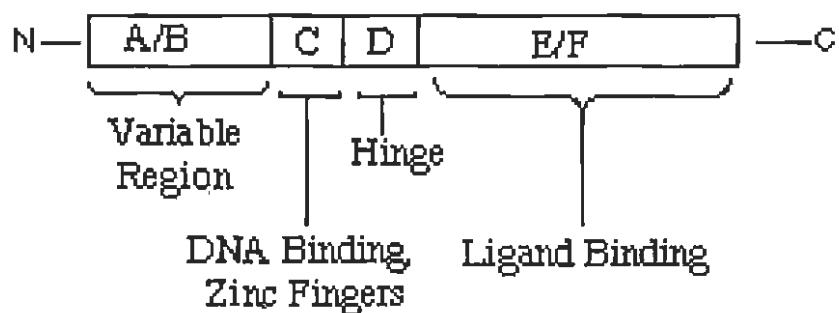
2. GPCRs that activate phospholipase

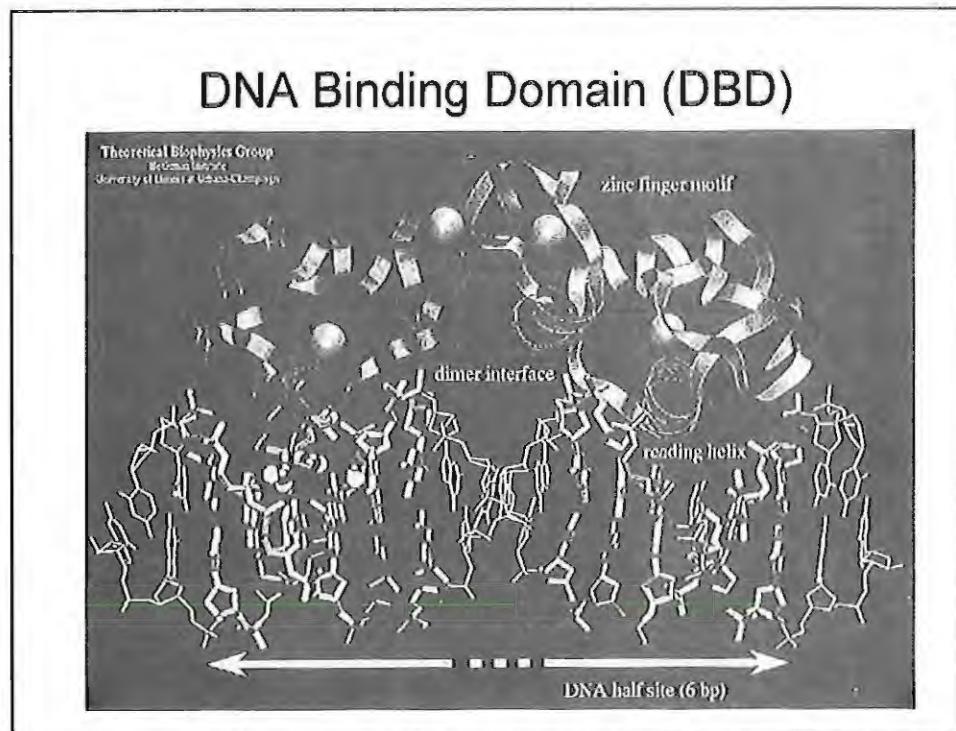
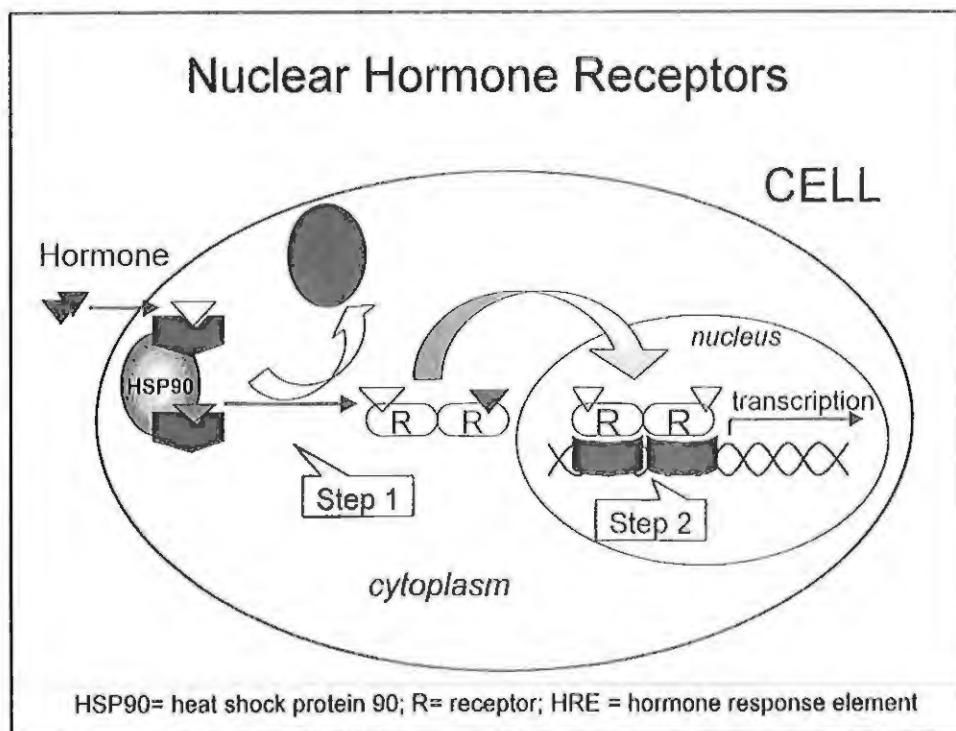
C-gamma (PLC- β)


- leading to the hydrolysis of polyphosphoinositides (PIP₂) generating the second messengers, diacylglycerol (DAG) and inositoltrisphosphate (IP₃)
- e.g., angiotensin type I (AT₁) receptor, bradykinin, vasopressin receptors

G Proteins and Their Effectors

G Protein	Effectors	Results
I. α_s	<ul style="list-style-type: none"> • Adenylate cyclase (AC), activation 	<ul style="list-style-type: none"> • Increase cAMP
II. α_i	<ul style="list-style-type: none"> • AC, inhibition • Phospholipases • Phosphodiesterase • Ion channels 	<ul style="list-style-type: none"> • Decrease cAMP • Increase or decrease enzyme activity • Open or close
III. α_q	<ul style="list-style-type: none"> • Phospholipase C-gamma (PLC-γ) • PLC-β 	<ul style="list-style-type: none"> • Hydrolysis of PIP₂ \rightarrow DAG and IP₃ • Activation of PKC
IV. $\alpha_{12/13}$	<ul style="list-style-type: none"> • Rho, RhoGEFs (guanine nucleotide exchange factors) 	<ul style="list-style-type: none"> • Catalyze the exchange of GDP for GTP
V. $\beta\gamma$	<ul style="list-style-type: none"> • Ion channels • PI3Kγ, PLC-β, AC, JNK 	<ul style="list-style-type: none"> • Open or closed • Activation or Inhibition


Transcriptional Regulation by GPCRs



Intracellular Receptors

- Nuclear hormone receptors
 - control development and differentiation of skin, bone and behavioral centers in the brain
 - continually regulate reproductive tissues
 - are ligand-activated transcription factors that regulate gene expression by interacting with specific DNA sequences upstream of their target genes
 - have a two-step mechanism of action
 - 1) binding of the hormone to its receptor
 - 2) receptor binding to DNA and regulation of transcription

Nuclear Hormone Receptors

Structure of Steroid Hormone Receptors

»Apoptosis

- Programmed cell death
- Characeterized by blebbing, vacuole formation, chromatin condensation, and DNA fragmentation
- Signaling pathways in apoptosis
 - External signals : death receptors - death effectors
 - intracellular signals: cytochrome C
- To die or not to die?

Necrosis versus Apoptosis

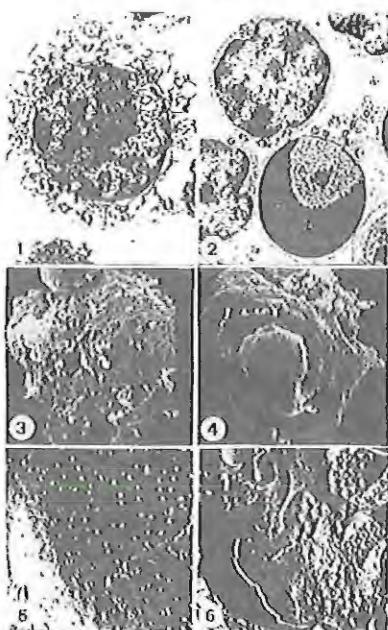


FIGURE 1: A necrotic cell: the disruption of plasma membrane and organelles is observable.

FIGURE 2
An apoptotic (A) and a normal (N) cell. The characteristic chromatin rearrangement appears in A.

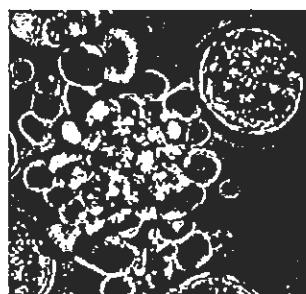

FIGURE 3
A necrotic cell. Numerous lesions appear on the cell surface.

FIGURE 4
An apoptotic cell. Surface blebbing is evident.

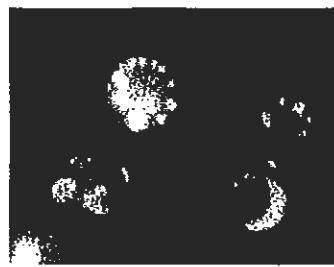
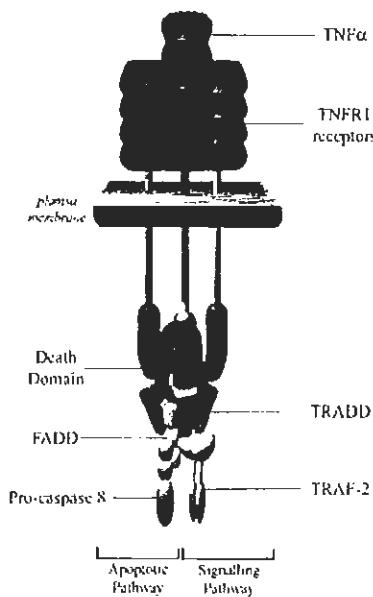

FIGURE 5
A normal cell, nuclear envelope. The regular distribution of nuclear pores is visible.

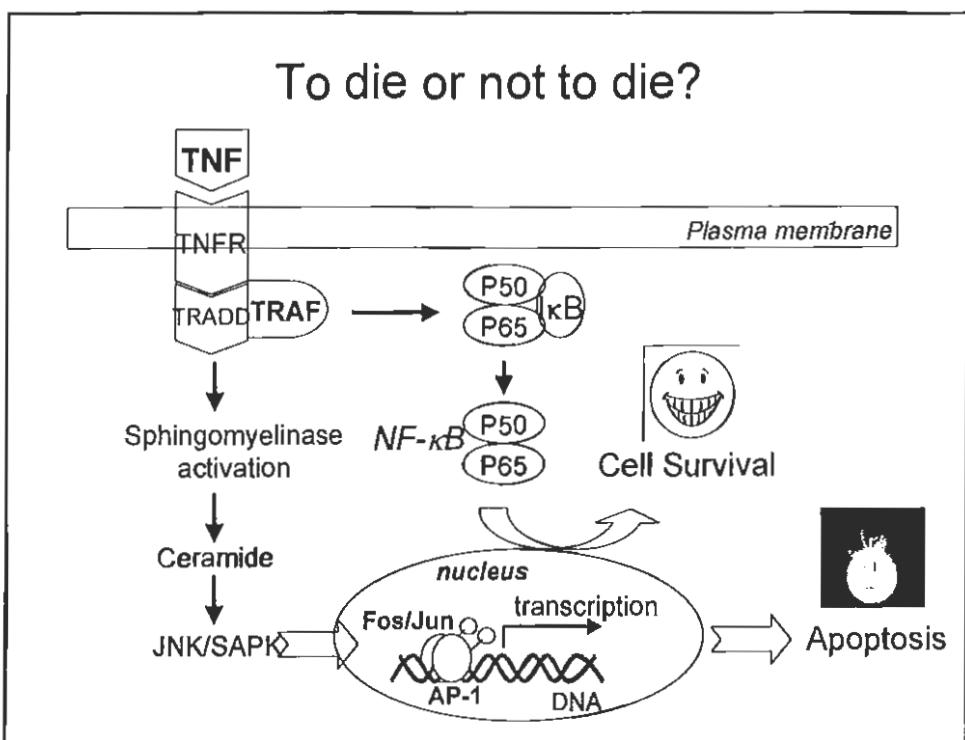
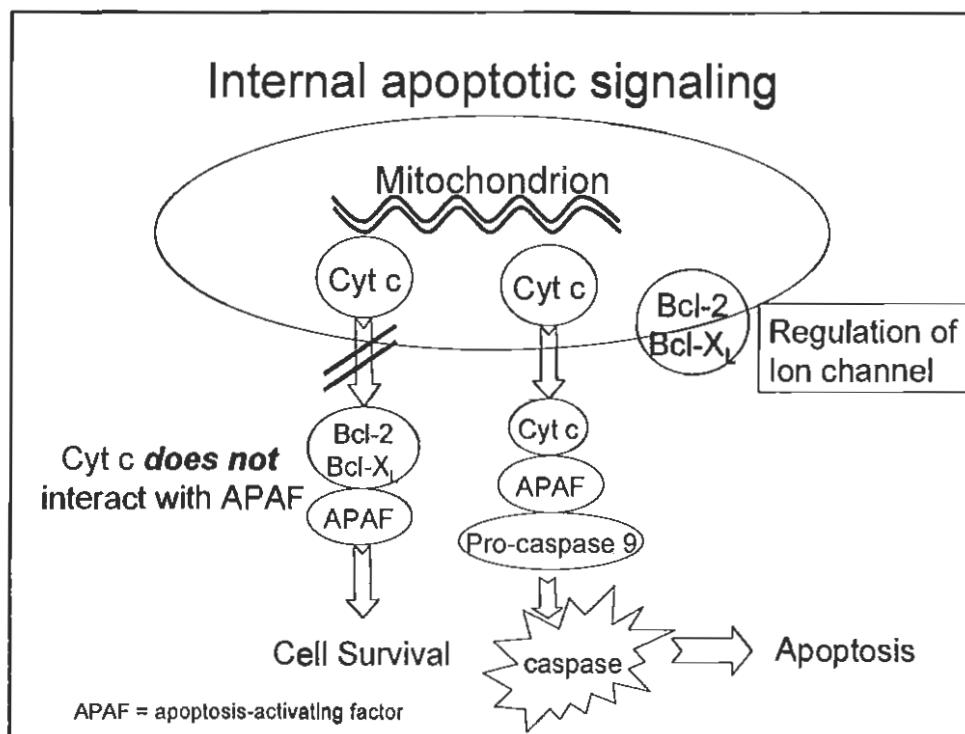
FIGURE 6
An apoptotic cell. The nuclear envelope shows a characteristic clustering (asterisc) of nuclear pores.

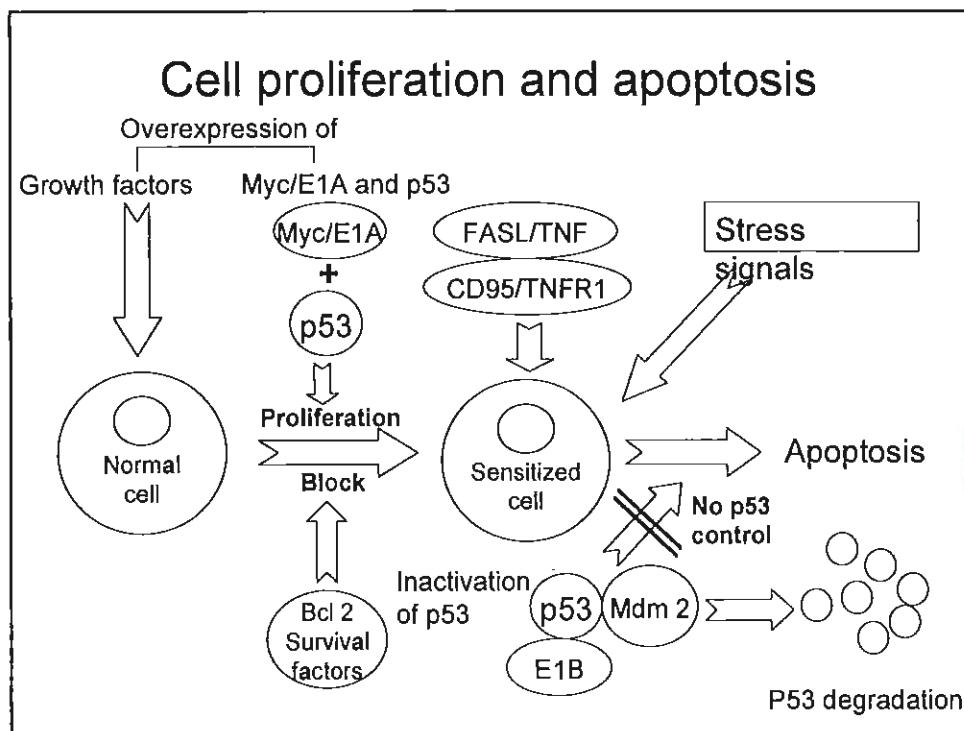
Apoptosis


SF21 cell undergoing apoptosis

human malignant B-lymphocytes. Apoptosis was detected by fluorescence microscopy after staining of DNA with acridine orange.

TNFR - Death Receptor



Prototype of death receptor are:


1. CD95 (Fas Apo1): FADD
2. TNFR-I: TRADD

TNFR = tumor necrosis factor receptor

TRADD = TNFR-associated death domain

FADD = Fas death domain

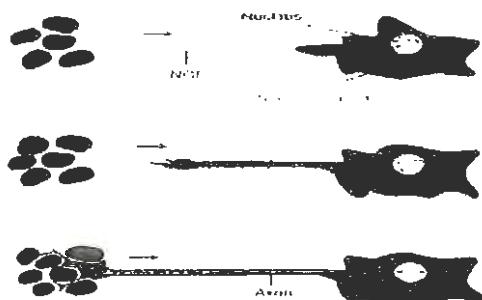
PORCINE BRAIN: FACTS OR FICTION

Dr. Chalchan Sangdee
Dept of Pharmacology
Faculty of Medicine
Chiang Mai University

Cerebrolysin® ...

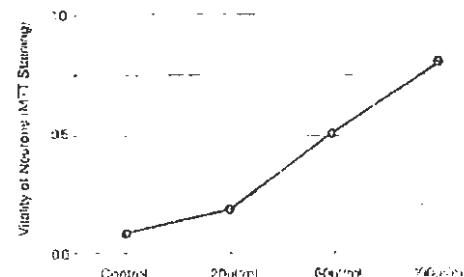
- Peptide preparation produced by the biotechnological standardized enzymatic breakdown of purified porcine brain proteins
- Consists of ~ 15% peptides with a MW not exceeding 10kD and 85% AA based on total nitrogen
- The solution, ready for injection or infusion, is free of proteins, lipid and antigenic properties
- 1 ml of Cerebrolysin® contains 215.2 mg of porcine brain-derived peptide preparation in aqueous solution

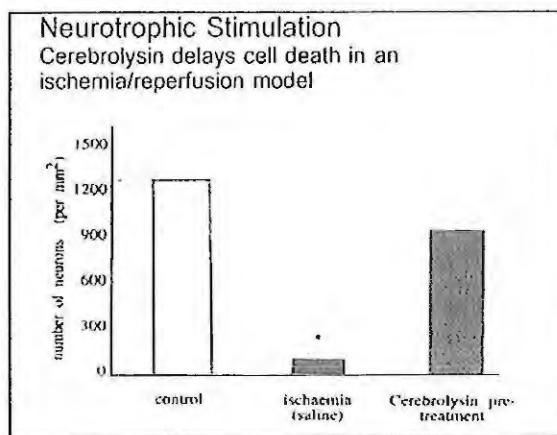
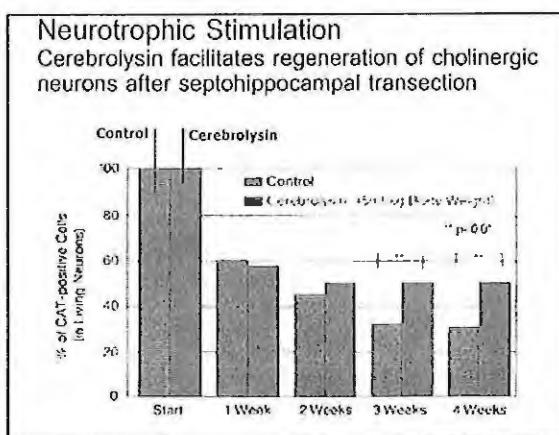
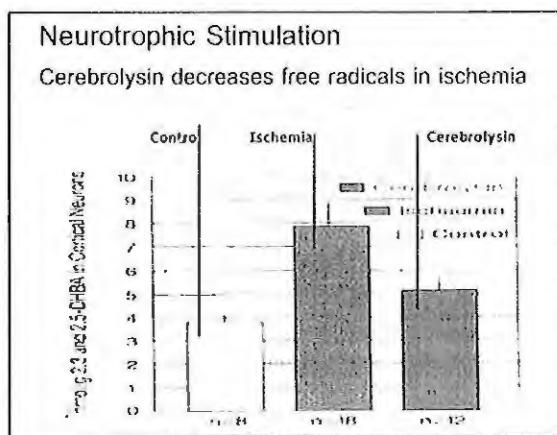
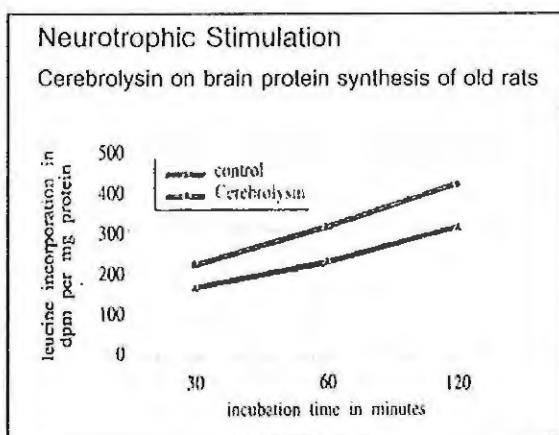
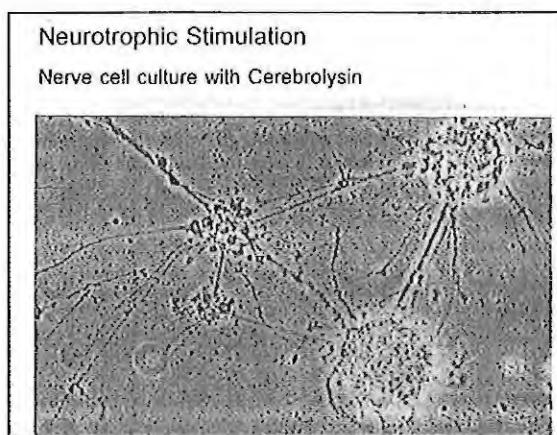
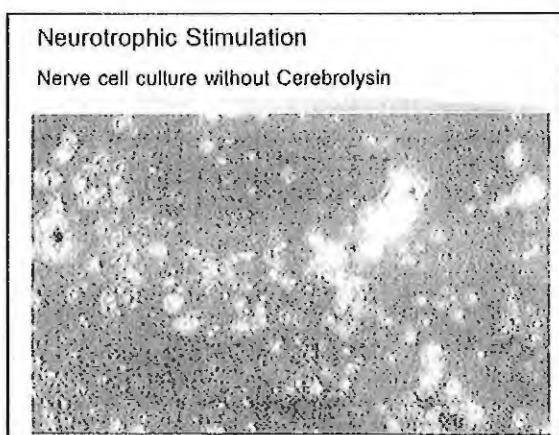
Pharmacological Profile


Effects of the Peptides

- **Neurotrophic Stimulation:** secures the survival and differentiation and protects nerve cells from insults
- **Neuromodulation:** improves behaviors, **memory** learning, changes of neuronal and synaptic plasticities
- **Metabolic Regulation:** protects nerve cells of the brain from lactate acidosis and improves oxygen utilization inside the nerve cells

Mechanisms of Action


- Its action assumed to be similar to naturally occurring neurotrophic factors (NGF) which are a group of proteins with characteristic effects:
 - Neuronal differentiation (sprouting of axons and dendrites)
 - Maintenance of the functional integrity of the nerve cells
 - Protection the nerve cells from lesions
- R. Levi-Montalcini discovered neurotrophic factors or NGF in 1950s







Action of NGF

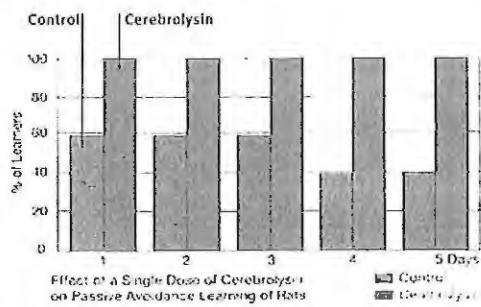
Neurotrophic Stimulation

Cerebrolysin improves the survival of brainstem of chick embryo (Albrecht et al., 1992)

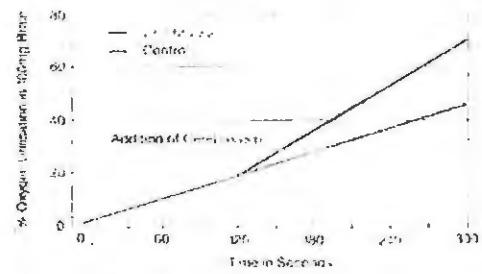
Neuromodulation

Cerebrolysin increases synaptic density, plasticity and performance

- Cerebrolysin increases the synaptic density in the hippocampus, dentate gyrus and the entorhinal cortex of 24-month-old rats. (Reinprecht I, et al., *Histochem J* 1999; 31:395-401)
- Cerebrolysin ameliorates the neurodegenerative and performance deficits in aged apolipoprotein E-deficient mice. (Masliah E, et al., *Pharmacol Biochem Behav* 1999; 62:239-45)


Neuromodulation

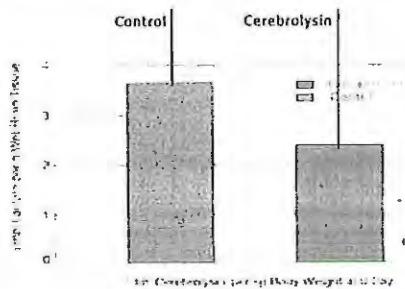
Cerebrolysin decreases beta-amyloid deposition


- Cerebrolysin might have neuroprotective effects by decreasing the production of beta-amyloid- protein (1-42) antibody and reducing amyloid deposition in transgenic mice expressing mutant human amyloid precursor protein 751 (APP751) cDNA (Rockenstein E, et al. *Effects of Cerebrolysin on amyloid-beta deposition in a transgenic model of Alzheimer's disease. J Neural Transm Suppl* 2002;(62):327-36)

Neuromodulation

Cerebrolysin facilitates and maintains learning performance

Metabolic regulation


Cerebrolysin facilitates oxygen utilization in rat brain homogenates

Metabolic regulation

- Cerebrolysin increases the expression of GLU1 transporter gene of the blood-brain-barrier (Boado RJ. Molecular regulation of the blood-brain barrier GLUT1 glucose transporter by brain-derived factors. *J Neural Transm Suppl* 1998;53:323-31)

Metabolic regulation

Cerebrolysin prevents lactate acidosis in rat brain

Cerebrolysin® ...

- Is in clinical use since many years and currently available in 25 countries
 - Germany
 - Austria
 - Portugal
 - ...
- Has IND status in USA and Canada
 - US FDA approval March 1998
 - Canadian HPB approval August 1995
 - Is available for clinical use in Canada through HPB's Emergency Drug Release program

Clinical Trial Data

- More than 70 clinical studies published to date, with over 4,200 patients enrolled
 - Dementia
 - Stroke
 - Brain Injuries
- Recent studies in Alzheimer's disease
 - German GCP Study (Ruether, 1994)
 - Austrian Phase IV Study (Rainer, 1997)
 - Canadian GCP Study (Panisset & Gauthier, 1999)
 - German/Austrian GCP Study (Ruether, 1999)

Objective

- Assessment of safety and efficacy of Cerebrolysin®
- Investigation of repeated treatment courses
- Investigation of long-term effects after drug withdrawal

Efficacy Measures

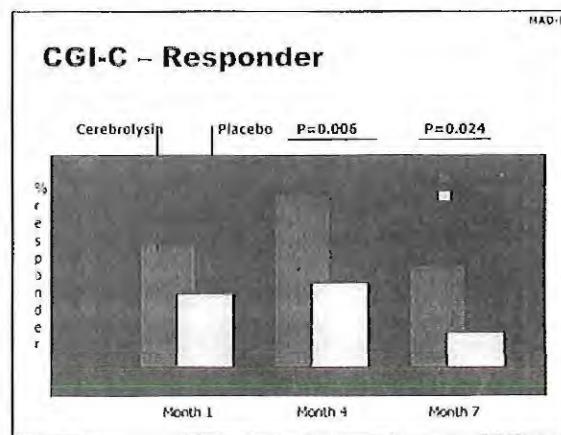
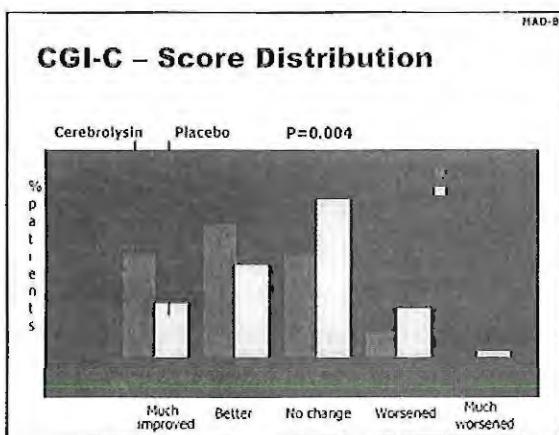
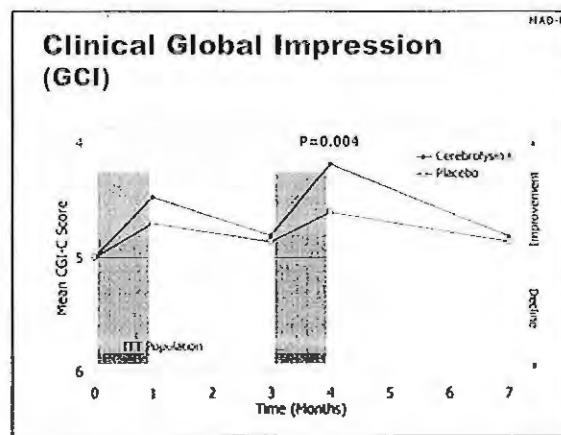
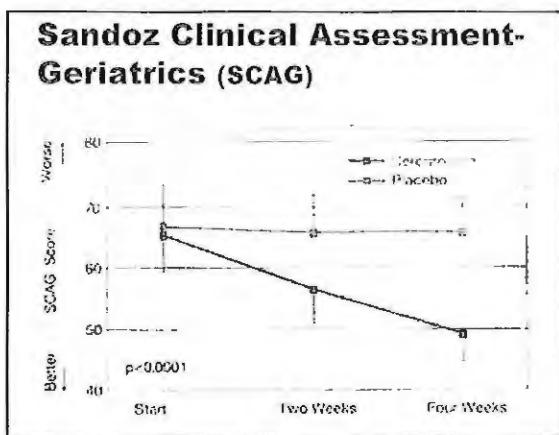
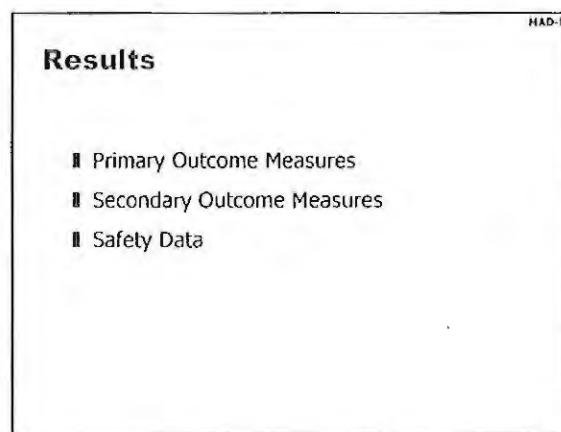
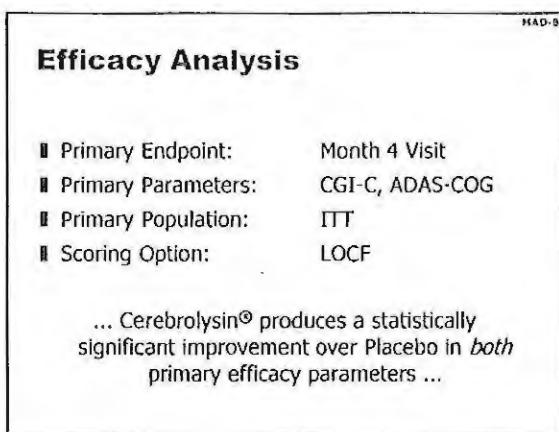
■ Primary	■ Global function	CGI-C
	■ Cognitive Performance	ADAS-COG
■ Secondary	■ Behaviour	ADAS-NONCOG
	■ Activities of Daily Living	NAB
	■ Depressive Symptoms	MADR-S

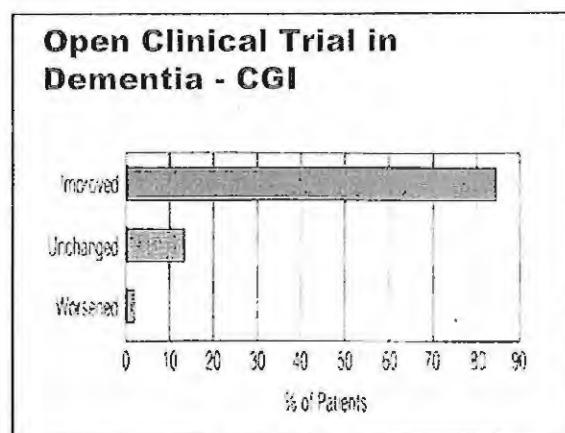
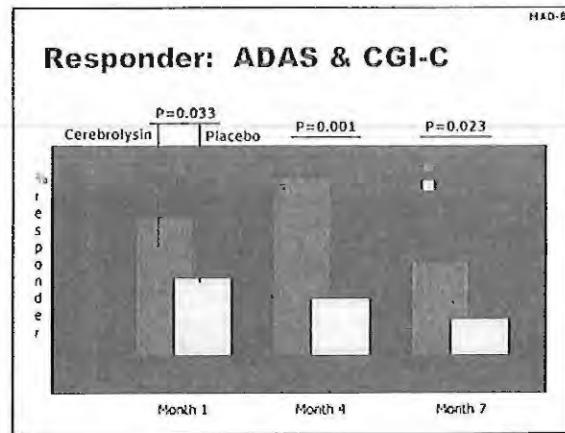
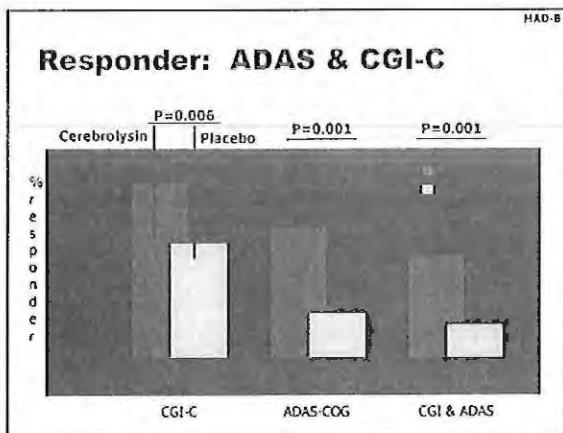
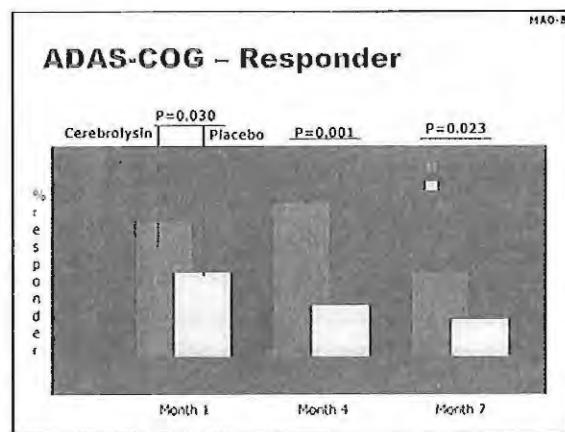
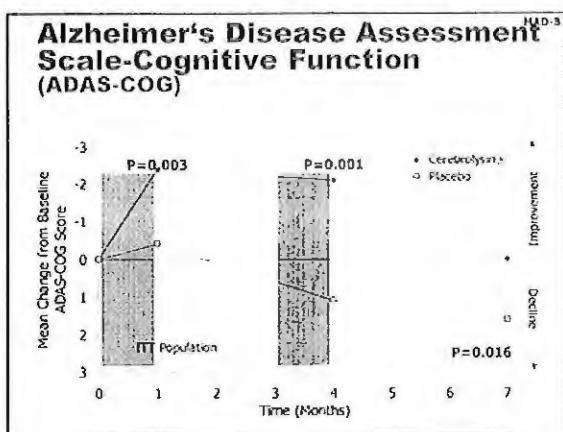
Safety Measures

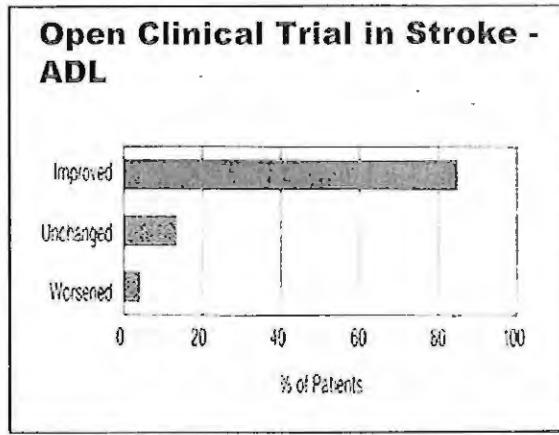
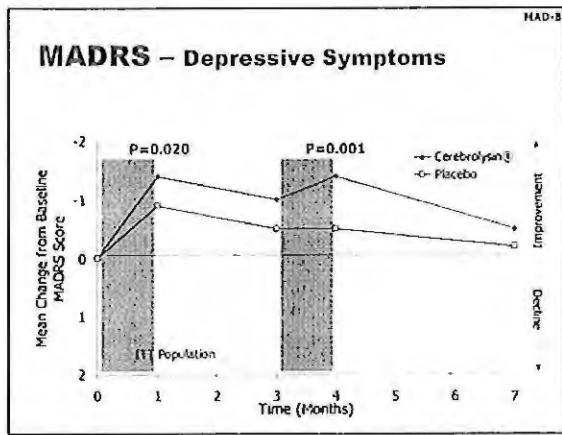
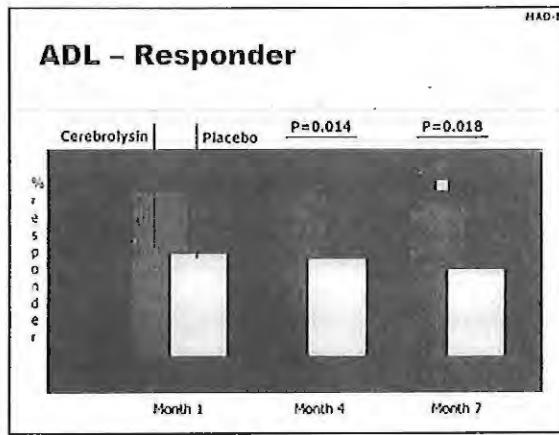
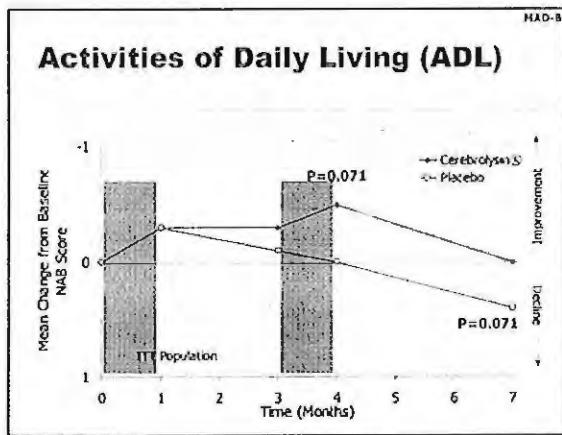
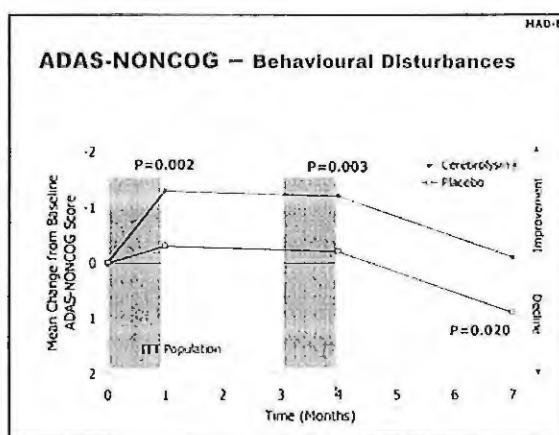
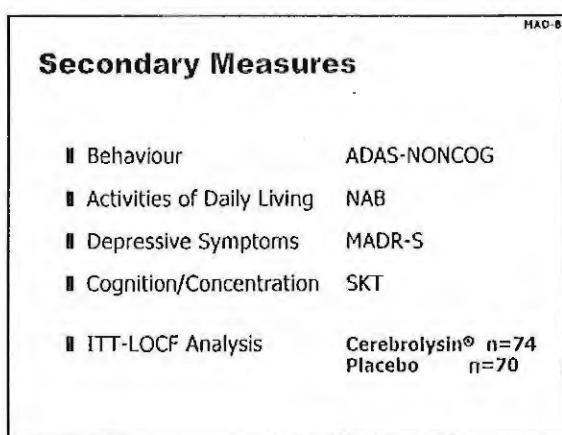
- Adverse Events
- Lab Parameters
- Vital Signs

Patient Population

Inclusion Criteria







- Men or Women
- Age 50–85 Years
- NINCDS-ADRDA
- ICD-10
- MMSE 14–24
- CGI – Severity of Disease > 2






Exclusion Criteria







- CT or MRI Incompatible with Diagnosis of AD
- Vascular Dementia
- Other Neurological Diseases
- Severe Concomitant Illnesses
-

Dosage & Treatment

- Dosage
 - Group A: 30 ml Cerebrolysin® + 70 ml Saline Solution
 - Group B: 100 ml Saline Solution
- Total of 40 IV Infusions, Once Daily
- Treatment Schedule
 - Treatment 1: 5 Days/Week for 4 Consecutive Weeks
 - 2-Month Treatment-Free Interval
 - Treatment 2: 5 Days/Week for 4 Consecutive Weeks

Safety Analysis

- Adverse Events
- Lab Parameters
- Vital Signs
- Safety Population Cerebrolysin® n=76
Placebo n=71

Lab & Vital Signs

- No significant change in any of the lab parameters in both groups
- No change in vital signs
 - pre- and post infusion
 - as well as over time

Adverse Events

- *No differences in AEs between Cerebrolysin® and Placebo groups*

Summary

- † Cerebrolysin® leads to statistically significant and clinically relevant improvement in both cognition and global function in patients with AD
- † This is supported by findings in the secondary parameters, where significant improvement was evident in behaviour, depressive symptoms and activities of daily living
- † Cerebrolysin® is safe and well tolerated

Conclusions

- Patients on Cerebrolysin® had significantly greater improvement than Placebo-treated patients after only one month of treatment
- † Acute symptomatic improvement
- † Fast onset of action

Conclusions

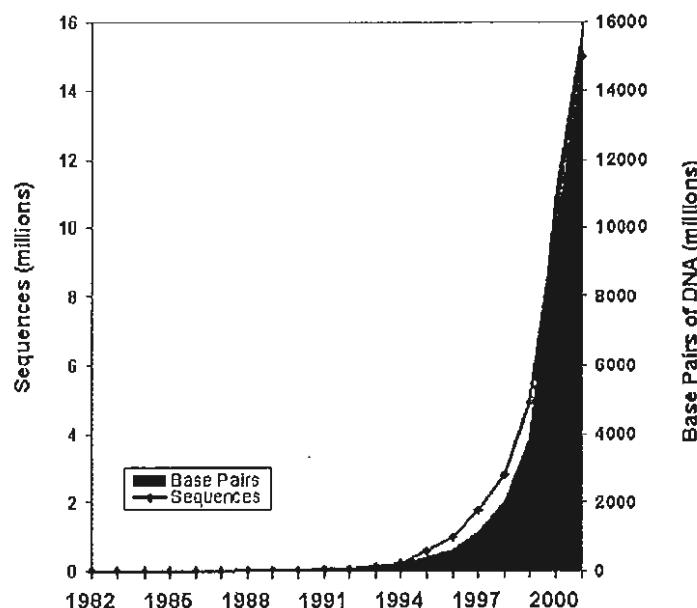
- Second Cerebrolysin® treatment after a treatment-free interval reinforces therapeutic improvement
- Patient's response to the second treatment is equal or greater than to the initial treatment
- † Therapeutic concept:
Long-term Cerebrolysin® treatment with therapy-free intervals

ชีวสารสนเทศ: กระบวนการทัศน์ใหม่ของการวิจัยยุคหลังจีโนม

ศาสตราจารย์วราชาติ สิริวรารण

ภาควิชาชีวเคมี และหน่วยวิจัยชีวสารสนเทศและจีโนมประยุกต์

คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล


ชีวสารสนเทศคืออะไร?

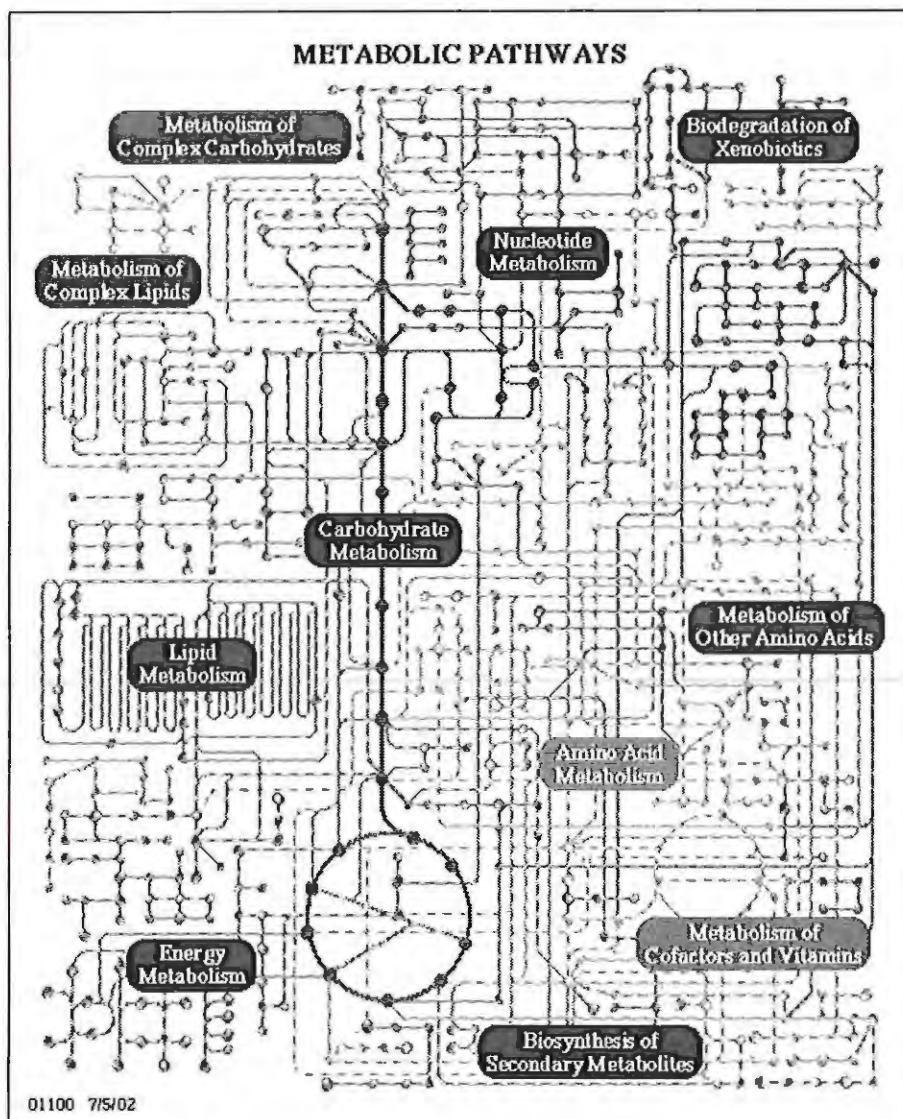
ชีวสารสนเทศ (bioinformatics) เป็นศาสตร์ใหม่ที่กำลังเจริญก้าวหน้าไปอย่างรวดเร็วและมีผลกระทบต่อการวิจัยวิทยาศาสตร์ชีวภาพในทุกแขนง ชีวสารสนเทศเกิดจาก การผสมผสานองค์ความรู้ทางชีววิทยาหลาย ๆ แขนงเข้ากับความก้าวหน้าทางด้าน คอมพิวเตอร์ในการจัดเก็บรวบรวมข้อมูลทางชีววิทยาให้เป็นระบบในรูปแบบฐานข้อมูล (databases) และวิเคราะห์ข้อมูลเหล่านั้นด้วยเครื่องมือ (tools) หรือซอฟแวร์ต่างๆ ทั้งนี้เพื่อให้เกิดการเข้าใจในกระบวนการต่างๆ ในสิ่งมีชีวิต เข้าใจการทำงานของยีน ความสัมพันธ์ระหว่างยีน หน้าที่ของยีน ตลอดจนความบกพร่องของยีนที่มีผลต่อพยาธิสภาพหรือโรค อาจกล่าวได้ว่าเทคโนโลยีชีวสารสนเทศเกิดจากความก้าวหน้าของโครงการดูครรหัสพันธุกรรมมนุษย์ (Human Genome Project) ซึ่งตัวโครงการเองได้ถูกเริ่มขึ้นเมื่อปี พ.ศ. 2528 แต่เริ่มดำเนินอย่างเป็นทางการในปี พ.ศ. 2533 (ค.ศ. 1990) โดยการนำของรัฐบาล สหรัฐอเมริกา โครงการดูครรหัสพันธุกรรมมนุษย์นี้มีเป้าหมายในการหาลำดับรหัสพันธุกรรมทั้งหมดของมนุษย์ ภายในระยะเวลา 15 ปี ใช้งบประมาณ 3 พันล้านเหรียญสหรัฐ และมีหน่วยงานหลายแห่งทั่วโลกเข้าร่วมโครงการนี้ แผนงานโครงการนี้ได้แบ่งงานการคีกษามาลำดับรหัสพันธุกรรมออกตามโครงโน้มโขม (22 ถู + 2 ข้าง) โดยใช้วิธีสร้างแผนที่กายภาพ (physical map) ขึ้นก่อน จากนั้นจึงทำการคีกษามาลำดับของรหัสพันธุกรรมโดยวิธี automated DNA sequencing ข้อมูลที่ได้จากการนี้ได้ทอยบยบรรจุในฐานข้อมูล สาระณะที่สามารถเข้าถึงได้ทางอินเตอร์เน็ต และแล้วเมื่อเดือนกุมภาพันธ์ ปี พ.ศ. 2544 (ค.ศ. 2001) ก็ได้มีการประกาศว่าการคีกษามาลำดับรหัสพันธุกรรมทั้งหมดของมนุษย์ได้สำเร็จเรียบร้อยทั้งที่ได้มีการตีพิมพ์รายละเอียดในวารสารวิชาการชั้นนำทั้ง 2 ฉบับ คือ *Nature* และ *Science* พร้อมๆ กันในฉบับเดือนกุมภาพันธ์ ปี ค.ศ. 2001 และได้มอบข้อมูลมาลำดับพันธุกรรมให้เป็นสาระณะที่สำคัญในอินเตอร์เน็ตเพื่อให้ผู้สนใจสามารถ

download ไปใช้ต่อไปได้ ผลการศึกษาหาลำดับพันธุกรรมมนุษย์ทั้งสิ้นกว่า 3,000 ล้านเบส ในเบื้องต้นได้พบยีนเพียงประมาณ 39,000 ยีน และเชื่อกันว่ายังมียีนอีกจำนวนมากที่ยังไม่ทราบหน้าที่ ยังไม่มีผู้ใดศึกษา การศึกษาวิจัยหลังจากนี้เรียกว่าวิจัยหลังจีโนม (post-genomics) และจะอาศัยฐานข้อมูลลำดับรหัสพันธุกรรมมนุษย์ที่กล่าวนี้เป็นพื้นฐาน ในปัจจุบันได้มีโครงการศึกษาลำดับรหัสพันธุกรรมของสิ่งมีชีวิตอื่นๆ อีกมากmany ทั้งไวรัส แบคทีเรีย พืช และสัตว์ต่างๆ ที่มีส่วนเกี่ยวพันกับมนุษย์เกิดขึ้น ผู้สนใจรายละเอียดเพิ่มเติมสามารถเข้าไปคุ้มข้อมูลได้ที่ <http://www.ncbi.nlm.nih.gov/>

ปริมาณข้อมูลลำดับสารพันธุกรรมที่ได้เพิ่มจำนวนขึ้นอย่างมากภายหลังจากการเริ่มต้นในระยะเวลาไม่กี่ปีที่ผ่านมา (รูปที่ 1) ทำให้นักวิทยาศาสตร์ต้องหาวิธีในการที่จะจัดการเก็บข้อมูลอย่างเป็นระบบ พัฒนาฐานข้อมูล ตลอดจนซอฟแวร์ที่ใช้เป็นเครื่องมือในการวิเคราะห์และแปลความหมายของลำดับดีเอ็นเอให้ออกมาในรูปของหน้าที่และการทำงานของยีน กลไกการทำงานในระดับเซลล์ จนถึงกลไกการทำงานในสิ่งมีชีวิต

Growth of GenBank

รูปที่ 1 ข้อมูลการเติบโตของ GenBank ระหว่างปี ก.ศ. 1982-2001 ตามรายงานของ National Center for Biotechnology Information (NCBI) ประเทศสหรัฐอเมริกา ณ. เดือนสิงหาคม ปีก.ศ. 2002 มีจำนวนกว่า 16,000 ล้านเบสในฐานข้อมูล (แหล่งข้อมูลจาก <http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html>)


จะเห็นได้ว่างานหลักของชีวสารสนเทศคือการสืบค้นข้อมูลที่มีอยู่ในฐานข้อมูลชีววิทยา (biological databases) ต่างๆ ซึ่งบรรจุข้อมูลรหัสพันธุกรรมของมนุษย์ หรือรหัสพันธุกรรมของเชื้อโรคต่างๆ หรือพืชต่างๆ ข้อมูลการเรียงตัวของกรดนิวคลีอิก

(nucleotide sequence) การเรียงตัวของอะมิโนในสายโปรตีน (protein sequence) โครงสร้างของโปรตีน (protein structure) เป็นต้น ในการสืบค้นข้อมูลที่มีความหลากหลายเหล่านี้จำเป็นต้องอาศัยคอมพิวเตอร์ อาศัยวิธีการที่หลากหลาย ตลอดจนใช้ซอฟแวร์ที่เกี่ยวข้องมากmany และที่สำคัญที่สุดคือ การที่ต้องมีคอมพิวเตอร์ที่เชื่อมต่ออย่างมีประสิทธิภาพ กับเครือข่าย internet และ World Wide Web

คงจะหลีกเลี่ยงไม่ได้ว่าคอมพิวเตอร์ เครือข่าย internet และ World Wide Web (www) ได้กลยุมมาเป็นส่วนสำคัญในการวิเคราะห์ปัญหาและตอบค่าตามวิทยาศาสตร์ชีวภาพในปัจจุบัน จะเห็นได้ว่าในระยะเวลาเกือบสองทศวรรษที่ผ่านมา รูปแบบของการวิจัยวิทยาศาสตร์ชีวภาพได้เปลี่ยนไปจากเดิม (paradigm shift) ซึ่งเป็นการศึกษาขั้นเดียวๆ หรือโปรตีนเพียงตัวเดียว ไปเป็นความสามารถในการศึกษาขั้นหลายๆ ขั้น หรือโปรตีนหลายๆ ชนิดพร้อมๆ กันที่เดียว เป็นการศึกษาทั้งจีโนม (whole genome analysis) รูปแบบของการวิจัยใหม่นี้ล้วนแต่เป็นผลจากความก้าวหน้าด้านเทคโนโลยีการวิจัยด้านยีโนม เข้าใจว่ามีจุดเริ่มต้นจากโครงการอุดหนัพันธุกรรมมนุษย์ซึ่งได้มีส่วนอย่างมากที่ก่อให้เกิดการปฏิวัติการวิจัยในรูปแบบใหม่ ไม่ว่าจะเป็นในด้านการพัฒนาวิธีการเพิ่มขีดความสามารถ (high-throughput) หรือการย่อระบบให้เล็กลง (miniaturization) เพื่อให้สามารถรับการเพิ่มจำนวนตัวอย่างที่จะทำการวิเคราะห์ต่อหน่วยเวลา หรือการพัฒนาระบบวิเคราะห์แบบอัตโนมัติ (automation) เพื่อให้สามารถทำงานวิเคราะห์ที่มีลักษณะทำซ้ำๆ กันให้มีประสิทธิภาพซึ่งจะเป็นการลดความผิดพลาดจากมนุษย์

จากยีโนมไปสู่ยา

เป้าหมายสำคัญของการศึกษาขั้นคือการเข้าใจถึงหน้าที่ของยีน และกลไกการทำงานของยีนนี้ร่วมกับยีนที่เกี่ยวข้องกับกระบวนการอื่นๆ ที่เกิดขึ้นในเซลล์ แน่นอนเหลือเกินว่ากระบวนการทางเคมีจะสลับซับซ้อนมากในสิ่งมีชีวิตชั้นสูงในลักษณะของ metabolic network ซึ่งมีลักษณะคล้ายๆ กับวงจรอิเล็กทรอนิกส์ (รูปที่ 2)

รูปที่ 2 แสดงวิถีเมตาบólิสึม แบบวงจร metabolic network (ข้อมูลจาก <http://www.genome.ad.jp/kegg/metabolism.html>)

ลักษณะของ metabolic network ดังแสดงในรูปที่ 2 นี้ เป็นรูปแบบที่พัฒนาให้เห็นการเชื่อมโยงของกระบวนการเมตาบólิสึมในรูปแบบของวงจรอีเล็กทรอนิก โดยกลุ่มนักวิจัยจากประเทศไทย ที่ได้จัดทำ resources ด้าน bioinformatics ที่เรียกว่า KEGG (Kyoto Encyclopedia of Genes and Genomes) ในลักษณะของวงจรอีเล็กทรอนิกส์เพื่อศึกษาความเชื่อมโยงของกระบวนการเมตาบólิสึมและหน้าที่ของเอนไซม์ที่เกี่ยวข้อง เช่น หากสนใจ

nucleotide metabolism ก็สามารถ click ไปที่ box ที่เขียนว่า nucleotide metabolism ซึ่งจะสามารถได้ข้อมูลเพาะวิเคราะห์รังสก์วัดแสดงในรูปที่ 3

รูปที่ 3 แสดงวิถีเมtabolism ของชีวะรุป nucleotide metabolism

(ข้อมูลจาก <http://www.genome.ad.jp/kegg/pathway/map/map01140.html>)

หากต้องการรายละเอียดที่ลึกซึ้งไปกว่านี้ก็สามารถ click ไปยัง metabolism ที่ต้องการซึ่งจะแสดงรายละเอียดของกระบวนการรวมทั้งรายละเอียดของเอนไซม์ต่างๆ ที่เกี่ยวข้องกับปฏิกิริยา เป็นต้น

แนวทางการประยุกต์ใช้ชีวสารสนเทศเป็นเครื่องมือในงานวิจัยวิทยาศาสตร์ชีวภาพที่กำลังเป็นที่สนใจ คือ การค้นหา protein targets และการค้นหา (สารบัญชี) ต่อ

targets เหล่านี้ วิธีการหนึ่งซึ่งได้รับการพัฒนาเพื่อค้นหา protein targets ใหม่ๆ ในยุคหลังจีโนมคือการพัฒนาใช้เทคโนโลยี DNA chips เทคโนโลยีดังกล่าวสามารถใช้ติดตามการสร้างโปรตีนในระบบท่างๆ ของการเจริญเติบโตของเซลล์ที่ต้องการทำศึกษาเทคโนโลยี DNA chip มีหลายลักษณะ เช่น ลักษณะที่ใช้ EST (Expressed Sequence Tags) เพื่อมาศึกษาข้อมูลการแสดงออกของยีน หรือลักษณะของ proteomics 2D-gel ในการศึกษาโปรตีนที่สร้างจากยีนในระบบที่ระบุนิ่งของการเจริญเติบโตของเซลล์ จะเห็นได้ว่าเทคโนโลยีเหล่านี้ล้วนแล้วแต่ต้องใช้ชีวสารสนเทศในการวิเคราะห์ เช่น sequence assembly การวิเคราะห์เชิงเปรียบเทียบของยีนสำหรับโปรตีนที่สนใจ การทำนายโครงสร้างของโปรตีน ตลอดจนการศึกษาปฏิสัมพันธ์ระหว่างโปรตีน ในด้านการค้นหาฯ หรือสารขับขึ้นต่อ targets นี้ได้มีความก้าวหน้าการตั้งเคราะห์ในลักษณะ combinatorial synthesis ผนวกกับความก้าวหน้าในการศึกษาโครงสร้างโปรตีน ทำให้นักวิทยาศาสตร์สามารถทำนายโครงสร้างที่เหมาะสมของสารขับขึ้นตามโครงสร้างบริเวณเร่งหรือบริเวณที่ใช้จับสารขับขึ้น (rational หรือ structure-based design)

บทบาทของชีวสารสนเทศในยุคหลังจีโนม

ความสำคัญของชีวสารสนเทศใช่ว่าจะอยู่ที่การพัฒนาระบบจัดเก็บ ฐานข้อมูลตลอดจนวิเคราะห์ข้อมูลความเหมือนและความต่างระหว่างยีนของสิ่งมีชีวิตต่างๆ แต่เป้าหมายหลักที่สำคัญคือการใช้ชีวสารสนเทศในการสร้างความเข้าใจในความหมายของ การเรียงตัวของลำดับเบสทั้ง 4 ชนิดในสายคีอีนเอ ความสามารถในการเข้าใจสิ่งหน้าที่ของยีน และกลไกการแสดงออกของยีน ตลอดจนหน้าที่ของผลิตผลของยีน ชีวสารสนเทศได้แทรกซึมเข้าไปมีบทบาทเกี่ยวพันกับส่วนของวิธีการหลายส่วน อีกทั้งยังเกี่ยวข้องกับสาขาวิชาอย่าง อีกหลายสาขาวิชา ไม่ว่าจะเป็นด้านการวิเคราะห์การเรียงลำดับของเบสในยีน ในเรื่อง base calling, physical mapping, fragment assembly การค้นหายีน (gene finding) ค้นหาและศึกษาความสำคัญของบริเวณที่เป็น non-coding regions ในจีโนม ซึ่งอาจเป็นบริเวณที่มีผลต่อการควบคุมการแสดงออกของยีน การเปรียบเทียบความเหมือนของลำดับกรดอะมิโนในสายโปรตีน ซึ่งจะนำไปสู่ความเข้าใจในหน้าที่ของโปรตีน และในทางกลับกันการศึกษาหน้าที่ของโปรตีนที่คล้ายคลึงกันจะเป็นทางนำไปสู่ความเข้าใจหน้าที่ของโปรตีนที่สนใจได้ นอกจากนี้ ยังรวมไปถึงการสร้างโครงสร้าง

จำลอง และศึกษาโครงสร้างสามมิติ การศึกษาโครงสร้างของ DNA และ RNA ตลอดจน โครงสร้างของชีวะโนมเลกุลอื่นๆ ซึ่งได้แก่ lipid และ carbohydrate และปฏิสัมพันธ์ระหว่าง ชีวะโนมเลกุลเหล่านี้

กล่าวโดยสรุป เทคโนโลยีชีวสารสนเทศเป็นเทคโนโลยีขุกใหม่ที่เชื่อมโยงกับ เทคโนโลยีชีวภาพ การพัฒนาซอฟแวร์สำหรับการวิเคราะห์ข้อมูลการเรียงลำดับรหัส พันธุกรรม หรือข้อมูลการเรียงลำดับกรดอะมิโน ประกอบกับการพัฒนา internet ให้ สามารถเข้าถึงข้อมูลสารสนเทศที่มีอยู่ในฐานข้อมูลปัจจุบันเป็นสิ่งสำคัญที่จะนำไปสู่การ ประยุกต์ใช้เทคโนโลยีสารสนเทศอย่างมีประสิทธิภาพและกว้างขวางมากยิ่งขึ้น จาก ความสำคัญของชีวสารสนเทศที่มีแนวโน้มที่จะมีบทบาทอย่างมากต่องานวิจัยทางด้าน วิทยาศาสตร์ชีวภาพในยุคหลังจีโนม คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดลจึงได้ทำการ จัดตั้งหน่วยวิจัยชีวสารสนเทศและจีโนมประยุกต์ (Center for Bioinformatics and Applied Genomics, CBAG) ซึ่งเป็นหน่วยงานในลักษณะเสริมสร้างศักยภาพ(Capability Building Research Unit) ของคณะวิทยาศาสตร์ มหาวิทยาลัยมหิดลขึ้น โดยในระยะเริ่มต้นจะทำหน้า ที่เป็นหน่วยงานเสริมสร้างขีดความสามารถด้านชีวสารสนเทศ และเป็นศูนย์ศึกษาและ ระดับภูมิภาคเอเชียขององค์กรอนามัยโลกในด้านชีวสารสนเทศ เมื่อมีบุคลากรที่เข้ม แข็งขึ้นแล้วจะได้ประยุกต์ใช้เทคโนโลยีดังกล่าวในงานวิจัยวิทยาศาสตร์ชีวภาพในสาขา ต่างๆ ต่อไป

เอกสารอ่านเพิ่มเติม

1. Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, 2nd edition (Eds. Baxevanis, A. D. and Francis Ouellette, B. F.), 2001, John Wiley & Sons, Inc.
2. Bioinformatics: From Genomes to Drugs. Vol. 1: Basic Technologies (Ed. Thomas Lengauer), 2002, Wiley-VCH, Germany
3. Developing Bioinformatics Computer Skills. (Eds. Gibas, C. and Jambeck, P.) 2001, O' Reilly & Associates, Inc., California
4. Bioinformatics: Sequence and Genome Analysis (Ed. Mount, D. W.) Cold Spring Harbor Laboratory Press, New York

Current perspectives on Major depressive disorder

รศ.นพ.มาโนช หล่อตระกูล
ภาควิชาจิตเวชศาสตร์
คณะแพทยศาสตร์โรงพยาบาลรามาธิบดี มหาวิทยาลัยมหิดล

โรคซึมเศร้า (major depressive disorder) เป็นความผิดปกติทางจิตเวชที่พบได้บ่อย ความซุกของโรคซึมเศร้าโดยเฉลี่ยทั่วโลกอยู่ประมาณร้อยละ 10-12^{1,2} และประมาณร้อยละ 16 ของประชากรมีโอกาสเกิดภาวะซึมเศร้าในช่วงได้ช่วงหนึ่งของชีวิต โดยเพศหญิงมีความเสี่ยงมากกว่าเพศชาย 2 เท่า³ ผู้ป่วยได้รับผลกระทบจากการมากทั้งในด้านความสามารถในการทำงานลดลง สัมพันธภาพมีปัญหา ตลอดจนมีความเสี่ยงด่อการเกิดปัญหาทางสุขภาพทางกายมากขึ้น⁴ อีกทั้งเป็นโรคที่รักษาได้หากผู้ป่วยได้รับการดูแลอย่างเหมาะสม

อาการณ์เศร้าอย่างไรจึงจัดว่าผิดปกติ

อาการณ์ซึมเศร้านั้นจัดได้ว่าเป็นภาวะปกติของคนเรา เป็นปฏิกิริยาของจิตใจต่อการสูญเสีย ความกดดัน หรือความรู้สึกว่าตนเองไม่มีคุณค่า อย่างไรก็ตามหากอาการณ์ซึมเศร้าที่เกิดขึ้นนี้ เป็นมากจนเห็นได้ชัดร่วมกับมีอาการดังๆ ตามตารางที่ 1 แล้ว จัดว่าเป็นรุนแรงถึงระดับเป็น โรคซึมเศร้า

ตารางที่ 1 เกณฑ์การวินิจฉัยโรคซึมเศร้า (major depressive disorder)⁵

ก. มีข้อใดข้อหนึ่งต่อไปนี้

1. เปื่อยหน่ายหมดความสนใจในสิ่งต่างๆ
2. อาการณ์ซึมเศร้า

ข. ร่วมกับมีอาการดังต่อไปนี้ด้วยแล้ว 4 อาการ ขึ้นไป

1. เบื่ออาหาร หรือน้ำหนักลด
2. นอนไม่หลับ
3. อ่อนเพลีย ไม่มีเรี่ยวแรง
4. ความคิด การเคลื่อนไหวเชื่องช้า หรือกระสับกระส่าย
5. สมานิ ความจำเสื่อม
6. มีความคิดอยากตาย
7. รู้สึกตนเองไร้ค่า ด้านนิดน้อย

โดยมีอาการเหล่านี้แบบทุกวัน ติดต่อกันนานอย่างน้อย 2 สัปดาห์

สาเหตุ

ปัจจุบันแนวคิดเกี่ยวกับสาเหตุของโรคซึมเศร้านั้น เชื่อกันว่าสัมพันธ์กับหลาย ๆ ปัจจัย ทั้งจากด้านพันธุกรรม การประสบกับความกดดันในชีวิตที่รุนแรง หรือการมีบุคลิกภาพแบบ neuroticism⁶ การแยกว่าสาเหตุของโรคจะเป็นจากปัจจัยทางพันธุกรรมหรือการเลี้ยงดูและประสบการณ์ชีวิตนั้นเป็นสิ่งที่ไม่อาจบอกได้อย่างชัดเจน แม้แต่การประสบกับความกดดันในชีวิต ผ่านหนึ่งก็อาจมีที่มาจากการลักษณะบุคลิกของผู้นั้นซึ่งก็มีอิทธิพลมาจากปัจจัยทางพันธุกรรม⁷

ความผิดปกติของ neurotransmitter สมมุติฐานเกี่ยวกับความผิดปกติของ monoamine โดยเฉพาะ norepinephrine และ serotonin เป็นที่ยอมรับกันมานาน แม้กระนั้น ปัจจุบัน ผ่านหนึ่งเป็นมาจากการศึกษาใกล้การออกฤทธิ์ของยาแก้ซึมเศร้ากลุ่ม tricyclic หรือ แม้กระนั้นกลุ่ม SSRI ซึ่งออกฤทธิ์โดยการเพิ่ม monoamine บริเวณ synaptic cleft

ปัจจุบันเราทราบว่าการสื่อสารโดย neuronal signal ไม่เพียงผ่านทาง neurotransmitter เท่านั้น แต่มี signal molecules ที่สำคัญหลายชนิดเข้ามาเกี่ยวข้องอีก โดยเฉพาะ neurotrophic factors ที่สำคัญได้แก่ brain-derived neurotrophic factor (BDNF) หรือ neurotrophin-3 (NT-3) ซึ่งเป็นเป้าได้ที่มีผลต่อการ growth, differentiation, และ survival ของเซลล์ประสาทซึ่งปัจจุบันเราทราบแล้วว่า neurogenesis มีอยู่ตลอดแม้ในวัยผู้ใหญ่⁸ และภาวะ stress มีผลทำให้ hippocampal neurogenesis ลดลง⁹ โดยเฉพาะ pyramidal neuron ในบริเวณ CA3 จะไวต่อการเปลี่ยนแปลงของ glucocorticoid จาก stress มาก เมื่อมี chronic stress จะเกิด atrophy และอาจถึง cell death ในที่สุด¹⁰

กลไกการออกฤทธิ์ของยาแก้ซึมเศร้านั้น เริ่มต้นจากการไปเพิ่ม monoamine ทำให้มีการเปลี่ยนแปลงของ second messenger cyclic adenosine monophosphate (cAMP) และ pathway ที่เกี่ยวข้อง ได้แก่ protein kinase A, transcription factor cAMP response element binding protein (CREB) ซึ่งจะไปกระตุ้นให้เกิดการเปลี่ยนแปลงของ expression ของ BDNF ทำให้มี neurogenesis และเพิ่ม synaptic plasticity^{8,10,11}

Functional anatomy จากการศึกษา positron emission tomography (PET) scans ดู brain-glucose metabolism พบว่า ผู้ป่วย depression มี bilateral และ frontal hypometabolism บริเวณ inferior frontal lobe อย่างชัดเจนเมื่อเปรียบเทียบกับผู้ป่วยที่ไม่ซึมเศร้า นอกจากนั้นยังพบว่าผู้ป่วย unipolar depression มี hypometabolism ของ anterior insula ซึ่งเป็น deep limbic structure ในขณะที่ผู้ป่วย bipolar จะเป็นแบบ hypermetabolism¹²

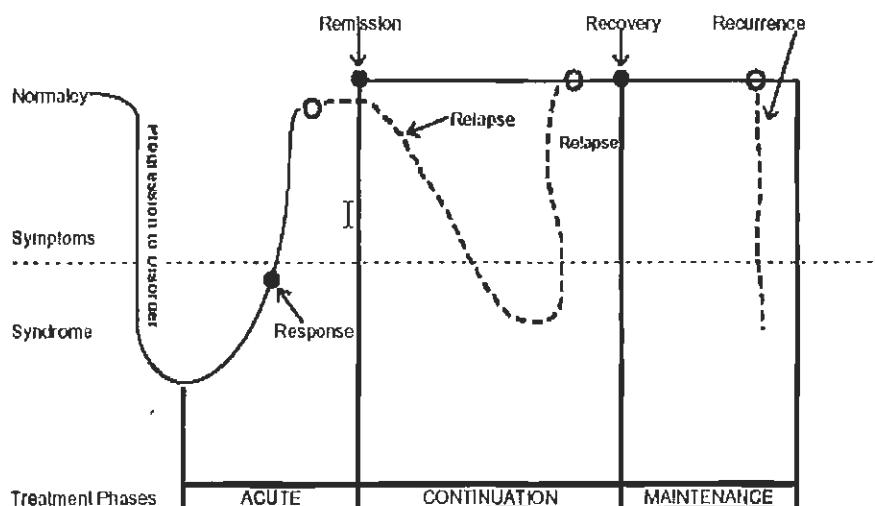
ในภาพรวม การศึกษาส่วนใหญ่จะปชช.ที่มีความผิดปกติบริเวณ medial limbic structures เช่น orbito-frontal และ cingulate cortex และ basal ganglia บางรายงานพบว่ามีภาวะ hyperactivity ของ amygdala และ hippocampus และบางส่วนของ temporal lobes

Neuroendocrine abnormality การศึกษาในระยะหลังมุ่งความสนใจไปที่ corticotropin releasing factor (CRF) system และ hypothalamic-pituitary-adrenal (HPA) axis โดยพบมีภาวะ hypercortisolemia ขณะผู้ป่วยซึมเศร้า ในผู้ป่วยซึมเศร้ามีการเปลี่ยน

แปลงทางร่างกายที่แสดงถึงภาวะนี้ เช่น ต่อมหมากไดมีขนาดใหญ่ขึ้น¹³ หรือในผู้ป่วยหญิงมี bone density ลดลง¹⁴ การมี cortisol เพิ่มขึ้นมีผลในการลบต่อเซลล์สมองบริเวณ hippocampus ดังได้กล่าวมาแล้ว ในขณะเดียวกัน hippocampus ที่ส่งผล Inhibitory control ด่อ hypothalamic-pituitary-adrenal (HPA) axis เกิดการเปลี่ยนแปลงด่างๆ ตามมา การมี cortisol เพิ่มขึ้นเป็นระยะเวลานานอาจกระดุน vicious cycle ของ hippocampal damage ซึ่งส่งผลให้ HPA-overactivity เพิ่มขึ้นไปอีก

การเริ่มเกิดอาการของโรคนั้นอาจมีปัจจัยกระดุน เช่น สูญเสียคนที่ดูแล ตกงาน การหายร่าง หรือบางครั้งไม่มีกิจกรรมอย่างไรก็ตาม การมีสาเหตุที่เห็นชัดว่าเป็นมาจากการกดดัน ด้านจิตใจนี้ มีได้หมายความว่าอาการที่เกิดขึ้นนั้นไม่จำเป็นด้องให้การรักษา การพิจารณาว่า การเปลี่ยนแปลงของผู้ป่วยที่เกิดขึ้นนั้นผิดปกติหรือไม่ เราก็จากการมีกิจกรรมทางด้านจิตใจ ที่มีผลต่อการดังกล่าวร่วม กับความรุนแรงของอาการเป็นหลัก ผู้ป่วยที่มีอาการเข้ากับเกณฑ์การวินิจฉัยโรคซึ่งควรนั้น ปัจจุบันนี้มีความผิดปกติที่จำต้องให้การช่วยเหลือ

การวินิจฉัยแยกโรค


1. ภาวะซึมเศร้าตามปกติ แยกโดยในโรคซึ่งเศร้าผู้ป่วยจะมีความบกพร่องในหน้าที่ การงานหรือความสัมพันธ์กับผู้อื่นมาก หรือมีความทุกข์ทรมานจากการมาก สิ่งอื่นที่จะช่วยนกได้แก่ ประวัติเคยมีอาการซึมเศร้าแบบนี้มาก่อน ประวัติเคยพยายามฆ่าตัวตาย ประวัติการเจ็บป่วยโรค mood disorder ในเครือญาติ มีลักษณะแบบ melancholia (อาการที่ปั้งถึงภาวะ endogenous เช่น น้ำหนักลดลงมาก อาการแย่ในช่วงเช้า ตื่นนอนแต่เช้าดูรู้ เป็นดัน)⁵ หรือมีอาการก่อนอายุ 20 ปี เนื่องจากลักษณะดังกล่าวปั่นถึงความผิดปกติที่ถ่ายทอดทางกรรมพันธุ์ อย่างไรก็ตามผู้ป่วยส่วนใหญ่จะมีเหตุการณ์กดดันก่อนที่จะเกิดอาการกำเริบ อาการเริ่มดันของโรคมักเป็นอาการวิตกกังวลหรือมีอาการซึมเศร้าเล็กน้อย
2. ยาหรือสารต่างๆ ทำให้เกิดอาการซึมเศร้าได้ ที่สำคัญได้แก่ glucocorticoid, anabolic steroids, หรือภาวะที่เกิดจากการหยุดเสพแอมเฟตามีน หรือโคเคน
3. โรคทางร่างกาย ที่พบบ่อยคือโรคของระบบประสาทส่วนกลาง เช่น เนื้องอกในสมอง, โรคพาร์กินสัน เป็นดัน และโรคของระบบต่อมไร้ท่อ เช่น hypothyroidism, SLE และ Cushing's syndrome เป็นดัน
4. Anxiety disorder ผู้ป่วยมีอาการวิตกกังวลในเรื่องต่างๆ นอนไม่หลับ อ่อนเพลีย อาการสำคัญที่ช่วยในการแยกคือ ผู้ป่วยมักมีอาการของ autonomic nervous system hyperarousal เช่น ใจสั่น มือสั่น เหงื่อออก เป็นดัน

การดำเนินโรคและการพยากรณ์โรค

แนวคิดในปัจจุบันมองว่าโรคนี้เป็นโรคที่ค่อนข้างจะเรื้อรัง โดยผู้ป่วยแม้จะหายจากการป่วยในครั้งนี้แล้วก็ยังมีโอกาสกลับมาป่วยใหม่ได้ แผนภูมิที่ 1 แสดงถึงศัพท์ที่ใช้ในการอธิบายการดำเนินโรค¹⁵

- Episode ช่วงเวลาที่ผู้ป่วยมีอาการครบถ้วนเกณฑ์
- Partial remission ช่วงเวลาที่ผู้ป่วยมีอาการน้อยลง โดยอาการที่มีไม่ครบถ้วนเกณฑ์ขั้นต่ำในการวินิจฉัย คำว่า response เริ่มตั้งแต่จุดที่มี partial remission
- Full remission ช่วงเวลาที่ผู้ป่วยไม่มีอาการ
- Recovery ผู้ป่วยมี remission มาระยะเวลาหนึ่ง จนค่อนข้างจะแน่ใจว่า recover จาก episode นั้นแล้วคือประมาณ 4-6 เดือน
- Relapse ผู้ป่วยมีกลับมาอาการมากขึ้นในช่วงที่มี partial หรือ full remission
- Recurrence ผู้ป่วยกลับมามีอาการอีก หลังจากที่มี recover แล้ว นั้นคือมีการเกิด episode ใหม่ของโรค

แผนภูมิที่ 1 ระยะของโรคซึมเศร้าและการรักษา¹⁵

พบว่าร้อยละ 75-90 ของผู้ป่วยที่หายแล้วจะกลับมาเป็นซ้ำอีก (recurrence)¹⁶ ผู้ป่วยอาจเกิด major depressive disorder ขณะที่เป็น dysthymic disorder อยู่เดิมแล้ว เรียกว่า double depression ซึ่งในการนี้เข่นนี้จะให้การวินิจฉัยทั้งสองโรครวมกัน⁵

โรคซึมเศร้าเป็นโรคที่มักเกิดเป็นซ้ำอีก หากเป็น 1 ครั้ง ร้อยละ 50 ของผู้ป่วยจะมีโอกาสป่วยซ้ำอีก 1 ครั้งในช่วงได้ช่วงหนึ่งของชีวิต หากป่วย 2 ครั้งโอกาสป่วยซ้ำเพิ่มเป็นร้อยละ 70 และหากป่วย 3 ครั้งโอกาสป่วยซ้ำจะสูงถึงร้อยละ 90¹⁷ ผู้ป่วยที่มีอาการซ้ำบ่อยๆ จะมี

ปัญหาจากดัวโรคมากและการพยากรณ์โรคจะไม่ดี¹⁶ นอกจากนั้นการรักษาให้อาการมี full remission ก็มีความสำคัญเช่นกัน โดยผู้ป่วยที่อาการของโรคไม่มี full remission จะมีความเสี่ยงต่อการกลับเป็นข้อแบบอาการเดิมที่มากกว่าผู้ที่หายดีถึง 3 เท่า¹⁸

การรักษาโรคซึมเศร้า

การรักษาแบ่งออกเป็น 3 ระยะ ได้แก่ ระยะเฉียบพลัน ระยะต่อเนื่อง และระยะป้องกัน การรักษาระยะเฉียบพลัน (acute phase)

เริ่มตั้งแต่เมื่อผู้ป่วยมาพบด้วยอาการของภาวะซึมเศร้าเป้าหมายของการรักษาในระยะนี้คือเพื่อให้อาการทุเลาลง ซึ่งในทางคลินิกหมายถึงการที่อาการซึมเศร้าดีขึ้นกว่าร้อยละ 75 และผู้ป่วยสามารถกลับไปปฏิบัติหน้าที่ดังเดิม ระยะนี้จะใช้เวลา 6-8 สัปดาห์ แต่อาจนานถึง 12 สัปดาห์ได้¹⁹

รูปแบบการรักษา

1. การทำจิตบำบัด การทำจิตบำบัดทั้งชนิด behavioral, cognitive และ interpersonal จะให้ผลในการรักษาประมาณร้อยละ 40-50 โดยทั่วไปแล้วการรักษาจะได้ผลดีขึ้นหากใช้ทั้งการรักษาด้วยยาและการทำจิตบำบัดร่วมกันไป

การทำจิตบำบัดควรเลือกให้เป็นลำดับแรกในผู้ป่วยมีอาการไม่รุนแรง อาการไม่ยุ่งยาก ซับซ้อน ไม่มีลักษณะแบบ melancholia โดยเฉพาะหากผู้ป่วยต้องการรักษาด้วยวิธีนี้มากกว่า การใช้ยา หรือเคยมีประวัติว่าเดิมเคยรักษาได้ผลดีกับจิตบำบัดมาก่อน

2. การรักษาด้วยยา ยาแก้ซึมเศร้าทุกชนิดไม่ได้ออกฤทธิ์รักษาอาการซึมเศร้าทันที โดยทั่วไปจะเห็นผลหลังจากได้ยาไปแล้ว 1-2 สัปดาห์ อย่างไรก็ตามในระหว่างนี้ผู้ป่วยจะรู้สึกดีขึ้นจากผลด้านอื่นๆ ของยา เช่น หลับได้ดีขึ้น เป็นอาหารลดลง ความวิตกกังวลลดลง เป็นต้น

ยาแก้ซึมเศร้าอาจแบ่งคร่าวๆ ออกเป็น 3 กลุ่มใหญ่ ได้แก่ กลุ่มที่มีโครงสร้างเป็นแบบ tricyclic ยากลุ่ม SSRI และยากลุ่มอื่น ประสิทธิภาพในการรักษาของยาแก้ซึมเศร้าแต่ละตัวนั้น ไม่ต่างกัน ความแตกต่างอยู่ที่ฤทธิ์ข้างเคียง²⁰

ยากลุ่ม tricyclic เช่น amitriptyline, imipramine และ nortriptyline เป็นยาที่ใช้กันมานาน ราคาถูก ประสิทธิภาพในการรักษาดี แต่มีข้อจำกัดที่ฤทธิ์ข้างเคียงของยา อาการข้างเคียงที่พบบ่อย ได้แก่ อาการร่วงซึม ซึ่งมักจะหมายความว่าผู้ป่วยโรคซึมเศร้าเพราะส่วนใหญ่จะนอนไม่ค่อยหลับ, อาการด้าน anticholinergic ได้แก่ อาการปากคลอแห้ง, postural hypotension ผู้ป่วยมักจะมีอาการหน้ามืดเวลาเปลี่ยนท่า โดยเฉพาะในผู้สูงอายุ และอาการ cardiotoxicity เป็นต้น

ยากลุ่ม selective serotonin reuptake inhibitor (SSRI) เป็นยากลุ่มที่ใช้กันค่อนข้างมากในปัจจุบัน ได้แก่ citalopram, fluoxetine, fluvoxamine, paroxetine และ sertraline ข้อดีของยากลุ่มนี้คือมีฤทธิ์ข้างเคียงต่ำ ไม่ค่อยทำให้ร่วง ใช้ได้ค่อนข้างปลอดภัยในผู้ป่วยที่มีโรคทางกายเช่นโรคหัวใจ ยานานที่อยู่ในมูกช่องทางเดิน ได้แก่ fluoxetine ขนาด 20 มก. ให้กิน 1 เม็ด ตอนเช้า เนื่องจากหากกินตอนเย็นอาจทำให้นอนไม่หลับได้ แม้ SSRI จะมีที่ใช้ในการรักษา

มากขึ้น โดยทั่วไปจะมีความเห็นว่า SSRI ไม่ได้ผลในการรักษาภาวะซึมเศร้ารุนแรงเมื่อเทียบกับยาแก้ซึมเศร้ากลุ่ม tricyclic^{21,22}

ยาแก้ซึมเศร้ากลุ่มนี้ มีกลไกการออกฤทธิ์ต่อระบบต่างๆ แตกต่างกันออกไป เช่นออกฤทธิ์ต่อระบบ dopamine (bupropion), ออกฤทธิ์ต่อทั้งระบบ adrenergic และ serotonergic (venlafaxine, mirtazapine)²³ ยานอกกลุ่มนี้ที่อยู่ในบัญชียาหลักได้แก่ mianserin มีขนาดเม็ดละ 10 และ 30 มก. ทำให้หลับได้ดี นิยมใช้ในผู้ป่วยซึมเศร้าที่มีปัญหาการนอน มีฤทธิ์ข้างเคียงต่ำ เช่นกัน

แนวคิดเดิมมักนิยมให้ยาแบบ monotherapy แต่เนื่องจากปัจจุบันการออกฤทธิ์ของยา มีความเฉพาะเจาะจงต่อ monoaminotransmitter system มากขึ้น อีกทั้งมีผลข้างเคียงต่ำ ในระยะหลังจึงมีแนวโน้มในการใช้ยาแก้ซึมเศร้า 2 ขนาดร่วมกันมากขึ้น โดยที่แต่ละขนาดมีกลไกออกฤทธิ์ต่างกัน

การรักษาระยะต่อเนื่อง (continuation treatment)

หมายถึงการรักษาในระยะตั้งแต่ผู้ป่วยอาการดีขึ้นจากการรักษา เป็นการให้ยาต่อเนื่อง ไปอีกระยะหนึ่งจนแน่ใจว่าอาการซึมเศร้าของผู้ป่วยผ่านพ้น episode นี้ไปแล้ว แม้ผู้ป่วยหายจากอาการแล้วก็ยังจำต้องได้รับการรักษาต่อเพื่อป้องกันโรคกลับกำเริบ (relapse) โดยจะให้ยาต่อไปอีกนาน 4-6 เดือน²⁴ แล้วจึงค่อยๆ ลดยาลงโดยใช้เวลาเป็นเดือน หากหยุดยาเร็วผู้ป่วยมักมี withdrawal effects เช่น หงุดหงิด นอนไม่หลับ เป็นต้น

การป้องกันระยะยาว (Maintenance or prophylactic treatment)

มีเป้าหมายเพื่อป้องกันโรคกลับเป็นซ้ำอีก (recurrence) ผู้ป่วยที่มีประวัติป่วยเป็นโรคซึมเศร้า 2-3 ครั้งขึ้นไป ควรให้ยาต่อเนื่องไปนานอย่างน้อย 2-3 ปี ควรให้ผู้ป่วยทราบว่าหากหยุดการรักษาจะมีโอกาสเกิด recurrence ร้อยละ 50 ในช่วง 6 เดือนแรกหลังหยุดยา ไม่ว่าเดิมจะรักษาได้ผลดีมานานเท่าไรก็ตาม ผู้ป่วยและญาติควรเรียนรู้ที่จะสังเกตอาการเริ่มต้นของการเกิดอาการกลับมาอีก การเกิดอาการอาจเป็นชิ้นมาเอง หรือหลังประสบเหตุการณ์กดดันต่างๆ ในทั้งสองกรณีผู้ป่วยมักมีอาการเริ่มต้นหรืออาการเดือนนำมาก่อน ด้วยย่างเช่น นอนไม่หลับ วิตกกังวลง่าย หรือเบื่อๆ ไม่อยากทำอะไร ผู้ป่วยควรปรึกษารักษาตั้งแต่ดัน เพื่อที่จะได้ไม่ป่วยนาน

ตารางที่ 2 ข้อบ่งชี้ในการป้องกันระยะยาว²⁵

1. มีอาการมาแล้ว 3 ครั้ง
2. มีอาการมาแล้ว 2 ครั้ง ร่วมกับมีภาวะต่อไปนี้

- ประวัติ recurrent major depression หรือ bipolar disorder ในญาติใกล้ชิด (first-degree relative)
- มีประวัติ recurrent ภายใน 1 ปี หลังจากหยุดการรักษา

- เริ่มมีอาการครั้งแรกขณะอายุยังน้อย (ต่ำกว่า 20 ปี)
- มีอาการที่เป็นเรื้อรัง หรืออันตรายต่อผู้ป่วยมา 2 ครั้ง ภายในช่วงเวลา 3 ปี

เอกสารอ้างอิง

1. Weissman MM, Bland RC, Canino GJ, et al. Cross-national epidemiology of major depression and bipolar disorder. *JAMA* 1996; 276:293-9.
2. World Health Organization. *The World Health Report 2001: Mental Health: New Understanding, New Hope*. Geneva: World Health Organization, 2001.
3. Wittchen H-U, Knauper B, Kessler R. Lifetime risk of depression. *Br J Psychiatry* 1994; 165:16-22.
4. Pincus HA, Pettit AR. The societal costs of chronic major depression. *J Clin Psychiatry* 2001; 62(suppl6):5-9.
5. American Psychiatric Association. *DSM-IV Diagnostic and Statistical Manual of Mental Disorders*. 4th ed. APA, Washington, DC:1994.
6. Kendler KS, Kessler RC, Neale MC, Heath AE, Eaves LJ. The prediction of major depression in women: toward an integrated etiologic model. *Am J Psychiatry* 1993; 150:1139-48.
7. Kendler KS, Karowski L. Stressful life events and liability to major depression: genetic control of exposure to the environment. *Psychol Med* 1997; 27:539-47.
8. Jacobs BL, Praag H, Gage FH. Adult brain neurogenesis and psychiatry: a novel theory of depression. *Mol Psychiatry* 2000; 5:262-9.
9. Gould E, Tanapat P, McEwan BS, et al. Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. *Proc Natl Acad Sci USA* 1998; 95:3168-71.
10. Duman RS, Malberg J, Nakagawa S, D'Sa C. Neuronal plasticity and survival in mood disorders. *Biol Psychiatry* 2000; 48:732-9.
11. Reid IC, Stewart CA. How antidepressants work : New perspectives on the pathophysiology of depressive disorder. *Br J Psychiatry* 2001; 178:299-303.
12. Mayberg HS, Liotti M, Brannan SK, et al. Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. *Am J Psychiatry* 1999;156:675-82.

13. Rubin RT, Phillips JJ, Sadow TF, McCracken JT. Adrenal gland volume in major depression—increase during the depressive episode and decrease with successful treatment. *Arch Gen Psychiatry* 1995; 52: 213–8.
14. Michelson D, Stratakis C, Hill L, et al. Bone mineral density in women with depression. *N Engl J Med* 1996; 335:1176–81.
15. Frank E, Prein RF, Jarrett RB, et al. Conceptualization and rationale for consensus definitions of terms in major depressive disorder. *Arch Gen Psychiatry* 1991; 48:851-5.
16. Greden JF. The burden of recurrent depression : causes, consequenses, and future prospects. *J Clin Psychiatry* 2001;62(suppl22):5-9.
17. Angst J. The course of affective disorders. *Psychopathology* 1986;19:47-52.
18. Paykel ES, Ramana R, Cooper Z, et al. Residual symptoms after partial remission: an important outcome in depression. *Psychol Med* 1995; 25:1171-80.
19. มนิตร ศรีสุรภานนท์. การใช้ยาทางจิตเวช. เชียงใหม่: โครงการตำราคณะแพทยศาสตร์ มหาวิทยาลัยเชียงใหม่, 2545:93-109.
20. Williams JW, Mulrow CD, Chiquette E, Noel PH, Aguilar C, Cornell J. Clinical guideline part 2: a systematic review of newer pharmacotherapy for depression in adults: evidence report summary. *Ann Intern Med* 2000; 132:743-56.
21. Danish University Antidepressant Group. Citalopram: clinical effect profile in comparison with clomipramine: a controlled multicenter study. *Psychopharmacology (Berl)* 1986; 90:131-8.
22. Danish University Antidepressant Group. Paroxetine: a selective serotonin reuptake inhibitor showing better tolerance, but weaker antidepressant effect than clomipramine in a controlled multicenter study. *J Affect Disord* 1990; 18:289-99.
23. Kent J. SnaRIs, NaSSAs, and NaRIs: new agents for the treatment of depression. *Lancet* 2000; 355: 911-8.
24. American Psychiatric Association. Practice Guideline for the Treatment of Patients with Major Depressive Disorder (Revision). *Am J Psychiatry* 2000; 157(Suppl): 1-45.
25. Agency for Health Care Policy and Research. Depression in primary care: detection, diagnosis and treatment. Clinical practice guideline no. 5. AHCPR publications no. 93-0550. Rockville, Md.: U.S. Department of Health and Human Services, Public Health Service, 1993.

ยาที่เสริมสมรรถภาพทางเพศ
(Sex enhancing drugs)

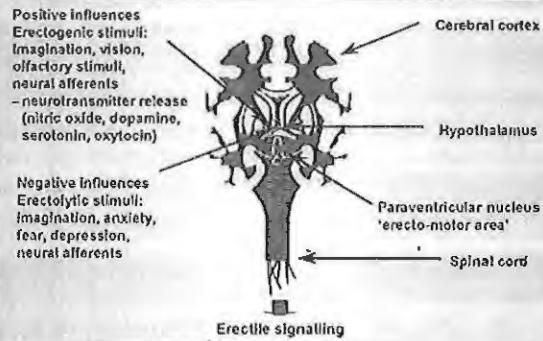
รศ.พญ.สุวนานา ชุมพูทวีป
(ผู้ดำเนินการอภิปราย)

การเสื่อมสมรรถภาพทางเพศในบุรุษ ปัจจุบันนิยมใช้คำว่า Erectile dysfunction (ED) นั้น คือภาวะที่อวัยวะเพศไม่สามารถแข็งตัวได้เดิมที่ หรือแข็งนานพอที่จะทำให้เกิดมีเพศสัมพันธ์ที่พึงพอใจของทั้งสองฝ่าย ปัญหานี้พบในชายอเมริกันถึง 10-20 ล้านคน^(1,2) และจะพบมากขึ้นเมื่ออายุสูงขึ้น สาเหตุส่วนใหญ่เกิดจากโรคด่างๆ เช่น โรคเบาหวาน โรคทางระบบประสาท ผลข้างเคียงจากยา จากการผ่าตัด หรือจากอุบัติเหตุ^(3,4) ซึ่งพบว่าเกิดจากทางด้านจิตใจเพียงร้อยละ 14 เท่านั้น⁽⁵⁾ ตลอดระยะเวลา 25 ปีที่ผ่านมาได้มีการพัฒนาการรักษาชายที่มีปัญหาการเสื่อมสมรรถภาพทางเพศมาด้วย ซึ่งในอนาคตได้มีการศึกษาวิจัยถึงระดับการใช้ยีน (gene therapy) ในการรักษา ED⁽⁶⁾

ในทางด้านสตรี พบว่าปัญหาทางเพศที่ผิดปกติ (female sexual dysfunction) ⁽⁷⁾ พบได้ดังนี้

- ความรู้สึก ความต้องการทางเพศลดลง (sexual desire disorder)
- ผิดปกติต่อสิ่งเร้าทางเพศ (sexual arousal disorder)
- การไม่ถึงจุดสุดยอด (orgasmic disorder)
- เจ็บปวดขณะมีเพศสัมพันธ์ (sexual pain disorder)

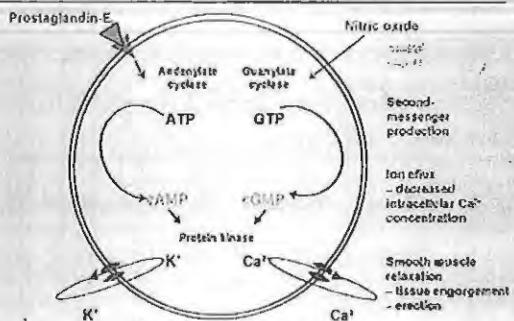
ปัญหาด่างๆ ดังกล่าวพบได้ในสตรีอเมริกันถึงร้อยละ 30-50%⁽⁸⁾ สำหรับการศึกษาในสตรีไทยวัยทอง⁽⁹⁾ ในการุ่งเทพบุณยานคร พบว่าร้อยละ 60 ที่ไม่มีเพศสัมพันธ์แล้ว และรักษาเพียงร้อยละ 6 ที่เจ็บขณะมีเพศสัมพันธ์ ด้านการดูแลและรักษาปัญหาทางเพศในสตรีนั้น ขณะนี้นอกจากการใช้ออร์โมนทดแทน (hormonal replacement therapy, HRT) ในการรักษาสตรีเหล่านี้ แล้ว ปัจจุบันยังไม่มียาที่ได้รับการรับรองจากองค์การอาหารและยาของสหรัฐอเมริกา (FDA) ที่จะใช้ในการรักษาสตรีที่มีความผิดปกติทางเพศ แต่ก็ได้มีการศึกษาวิจัยที่จะนำยา Sildenafil⁽⁸⁾ นารักษาสตรีที่มีความผิดปกติต่อสิ่งเร้าทางเพศอยู่

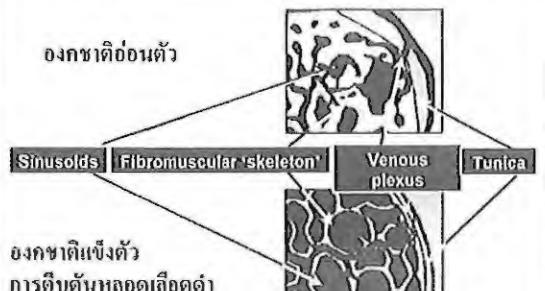

เอกสารอ้างอิง

1. NIH consensus Development Panel on Impotence. Impotence JAMA 1993; 270: 83-90.
2. Krane RJ, Goldstein I, Saenz de Tejada I. Impotence. N Engl J Med 1989; 321: 1648-59.
3. Feldman HA, Goldstein I, Hatzichristou DG, Krane RJ, Mc Kinlay JB. Impotence and its medical and psychosocial correlates : results of the Massachusetts Male Aging Study. J Urol 1994; 151: 54-61.
4. Morley JE, Kaiser FE. Impotence : the internist's approach to diagnosis and treatment. Adv Intern Med 1993; 38: 151-68.
5. Slag MF, Morley JE, Flison MK, et al. Impotence in medical clinic outpatient. JAMA 1983; 249: 1736-40.
6. Sharlip I. Symposium : Future pharmacology of erectile dysfunction : Asian congress of sexology : Swiss ô tel Singapore, 14-17 November 2002
7. Whipple B. Women's pleasure and satisfaction. Asian congress of sexology : Swiss ô tel Singapore, 14-17 November 2002
8. Berman JR, Berman LA, Lin H, Flaherty E, Lahey N, Goldstein I, Cantey-Kiser J. Effect of sildenafil on subjective and physiologic parameters of the female sexual response in women with sexual arousal disorder. J Sex Marital Ther 2001, Oct – Dec; 27(5) : 411-20.
9. Chompoolawee S, Tankeyoon M, Yamarat K, Poomsuwan P and Dusitsin N. The menopausal age and climacteric complaints in Thai women in Bangkok. Maturitas, 1993, 17 : 63-71.

ยาที่ใช้รักษาปัญหา องคชาติไม่แข็งตัว

รศ. ดร. ชัยชาญ แสงดี
ภาควิชาเกสรชีวิตยา
คณะแพทยศาสตร์
มหาวิทยาลัยเชียงใหม่


กระบวนการที่องคชาติเริ่มแข็งตัว: ระยะเริ่มต้นจากระบบประสาทส่วนกลาง


ประสาทภายในรากของสมอง ของการแข็งตัวและอ่อนตัวขององคชาติ

- Parasympathetic pathways (sacral nerves 2, 3, 4)
 - หลัง Vasoactive intestinal peptide (VIP) ในน้ำ ACh
 - ทำให้หลอดเลือดที่องคชาติขยายตัว เลือดเข้าไปในองคชาติมากขึ้น
 - ทำให้กล้ามเนื้อเรียนของเนื้อเยื่อ corpus cavernosum คลายตัว องคชาติจึงขยายและแข็งตัว
- Sympathetic pathways (thoracic T10-L2)
 - Ejaculation
 - ทำให้หลอดเลือดแดงที่องคชาติหดตัว เลือดออกจากองคชาติมากขึ้น องคชาติจึงหดและอ่อนตัว

กระบวนการที่องคชาติเริ่มแข็งตัวระดับเซลล์และ การคลายตัวของกล้ามเนื้อเรียน

กายวิภาคขององคชาติ (Penile Anatomy)

ทางเลือกของการรักษา ED

การรับเป็นที่ยอมรับ
เสื่อมที่ทำได้

การรักษาปรึกษาทางแพทย์
และแพทย์ที่เกี่ยวข้อง

การรักษาโดยบุคคล
การรักษาโดยบุคคล

ยาให้โดยการรับประทาน (Oral Agents)

- เป็นยาที่เลือกใช้เป็นลำดับแรกในผู้ป่วย ED ส่วนใหญ่
- ส่วนใหญ่ไม่ต้องใช้อุปกรณ์หรือเทคนิคพิเศษ ไม่ปวด
- ผู้ป่วยให้ยาได้ด้วยตนเอง
- ผู้ป่วยทนต่อผลข้างเคียงได้ดี (good tolerability)
- ผู้ป่วยให้การยอมรับดี
- มีการรับรองประสิทธิผล (เฉพาะบางตัว)
- มีข้อห้ามใช้น้อย

ยาให้โดยการรับประทานที่ได้รับการรับรอง

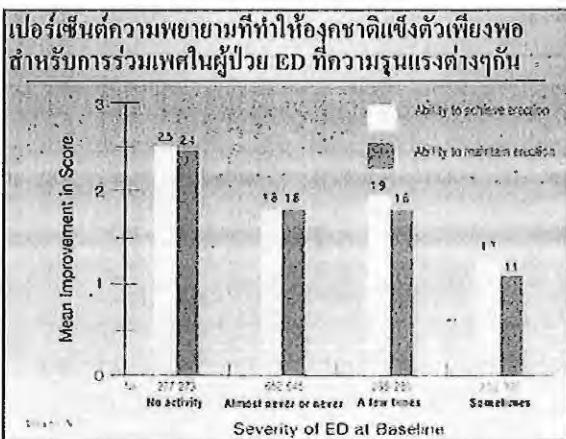
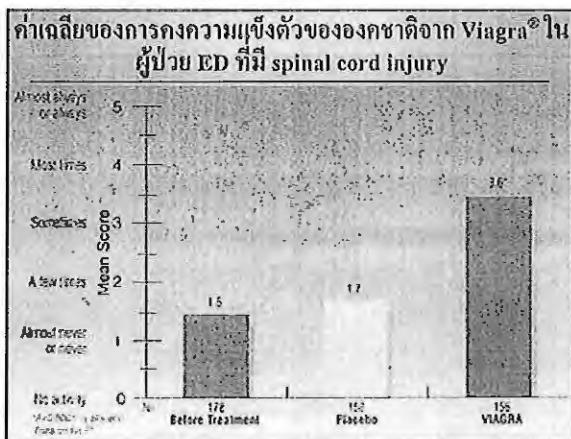
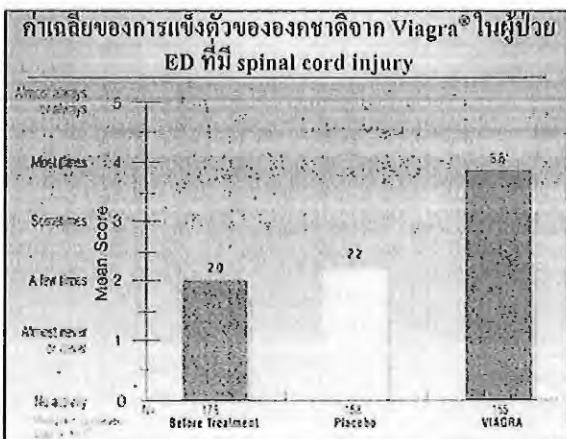
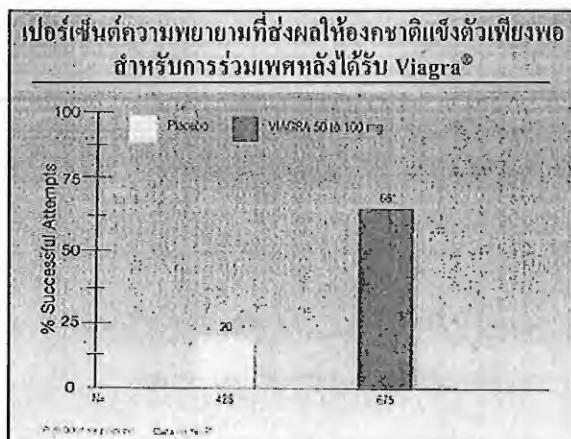
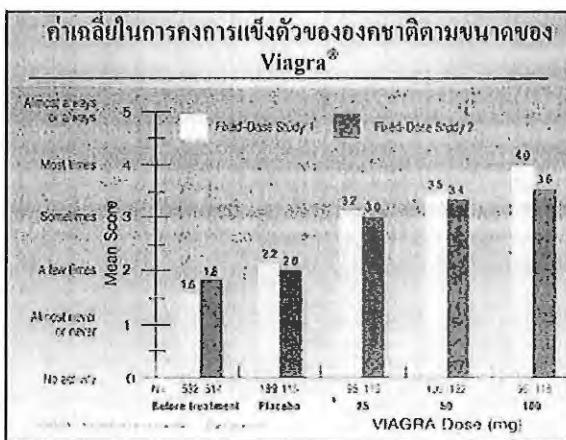
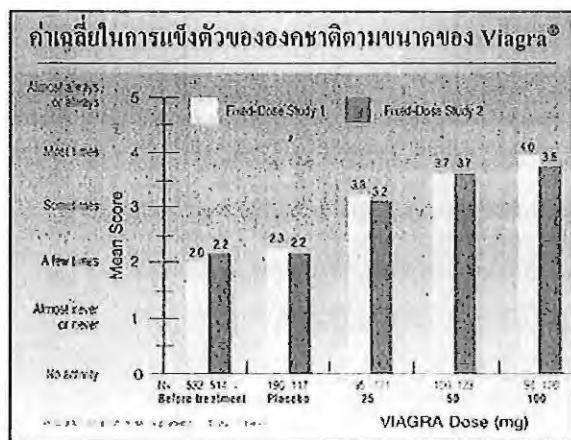
ออกฤทธิ์

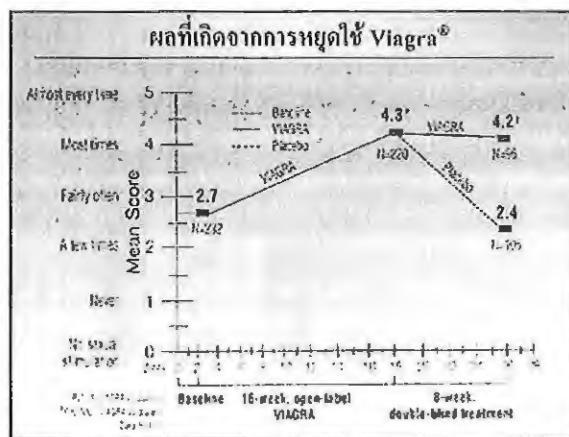
- ออกฤทธิ์ เช่น phosphodiesterase-5 inhibitor (Viagra)
- ระบบประสาทส่วนกลาง เช่น ยากระตุ้น dopamine รีเซฟเตอร์ชนิด D₂ (Uprima)

Viagra® (sildenafil Citrate)

- กลไกการออกฤทธิ์
 - ยับยั้ง PDE5 ที่จำเปาะต่อ cGMP (cGMP-specific PDE5) ซึ่งรับผิดชอบในการสลาย cGMP
 - เมื่อการดีอาโลมทางเพศดันให้หลั่ง NO ในเนื้อเยื่อที่เกี่ยวข้องกับการแข็งตัว ซึ่งจะกระตุ้นให้เพิ่มการดังเคราะห์ cGMP การยับยั้ง PDE5 จะทำให้ระดับของ cGMP เพิ่มขึ้น เนื่องจากมันนี้ทำให้เซลล์กล้ามเนื้อเรียบคลายตัวและเพิ่มการไหลเวียนเลือดเข้าไปในเนื้อเยื่อที่เกี่ยวข้องกับการแข็งตัว

ขนาดและวิธีใช้ยา Viagra®







- ขนาดของ Viagra เริ่มจาก 25 มิลลิกรัม
- ขนาดที่แนะนำสำหรับผู้ป่วยส่วนใหญ่คือ 50 มิลลิกรัม
- สามารถรับประทาน Viagra® 30 นาทีถึง 4 ชั่วโมง ก่อนมีกิจกรรมทางเพศ แต่ปกติจะแนะนำให้รับประทานก่อนมีกิจกรรมทางเพศ 1 ชั่วโมง
- ไม่แนะนำให้รับประทาน Viagra® เกินกว่า 1 วันต่อครั้ง
- Viagra จะไม่มีผลถ้าไม่มีการกระตุ้นทางเพศ


การทดสอบทางคลินิก (Clinical trials)

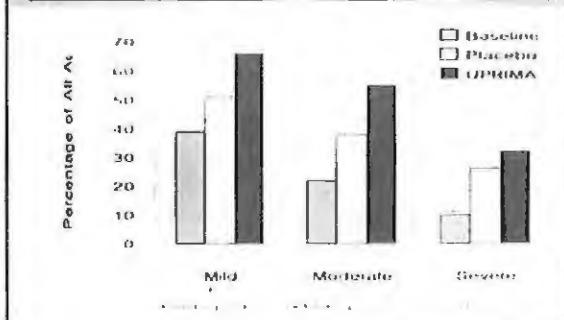
- ผู้ป่วยที่มีสภาพของ ED จากโรคทางกาย ทางใจ หรือทั้งสองอย่างร่วมกัน
- ประเมินประสิทธิผลโดยใช้การตอบสนองของผู้ป่วยตาม International Index of Erectile Function (IIEF):
 - เมื่อท่านพอยาวยังจะมีเพศสัมพันธ์ ท่านสามารถทดสอบได้เข้าไปในตัวคุณของท่านได้บ่อยเที่ยงไร?
 - ในระหว่างที่มีเพศสัมพันธ์ ท่านสามารถคงการแข็งตัวได้เข้าไปในตัวคุณของท่านได้บ่อยเที่ยงไร?
 - ตัวลั่งสุดจะได้เข้าไปในตัวคุณของท่านได้บ่อยเที่ยงไร?
- คะแนนที่ได้มีตั้งแต่ 1-5 (ไม่เคยพอยาวยาม-สุดจะได้เก็บหนึ่งได้ทุกครั้ง)

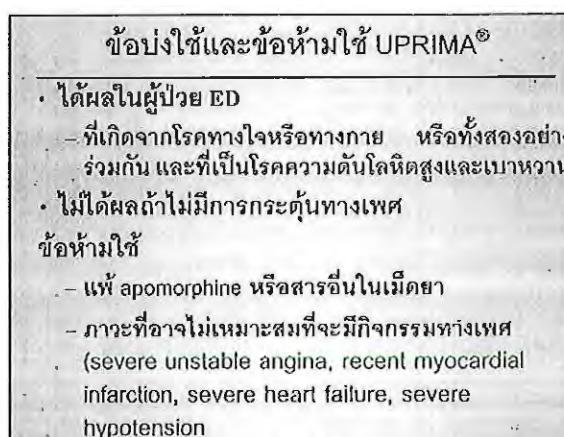
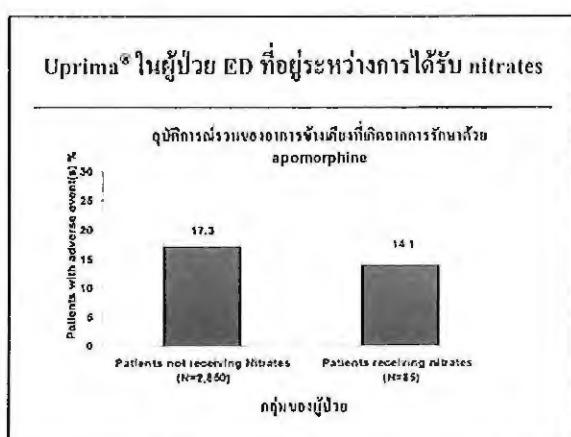
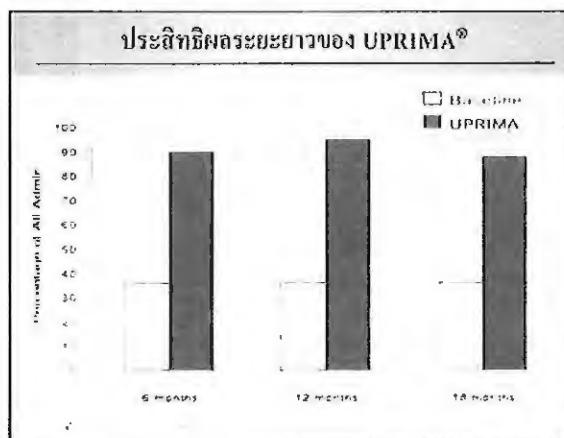
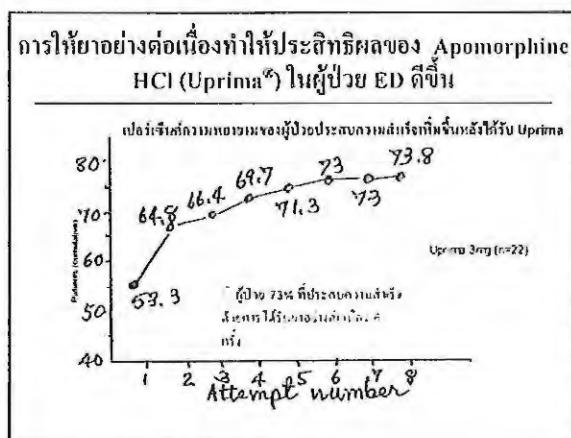
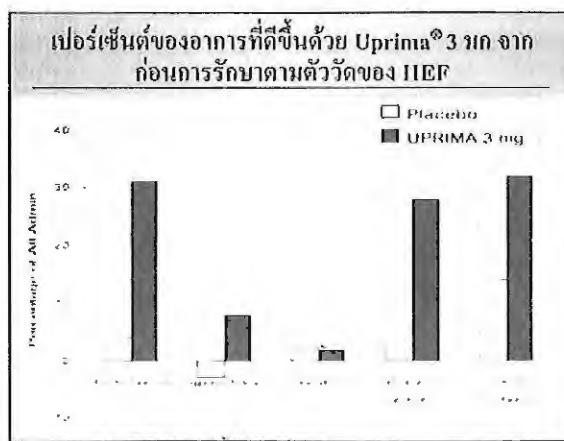
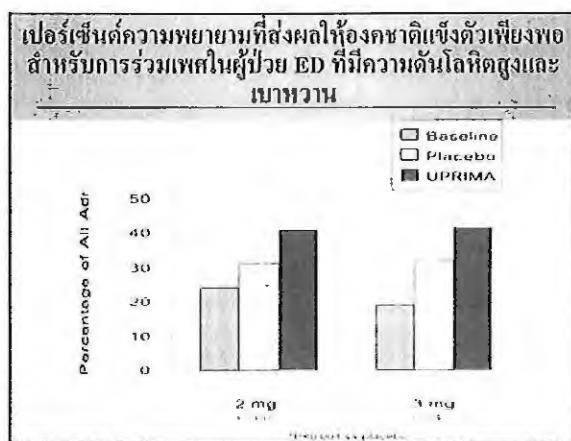
ตัววัดของ IIEF (ต่อ)

- ตัววัดอื่น: บันทึกประจำวันของผู้ป่วยและของคู่
 - ตัววัดของ IIEF
 - ระดับการแข็งตัวขององคชาต (erecile function)
 - การถึงจุดสุดยอด (orgasmic function)
 - ความพึงพอใจของเพศสัมพันธ์ (intercourse satisfaction)
 - ความต้องการทางเพศ (sexual desire)
 - ความพึงพอใจโดยรวม (overall satisfaction)

ข้อดีของ Viagra®

- ใช้รับประทานได้
- มีประสิทธิภาพในผู้ป่วย ED ที่
 - มีความผิดปกติทางใจ ทางกาย และสาเหตุอื่น
 - บาดเจ็บไขสันหลัง ตัดต่อมถุง睪丸
 - ยาต้านไขมันหล่อโลหิต
- ข้อเสีย/ข้อห้ามใช้ของ Viagra®
 - ภาวะที่อาจไม่เมะมะสมที่จะมีกิจกรรมทางเพศ (severe unstable angina, recent myocardial infarction, severe heart failure, severe hypotension)
 - โรคของหัวใจและหลอดเลือด
 - ผู้ที่กำลังใช้ยาลดความดันโลหิต โดยเฉพาะ nitrates


UPRIMA®: กลไกออกฤทธิ์







- กระตุ้น D₂ รีเซฟเตอร์ที่ paraventricular nucleus ของ hypothalamus —> ไปสันหลัง —> autonomic center ที่ sacral segment ที่ 2, 3 และ 4 ของระบบประสาท parasympathetic —> หลัง vasoactive intestinal peptide (VIP) —> หลัง nitric oxide (NO) จาก endothelium ของผนังด้านในของหลอดเลือดที่องคชาติ —> —> องคชาติขยายตัวและแข็งตัว

UPRIMA®: Pharmacokinetics

- ละลายอย่างรวดเร็วหลังจากการได้ลึกล้ำด้านใน หนึ่งให้ลึกที่สุด ยาจะละลายภายใน 10 นาที
- ดูดซึมเร็วมาก ตรวจพบในเลือดภายใน 10 นาที
- การร่างได้ลึกล้ำที่หลักเลี้ยง first-pass metabolism
- ถูกแปรสภาพโดยจับกับ sulphate และ glucuronic acid รวม 80%
- Cytochrome (CYP) P450 เปลี่ยน apomorphine ให้เป็น norapomorphine 20%

เฝอเรื้นต์ความพยาบาลที่ส่งผลให้องคชาติแข็งตัวเพียงพอสำหรับการร่วมเพศในผู้ป่วย ED ที่รุนแรงน้อย ปานกลาง และมาก

ข้อดี/ประโยชน์ของ UPRIMA®

- ใช้ยา: omnidolesin
- ออกฤทธิ์เร็ว: ภายใน 10-20 นาที
- การแข็งตัวเมื่อนักกับที่เกิดตามธรรมชาติ
- ฤทธิ์ที่ทำให้องคชาติแข็งตัวเกิดจากกระบวนการขยายตัวของหลอดเลือดขนาดที่องคชาติ
- ทำให้เกิดอาการข้างเคียงน้อยกว่าการรักษาโดยวิธีอื่น
- ไม่มีปฏิกิริยาที่สำคัญกับ nitrates ยาอื่น และอาหาร

การให้ยาเฉพาะที่ (Local Therapy)

MUSE® (Medicated Urethral System for Erection)

- Transurethral alprostadil
- Alprostadil เป็น synthetic PGE \rightarrow เพิ่ม cAMP \rightarrow ของชาติแข็งตัว
- มีขนาด 125, 250, 500 และ 1000 mcg
- Onset 5-10 นาที, duration 30-60 นาที
- เป็นทางเลือกสำหรับผู้ชายที่ไม่ต้องการที่ invasive กว่า
 - ผู้ป่วย 34% จะเลือกใช้ยา: ปั๊กองคชาติ
 - ผู้ป่วย 5% เกิดบาดแผลเล็กน้อยในท่อปัสสาวะ
 - 5.8% ของผู้ป่วยที่ใช้ MUSE รู้สึกแสบร้อนและคันในช่องคลอด

Alprostadil สำหรับฉีด (Caverject® & Edex®)

- ฉีดยาเข้าชั้น corpus cavernosum ขององคชาติที่ dorsolateral on the proximal half of the penis shaft
- การฉีดยาครั้งแรกควรทำในคลินิกโดยแพทย์
- ต้องระมัดระวังไม่ให้ ฉีดยาเข้าหลอดเลือด, เส้นประสาท, tunica albuginea
- ต้องเบลี่ยนตัวແเน่งที่ฉีดยาทุกครั้ง
- ฉีดยาได้ไม่เกินวันละครั้ง (สูงสุด 3 ครั้ง/สัปดาห์)
- ข้อเสีย: invasive (ทำให้บวมช้ำ ปวด เลือดออกบริเวณที่ฉีด), priapism, เกิดเนื้อเยื่อหังพีตในองคชาติ รูปร่างองคชาติอาจผิดไปจากปกติ, อัตราการเลิกใช้ค่อนข้างสูง

วิธีรักษา ED ที่ไม่ผ่านการรับรอง

- Yohimbine (Yocon®)
- Phenolamine (Vasomax®)
- Trazodone (Deseryl®, Trazon®, Triiododine®)
- Ginseng
- Testosterone supplement
- PGE1 SEPA gel ให้ยาเฉพาะที่ (Topigan)
- Transurethral alprostadil/prazosin (Alibra®)
- Papaverine + phenolamine (Bi-mix®)
- Papaverine + phenolamine + PGE1 (Tri-mix®)
- Phenolamine + VIP (INVICORP®)

Evaluation of CYP1A2 Activity in Thalassemia Patients

Veerapol Kukongviriyapan, Laddawan Senggunprai, Upa Kukongviriyapan¹,
Arunee Jetsrisuparb², Wichittra Tassaneyakul

Departments of Pharmacology, ¹Physiology and ²Paediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.

Abstract

The thalassemias are common genetic diseases among the Thai population. The autoxidation of globin chains and iron overload are the suggested mechanisms for the enhanced generation of reactive oxygen species and ensuing oxidative stress. It has been reported that the oxidative stress alters function of the drug metabolizing enzymes system. However, several cellular adaptive compensations against oxidative stress may modify the outcome of the activity of the enzymes. The aim of this study was to evaluate the drug metabolizing enzyme status in thalassemia patients, particularly to examine the activity of CYP1A2, and to determine factors influencing its activity. The study included the regular blood transfusion β -thalassemia / HbE patients (n = 23) and the healthy controls (n = 25). The CYP1A2 activity was assessed by using caffeine as a probe drug. The caffeine and its major metabolite, paraxanthine, in saliva and plasma at 6 h after drug intake, were analyzed by high performance liquid chromatography (HPLC). The enzyme activity was determined from the caffeine metabolic ratio (CMR), paraxanthine / caffeine. The oxidative status was quantified by measuring the concentrations of plasma and whole blood total glutathione. Moreover, the concentrations of hemoglobin, uric acid, total bilirubin, ALT and AST were analysed in both groups. The results showed that the salivary CMR highly correlated with the plasma CMR ($r = 0.9772$, $p = 0.0001$). The salivary and plasma CMR in thalassemia patients were not significantly different in comparison with the control group (plasma CMR : 0.759 ± 0.043 vs 0.775 ± 0.062 for control group and thalassemia patients, respectively). Similarly, there was no significant difference between the two groups in the concentrations of plasma total glutathione, whereas, the whole blood total glutathione was significantly decreased in thalassemia patients ($p < 0.05$). Correlations between parameters were analysed by using multiple linear regression analysis. In the control group, none of the parameters correlated with the CMRs. In contrast, the plasma CMR correlated significantly with the concentrations of total glutathione, total bilirubin, ALT and AST in the thalassemia patients ($r = 0.65$, $p < 0.05$). In conclusion the CYP1A2 activity in thalassemia patients was not significantly altered and its activity in these patients may be affected by the oxidative stress responses.

Keywords : thalassemia, CYP1A2, caffeine, oxidative stress

Amyloid Beta1-42 Induced Glial Activation and Cell Death in Corpus Callosum in Vivo

Nattinee Jantaratnotai, Yupin Sanvarinda

Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.

Abstract

White matter degeneration is a frequent phenomenon found in Alzheimer's disease (AD) apart from the well-known lesions in certain grey matter areas such as cortex and hippocampus. However its pathogenesis has not been fully established. Therefore, the aim of this work was to assess the effects of A β 1-42 in rat corpus callosum from 6 hr upto 2 weeks using immunocytochemistry since amyloid deposits can be found in CC of AD patients. Administration of 1 nmol of A β 1-42 into corpus callosum resulted in considerable damage to axons, as evidenced by the loss of neurofilament-immunoreactive fibers at time points of 6 hrs and 7 days post-injection. Significant damage was also evident to myelin (using Luxol fast blue myelin staining) and oligodendrocytes (using CC1 immunocytochemistry); in the latter case marked caspase-3 immunoreactivity was demonstrated in the CC1-immunoreactive oligodendrocytes. Additionally, the numbers of GFAP-immunoreactive astrocytes and OX-42/OX-6-immunoreactive microglia were markedly increased following A β 1-42 injection. These findings suggest that A β 1-42 plays an important pathophysiological role in white matter damage and one possible mechanism of oligodendroglial death is through activation of caspase-3. This is the first finding on A β 1-42-induced toxicity in corpus callosum *in vivo* which could provide a potential new model for the study of white matter damage in AD.

Keywords: Amyloid beta; Corpus callosum; Glia; Oligodendrocytes; Astrocytes; Microglia; Neurofilament; Myelin

Beneficial Effects of Piperine on Spatial Memory Impairment and Brain Lipid Peroxidation Increase Induced by Transient Cerebral Ischemia in Mice

Surachai Pensirinapa and Surachai Unchern

Department of Pharmacology, Faculty of Pharmaceutical Sciences,
Chulalongkorn University, Bangkok 10330, Thailand.

Abstract

Effects of piperine, a major pungent alkaloid in pepper, on the cognitive deficit and cerebral oxidative stress induced by cerebral ischemia were studied in mice by using spatial memory task and measurement of lipid peroxidation in the brain. Transient cerebral ischemia was induced by 20-min bilateral common carotid artery occlusion (2VO) and the impairment of spatial learning and memory was subsequently evaluated for 5 consecutive days by a Morris water maze. The 2VO-mice displayed a delay in swimming time to find a hidden platform (escape latency) when compared to sham-operated mice. The 5-day intraperitoneal (i.p.) administration of piperine, at 0.1 and 0.5 mg/kg/day after the 2VO, markedly attenuated this cognitive deficit while the same administration at higher doses (1 and 5 mg/kg/day) showed lower preventive effect on the deficit. Beneficial effects of piperine on spatial memory task were also found in normal and sham-operated mice. However, the magnitude of effects was relatively small comparing to that observed in 2VO mice. In addition, 5-day piperine administration at all test doses did not show any significant effects on locomotor activity of normal mice.

The brain lipid peroxidation (as measured by TBARS assay) of 2VO-mice at 5 days after the occlusion was significantly increased when compared to sham-operated mice. This increase was markedly attenuated by 5-day i.p. administration of piperine at 0.1 and 0.5 mg/kg/day while the same administration at higher doses (1 and 5 mg/kg/day) showed modest attenuation on the increase. Moderate beneficial effects of piperine on brain lipid peroxidation were also noticed in sham-operated mice.

Taken together, these results suggested that piperine administration had beneficial effects on 2VO-induced cognitive deficit and brain lipid peroxidation increase in mice. The close correlation between effects of piperine on both indications of brain injury also implied that the attenuation of 2VO-induced cognitive deficit may involve, at least partly, the antioxidant property of piperine. Conceivably, piperine may be considerable for further study as a possible adjunctive medication in the treatment of neurodegenerative disorders.

Keywords: piperine, cerebral ischemia, memory deficit, lipid peroxidation

Effect of *Acacia catechu* extract on isolate human umbilical vein

Pintus Prabrok*, Kornkanok Inkananant**, Sopit Thamaree*

*Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand

**Department of Pharmacognosy, Faculty of Medicine, Naresuan University, Bhisanuloke, Thailand

Abstract

Thin layer chromatogram (TLC fingerprint) characterizing the constituents in the ethanol extract of *Acacia catechu* is performed to assure the identity and quality of the extract studied. To assess the vasodilating effect and mode of action of *Acacia catechu* extract (ACE), isolated human umbilical vein (HUV) are used. The strips of isolate HUV with or without endothelium are induced contraction with KCl or histamine in the absence and in the presence of ACE, at the concentration which shows maximum inhibition response. Nitric oxide synthase (NOS) inhibitor, cyclo-oxygenase (COX) inhibitor, bradykinin receptor antagonist and potassium channel blocking agent are used in elucidating the role of mediators in producing vasodilating effect of ACE. The results show inhibitory effect of ACE on KCl-induced contraction of the endothelium-intact segment of isolated HUV. The responses are mediated by at least three different pathways involving release of endothelium-derived relaxing factors (EDRF). One of the alternative pathway involves the production of prostacyclin. The second pathway involves production of nitric oxide. The last pathway possibly involves endothelium-derived hyperpolarizing factor (EDRF). Whereas bradykinin is unlikely to involve in mediating the vasodilatory effect of ACE.

Keyword : *Acacia catechu*, Endothelium-derived relaxing factor (EDRF), Nitric oxide, Prostacyclin, Potassium channel

SUSCEPTIBILITY OF ZOONOTIC DERMATOPHYTES TO ETHANOLIC EXTRACT OF *PIPER BETLE* LEAVES

Nopamart Trakranrungsie¹, Arinee Chatchawanchontheera², Arayaporn Makarapes³, Watcharee Khunkitti⁴

¹Department of Pharmacology & Toxicology, ²Department of Pathobiology, ³KKU-Animal Hospital, Faculty of Veterinary Medicine, ⁴Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, THAILAND

Abstract

The antifungal effect of ethanolic extract of *Piper betle* (Piperaceae) was tested against selected zoonotic dermatophytes, namely *Trichophyton mentagrophyte*, *Microsporum canis* and *Microsporum gypseum*. A broth dilution method was employed to determine the inhibitory effect of the extract, as well as those of ketoconazole and griseofluvin, which were included for a comparative purpose. The *Piper betle* extract suppressed the growth of dermatophytes in a concentration-dependent manner. The IC₅₀ values were ranging from 110 to 119 µg/ml with an average E_{max} (at 512 µg/ml) of 94.12%. Meanwhile, the average IC₅₀ & E_{max} (at 64 µg/ml) of ketoconazole and griseofluvin were 3.90 µg/ml & 100.00% and 9.10 µg/ml & 95.37%, respectively. Although the *Piper betle* extract appeared to possess less potency than ketoconazole and griseofluvin, ten times of its maximal concentration studied did not cause any significant irritation when applied directly on the abdominal region of the canine skin. Based on the current findings, it is suggested that the ethanolic extract of *Piper betle* leaves represents potentially useful anti-dermatophytes and is worthy of further investigation.

Key words: *Piper betle*, dermatophytes, antifungal effect

ANTIFUNGAL ACTIVITY OF *ALPINIA GALANGA* AND *ALLIUM ASCALONICUM* EXTRACTS

Arinee Chatchawanchoneera¹, Wittaya Suriyasathaporn², Nopamart Trakranrungsie³

¹Department of Pathobiology, ²Department of Physiology, ³Department of Pharmacology & Toxicology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002 THAILAND

Abstract

The objective of this study was to evaluate the inhibitory effects of *Alpinia galanga* (Zingiberaceae) and *Allium ascalonicum* (Liliaceae) on filamentous fungi (*M. canis*, *M. gypseum* and *T. mentagrophyte*) and an opportunistic yeast (*Candida albicans*), using a broth dilution technique. The table showed the $IC_{50} \pm SEM$ and $E_{max} \pm SEM$ of the plant extracts, compared to those of ketoconazole and griseofluvin. According to the IC_{50} values, the extract of *A. galanga* exhibited a more pronouncing effect against *M. canis* than other fungi, while the effect of *A. ascalonicum* on the tested microorganisms was not significantly different. Taken together with our previous study on the effect of *Piper betle*, it is concluded that both *A. galanga* and *A. ascalonicum* could serve as the alternatives for the antifungal recipes. However, possible side effects remain to be determined.

	<i>Alpinia galanga</i>		<i>Allium ascalonicum</i>		ketoconazole		griseofluvin	
	IC_{50} (mg/ml)	$\%E_{max}$ at 256 mg/ml	IC_{50} (mg/ml)	$\%E_{max}$ at 256 mg/ml	IC_{50} (μ g/ml)	$\%E_{max}$ at 64 μ g/ml	IC_{50} (μ g/ml)	$\%E_{max}$ at 64 μ g/ml
Mc	26.05 \pm 7.42	100.00 \pm 0.00	69.87 \pm 45.58	100.00 \pm 0.00	2.84 \pm 0.66	100.00 \pm 0.00	14.14 \pm 3.84	94.44 \pm 5.56
Mg	83.51 \pm 10.91	94.44 \pm 5.56	73.33 \pm 22.67	77.78 \pm 11.11	7.64 \pm 3.36	100.00 \pm 0.00	8.04 \pm 5.59	91.67 \pm 8.33
Tm	45.32 \pm 61.02	100.00 \pm 0.00	61.20 \pm 15.03	94.44 \pm 5.56	1.21 \pm 0.23	100.00 \pm 0.00	5.13 \pm 1.21	100.00 \pm 0.00
Ca	53.33 \pm 10.67	100.00 \pm 0.00	96.00 \pm 18.48	72.22 \pm 5.56	8.39 \pm 3.00	100.00 \pm 0.00	56.20 \pm 3.00	50.00 \pm 5.3

(Mc=*M. canis*, Mg=*M. gypseum*, Tm=*T. mentagrophyte*, Ca=*Candida albicans*)

Key words: *Alpinia galanga*, *Allium ascalonicum*, antifungal effect, dermatophytes, yeast

Analgesic activity and genotoxicity of *Morinda citrifolia*

Harpreeet Khurana¹, Mongkol Junkrut¹, Tadsanee Punjanon²

Biomedical Science Students, Faculty of Science, Rangsit University, Phathum-thani 12000, Thailand

Pharmacology and Toxicology Unit, Faculty of Science, Rangsit University, Phathum-thani 12000, Thailand

Abstract

Morinda citrifolia (noni) has been used for thousands of years as a source of traditional medicine and has been recently commercially processed and internationally distributed. *M. citrifolia* has been subjected to considerable pharmacological effects claimed in the folk medicine and toxic effects. The purpose of this study was to evaluate the analgesic activity and genotoxicity of the alcoholic extract from the fruits of *M. citrifolia* using acetic acid-induced writhing response test in mice and *Bacillus subtilis* rec-assay, respectively. In writhing response test, the extract at various doses between 84-336 mg/kg produced a significant dose-dependent inhibition ($p<0.001$, $n=6$) of pain caused by acetic acid injection. The inhibitory effect of the 336 mg/kg dose of extract was similar to that produced by morphine in a dose of 1.5 mg/kg. In *B. subtilis* rec-assay, the alcoholic extract of *M. citrifolia* did not show any positive reaction while all 8 commercial *M. citrifolia* juice samples obtained from various places showed positive results with a clear relationship of dose-genotoxic response, compared to positive control (mitomycin C) and negative control (DW). The results obtained suggest the alcoholic extract of *M. citrifolia* exhibits marked analgesic activity and doesn't possess mutagenic activity while possible mutagens might be formed during processing. Further studies are necessary to evaluate its genotoxicity using another mutagenicity tests such as Ames' test and micronucleus test.

Keywords : *Morinda citrifolia*, analgesic activity, genotoxicity, writhing response test, Rec-assay

ANTIOXIDATIVE EFFECT OF *PUERARIA MIRIFICA*

Y. Sanvarinda¹, L. Phivthong-ngam², SK. Wattanapitayakul², M. Yajima³, HO. Murakami³, A. Apisariyakul⁴, T. Suwancharas⁵

¹Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.

²Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand.

³Department of Pharmacology, Aichi Medical University, Nagakute, Aichi, 4801195, Japan

⁴Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.

⁵Department of Surgery, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand.

ABSTRACT

Pueraria mirifica (White Kwao Keur) is a thai rejuvenating folk medicine which contains many phytoestrogens including miroestrol, deoxymiroestrol and insoflavonoid group (kwakhurin, daidzein, genistein, etc.) which possess estrogenic activity. This study aimed to investigate the antioxidative effect of *Pueraria mirifica* in several models both *in vitro* and *ex vivo*. Free radical scavenging assay using ESR method, the EC50 of superoxide- and hydroxyl scavenging activity was 49.4 mg/ml and 103 µg/ml, respectively. The scavenging ability to hydroxyl radical was 4.8 times weaker than vitamin C. By the method of DPPH assay, the EC50 of the quenching DPPH was 19.6 mg/ml. Antioxidant activity of ethanol extract (1mg/ml) was equivalent to 50 µM vitamin C evaluated by ferric reducing antioxidant power (FRAP) assay. The measurement of the resistance of low density lipoprotein (LDL) to oxidation promoted by copper ion *ex vivo*, LDL prepared from hypercholesterolemic rabbits supplemented with orally 100 mg/kg/day *Pueraria mirifica* (*P.mirifica*-group) for 12 weeks showed a significantly decreased susceptibility to Cu²⁺-mediated oxidation *ex vivo*, compared with hypercholesterolemic rabbits with no supplementation (Chol-group). The lag time was prolonged from 115.6 ± 9.7 min in Chol-group to 160.4 ± 6.6 min in *P.mirifica*-group. These data demonstrate that although, *Pueraria mirifica* had mild antioxidative activity in the *in vitro* experiment. However, it could increased the resistance to oxidation of LDL *ex vivo*. Our results may provide the beneficial effect of *Pueraria mirifica* for the cardiovascular system which required further experimental and clinical studies.

Keywords: *Pueraria mirifica*, antioxidants, superoxide radicals, hydroxyl radicals, oxidized low-density lipoproteins

EFFECT OF BARAKOL ON BLOOD PRESSURE IN SPONTANEOUSLY HYPERTENSIVE RATS

L. Phivthong-ngam¹, W Thongsaard², Y. Sanvarinda³, T. Suwancharas⁴, M. Yajima⁵, HO. Murakami⁵, N. Ishikawa⁵

¹Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand.

²Department of Physiology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand.

³Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.

⁴Department of Surgery, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand.

⁵Department of Pharmacology, Aichi Medical University, Nagakute, Aichi, 4801195, Japan

ABSTRACT

Barakol, a $3\alpha,4$ -dihydro- $3\alpha,8$ -dihydroxyl- $2,5$ -dimethyl- $1,4$ -dioxaphenalenene ring structure, is a biologically active constituent of extracts of *Cassia siamea*, a Thai medicinal plant. The present study investigated the hypotensive effects of barakol in spontaneously hypertensive rats (SHR). The study of acute effect showed that intravenous infusion of barakol 0.1-20 mg/kg in anesthetized SHR rats caused significantly dose dependent decreases in both systolic and diastolic blood pressure. The maximum effect was found at the dose of 5 mg/kg. The chronic experiments were carried out on SHR rats with or without barakol 15 mg/kg/day orally for 8 weeks. Weight-matched Wistar-Kyoto (WKY) rats served as control. Systolic, diastolic blood pressure and heart rate were monitored before the beginning of the experiments and at 2 weeks intervals thereafter. Treatment with barakol resulted in a lowering of mean arterial blood pressure, but did not alter heart rate, plasma nitrite and nitrate concentrations. Endothelium-dependent relaxation of SHR aortic rings ex vivo was impaired and restored by supplementation with barakol. There was no significant difference in either endothelium-independent relaxation or vasoconstricting response in all experimental groups. The following blood clinical biochemistry parameters and hematology; SGOT, SGPT, ALP, BUN, serum creatinine, serum glucose, total and direct bilirubin, Hb, Hct, platelet count, Wbc count and percent differential Wbc count were not changed. These results suggest that supplementation of SHR rats with barakol can reduce blood pressure and preserve endothelial function. These beneficial effects may not relate to nitric oxide. Its mechanism of action and long term effects need to be further investigated.

Keywords: barakol, hypertension, nitric oxide

Effect of barakol on Cytochrome P450 , UDP-glucuronyltransferase and Glutathione S-transferase in isolated rat hepatocytes

Hemvala Chirdchupunsare¹, Chaiyo Chaichantipyuth², Pompeng Pramyothin¹

¹Department of Pharmacology, Faculty of Pharmaceutical Sciences , Chulalongkorn University, Bangkok 10330, Thailand.

²Department of Pharmacognosy, Faculty of Pharmaceutical Sciences , Chulalongkorn University, Bangkok 10330, Thailand.

Abstract

Effect of barakol in various concentration(0.025,0.05,0.075,0.10 and 0.15mM)was studied directly in isolated rat hepatocytes by determining the activities of phase I enzyme,aminopyrine N-demethylase (CYP2B,2C) and phase II enzymes including UDP-glucuronyltransferase and glutathione S-transferase. The release of cellular transaminase (ALT,AST) , the reduced glutathione (GSH) content and lipid peroxidation (as malondialdehyde (MDA) formation) were also measured as the cytotoxic criteria. Results indicated that barakol in all concentrations studied, increased the activities of aminopyrine N-demethylase and glutathione S-transferase with the reduction in UDP-glucuronyltransferase activity. Increase in the release of ALT,AST and GSH content were found only with high concentrations of barakol (0.10 and 0.15 mM). There was no change in MDA formation. In conclusion, cytotoxicity induced by high concentrations of barakol may involve the activities of phase I and phase II enzymes but not the lipid peroxidation.

Keywords : barakol , Cytochrome P450 , UDP-glucuronyltransferase , glutathione S-transferase

Inhibition of human neutrophil function of pure compounds from *Ventilago harmandiana*.

Payong Wanikiat, Montakarn Chaiyodwong¹, Chalobon Yoosook², Kanda Panthong³, Vichai Reutrakul³

¹Department of Pharmacology, ²Department of Microbiology, ³Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400.

Abstract

The crude methanol extract and pure compounds obtained from the heart wood of *Ventilago harmandiana* exhibited moderate to strong anti-inflammatory activity in the ethylphenylpropiolate (EPP) mouse ear edema model (unpublished data).

In the present study, the pure compounds, VR9178 and VR9180, obtained from the heartwood of *Ventilago harmandiana* were investigated for their activities on neutrophil functions, including neutrophil chemotaxis, superoxide anion generation (SAG), myeloperoxidase production and elastase release. It was found that VR9178 (1-500 μ M) and VR9180 (1-500 μ M) inhibited fMLP-induced neutrophil chemotaxis in a concentration-dependent manner with $IC_{50} = 9.2 \pm 0.8 \mu$ M and $IC_{50} = 73.2 \pm 10.4 \mu$ M, respectively. Both VR9178 and VR9180 (1-500 μ M) caused a concentration-related inhibition of fMLP-induced SAG with IC_{50} for VR9178 at $10.7 \pm 2.4 \mu$ M and for VR9180 at $164.3 \pm 15.5 \mu$ M. These concentrations of both pure compounds also inhibited fMLP-induced neutrophil myeloperoxidase production in a concentration-dependent manner with $IC_{50} = 26.5 \pm 0.4 \mu$ M and $IC_{50} = 54.7 \pm 10.1 \mu$ M, respectively. The results also showed the inhibitory effects of VR9178 (1-500 μ M) and VR9180 (1-500 μ M) on elastase release, giving $IC_{50} = 28.6 \pm 6.3 \mu$ M and, $IC_{50} = 122.8 \pm 17.0 \mu$ M, respectively. Furthermore, the cytotoxic effects of both pure compounds were investigated and it was found that cell viability was not significantly affected by the concentrations of the compounds used in these experiments as shown by MTT assay. These findings suggested that inhibition of human neutrophil function by VR 9178, not due to its cytotoxic activity, may be attributed, in part, to its anti-inflammatory activity.

Acknowledgements

We wish to thank the Thailand Research Fund for the award of a Senior Research Scholar to Prof. Vichai Reutrakul. The financial support from the Postgraduate Education and Research Program in Chemistry (PERCH) is also gratefully acknowledged.

The Effects of Estrogen on Intracellular Calcium Release and Amyloid Beta 1-42-induced Cytokine Expression in Human Microglia

Nattinee Jantaratnotai, Yupin Sanvarinda

Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.

Abstract

Microglia act as the macrophages of the brain. They can secrete proinflammatory molecules that could exacerbate neuronal injury in many models such as ischemia, oxidative stress, and neurodegenerative diseases. Estrogen is known to be neuroprotective in these models. In the present study, amyloid beta peptides (A β), the main component of amyloid plaques found in the brains of Alzheimer's patients was used as a stimulator of microglia. There is massive evidence that A β cause a number of cytotoxic events that finally lead to neuronal apoptosis and reactive gliosis which seem to be reversed by preadministration of estrogen. The roles of estrogen and A β upon glial activation are not as well studied as in neurons. For microglia, estrogen treatment can decrease NO, superoxide, and TNF- α production, thus attenuating the inflammatory responses induced by LPS or A β . However, these studies were usually done in murine microglia. The roles of estrogen upon human microglia have never been explored before. We would like to see if estrogen differentially regulate microglia from human compared to murine. By employing human microglia, it should better reflect the response to estrogen in real patients. Cytokine expression was examined to determine the degree of microglial activation. Also, the potential molecular mechanism by which estrogen exerts upon microglia was detected using spectrofluorometry to see if estrogen can regulate the intracellular calcium in microglia.

Keywords: Amyloid beta; Estrogen; Human microglia; Intracellular calcium; Proinflammatory cytokines

THE EFFECTS OF *GANODERMA LUCIDUM* EXTRACTS ON P388 LEUKEMIC CELLS AND N18 NEUROBLASTOMA CELLS

Weerawanna Suttiwit, Duangkamol Selpasachakul, Panida Chutsrinopkun, Sirinthorn Pinweha, Thanasak Teaktong, Auratai Aramphongphan and Porntip Supavilai

Department of Pharmacology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand

The cultured mycelia and fruiting bodies of *Ganoderma lucidum* (GL) have been used in traditional medicine for the treatment of cancer, hypertension, diabetes, hepatitis, chronic bronchitis, allergy and neurodegenerative diseases. In 2000, Cheung, W.M.W. *et al* reported that GL extracts induced the neuronal differentiation of rat pheochromocytoma PC12 cells and prevented nerve growth factor-dependent PC12 neurons from apoptosis. The present study aimed to search for the neuroactive compounds in the GL extracts and to evaluate the effect of GL extracts in P388 mouse leukemic (P388) cells and N18 neuroblastoma (N18) cells. In addition, nitric oxide (NO) production and the activity of various antioxidant enzymes SOD, GSH peroxidase and catalase were measured in P388 cells and N18 cells both in the absence and in the presence of GL extracts. GL extracts exhibited no cytotoxic effect in P388 cells and N18 cells. However they could inhibit the growth of P388 cells. The growth inhibition of P388 cells was not correlated with NO, GSH peroxidase and catalase enzymes. This inhibition may result from the increased SOD activity

Keywords: *Ganoderma lucidum*, P388 mouse leukemic cells, N18 neuroblastoma cells, nitric oxide, antioxidant, cytotoxic effect

Study Comparing the Effects of Sibutramine and Phentermine on Psychomotor Performance

Teeranan Narkthongroop¹, Kampon Sriwatanakul¹, Kittima Sriwatanakul¹, Porntip Supawilai¹, Thyon Chentanez²

¹ Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.

² Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.

ABSTRACT

Pharmacotherapy plays an important role in the management of obesity. At present two drugs which act centrally are registered in Thailand; namely, sibutramine and phentermine. In this study, the objective was to compare the effects of sibutramine 15 mg with phentermine 15 mg and placebo on psychomotor performance in Thai healthy volunteers. A double blind, crossover studies with one week wash out interval was performed in 20 Thai healthy volunteers aged between 18-65 years. During each treatment psychomotor speed tests of warned and unwarned simple reaction time (SRT) of visual, auditory and tactile types were measured. Phentermine shortened both warned and unwarned simple reaction time (visual and auditory but not tactile simple reaction time) significantly than sibutramine and placebo. Phentermine also significantly increased diastolic blood pressure and pulse rate. These effects were also related to the peak plasma concentration of orally extended release phentermine and sibutramine. Adverse reactions including palpitation and insomnia were reported by 75% of subjects in phentermine-treated group and 40% in sibutramine-treated group. This study indicated that phentermine acts as a CNS stimulant and may result in the increase in blood pressure and pulse rate, while sibutramine produced much less stimulating effects on the CNS and cardiovascular systems than phentermine.

KEY WORDS: Phentermine, Sibutramine, crossover study, Psychomotor performance

Effects of Piperine on Lipopolysaccharide-Induced Injuries and Oxidative Changes in Cultured Glial Cells from Rat Brains

Piyanuch Wonganan and Surachai Unchern

Department of Pharmacology, Faculty of Pharmaceutical Sciences,
Chulalongkorn University, Bangkok 10330, Thailand.

Abstract

Oxidative stress plays a role in the aging process and is one of the pathogenic causes in a variety of neurodegenerative disorders. In this study, effects of piperine on lipopolysaccharide (LPS)-induced injuries and oxidative changes in cultured glial cells from rat brains were investigated. Treatment of cultured glial cells with low concentrations of piperine (1-10 μ M) significantly increased mitochondrial metabolic activity (as measured by MTT reduction) after 12 and 24 hr of incubation. At higher concentrations (25-100 μ M), however, piperine markedly decreased mitochondrial activity and cell viability after 6, 12 and 24 hr of incubation. Exposure of cultured glial cells to LPS (1 μ g/ml) for 96 hr inhibited mitochondria activity by approximately 30% with no apparent effects on cell survival. Treatment with piperine (5 and 7.5 μ M) or trolox (100 μ M) for 24 hr after 96 hr of LPS exposure significantly boosted up mitochondrial activity of glial cells. Postincubation with 5 μ M of piperine or 100 μ M of trolox reversed LPS-induced glutathione diminution by 15% and 24%, respectively. Neither piperine (5 μ M) nor trolox (100 μ M) affected LPS-induced nitrite accumulation in cultured glial cells. These results suggested that piperine, especially at low concentrations, might have stimulatory effect on glial cell metabolic activity and facilitate glial cell function in brain inflammatory responses.

Keywords: piperine, lipopolysaccharide, cell injury, oxidative changes, cultured glial cells

Effects of CU-18-07, CU-18-09 and CU-18-12 on The Smooth Muscle Contraction of Isolated Rat Vas Deferens

Soratiya Charoensomprasong¹, Chamnan Patarapanich², Prasan Dhumma-upakon¹,
Suree Jianmongkol¹

¹Department of Pharmacology, ²Department of Chemistry, Faculty of Pharmaceutical Sciences,
Chulalongkorn University, Bangkok 10330, Thailand.

Abstract

CU-18-07(4-(Heptanoyl)methoxyaniline), CU-18-09(4-(Heptanoyl)nitroaniline) are acyl aniline derivatives and CU-18-12(4-(Heptanoyl)aminopyridine) is acyl aminopyridine derivative. These three synthetic compounds were showed to reduce the spontaneous contraction of isolated rabbit duodenum. The purpose of this study was to investigate the effect of these synthetic compounds on the contractility of isolated rat vas deferens. A section of vas deferens obtained from male wistar rat weighing 250-300g was suspended in a 15 ml organ bath filled with physiological solution at $37\pm0.5^\circ\text{C}$ and gassed with carbogen. The contractile response was provoked by addition of NE($1\times10^{-5}\text{M}$), 5-HT($1\times10^{-5}\text{M}$), BaCl₂($1\times10^{-3}\text{M}$) and KCl($5\times10^{-2}\text{M}$). The results showed that these three compounds were able to suppress the contraction induced by all agonists. Among the three compounds, CU-18-09 was most the potent inhibitor. These three compounds reduced the influx of extracellular Ca²⁺, as showed by the suppression of cumulative dose-response curve of CaCl₂ in the present of each CU compounds. The pD₂ were 4.02 ± 0.19 , 5.01 ± 0.14 and 3.74 ± 0.20 for CU-18-07, CU-18-09 and CU-18-12 respectively. Our finding suggested that the three synthetic compounds may interfere the influx of extracellular Ca²⁺ into the smooth muscle cell of rat vas deferens.

EFFECTS OF VOLATILE OIL FROM THE LEAVES OF *CLAUSENA ANISATA* HOOK. ON SMOOTH MUSCLE CONTRACTIONS

Parpak Srikiticoolchai*, Chandhanee Itthipanichpong*, Nisiri Ruangrungsi**

*Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand

**Department of Pharmacognosy, Faculty of Pharmaceutical Science, Chulalongkorn University, Bangkok 10330, Thailand

Abstract

Preliminary study of the pharmacological action of volatile oil from the leaves of *Clausena anisata* Hook. was carried out in various smooth muscle preparations. Cumulative doses of the essential oil (5×10^{-5} - 3.2×10^{-3} % v/v) stimulated the contractile response of all smooth muscle preparations. The highest stimulation was found in isolated rat aorta (47.03 %, $EC_{50} = 1.28 \times 10^{-2}$ %). The others were guinea-pig ileum (39.40 %, $EC_{50} = 9.6 \times 10^{-3}$ %) rat fundus (26.19 %, $EC_{50} = 8.192 \times 10^{-1}$ %) guinea-pig trachea (15.78 %) and rabbit jejunum (4.99 %). These spasmodic effects were investigated through autonomic nervous system. The result demonstrated that atropine was not able to attenuate the stimulation effect of the essential oil on the isolated rabbit jejunum and guinea-pig ileum while the inhibitory effects of atropine (1×10^{-7} and 1×10^{-6} M) were prominently found in the contraction induced by the essential oil on rat fundus. Relaxation effect was insignificantly shown in guinea-pig trachea after exposure to atropine. Sympathetic mechanism of the essential oil was confirmed in rat aorta since prazocin (1×10^{-7} M) reduced the contractile response, produced by the essential oil, significantly. Furthermore, inhibition of extracellular calcium ion through calcium channel was shown in the essential oil induced smooth muscle contraction in calcium free Krebs Henseleit solution and after verapamil exposure. All these results could be concluded that the essential oil from the leaves of *Clausena anisata* possessed smooth muscle stimulation effect partly through sympathetic and parasympathetic mechanisms.

Keywords : anethole, methyl chavicol, smooth muscle contraction, *Clausena anisata* Hook.

Pharmacological Characterization of the NMDA Receptor in the Human Platelet

Theerin Sinchai, Piyanee Ratanachamnong, Surin Plasen

Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand

Abstract

N-methyl-D-aspartate (NMDA) receptors have critical roles in excitatory synaptic transmission, plasticity and excitotoxicity in the CNS. These receptors also have been implicated in many physiological processes such as information processing, learning and memory, and in pathological processes such as hypoxia, degenerative diseases and drug-addicted brain damage. More recently, NMDA receptors were found in non-neuronal tissues such as bone, pancreas and skin. This study aimed to investigate NMDA receptor in human platelet. By using platelet aggregation study, the MK801 which is a non-competitive antagonist in the channel of NMDA receptor can inhibit platelet aggregation induced by ADP around 40-50%. By using radioligand binding study with centrifugation technique, [³H] MK801 can bind to platelet with high affinity (K_d 27.99⁺⁻6.12 nM, B_{max} 888.76⁺⁻67.95 fmol/mg protein). The displacement of 0.5 nM [³H] MK801 in platelet by channel blockers was monophasic (rank order: MK801[>] memantine[>] ketamine). In this study, binding properties of NMDA receptor of platelet were compared to rat brain (K_d 1.308⁺⁻0.13 nM, B_{max} 3075.33⁺⁻112.86 fmol/mg protein) and rank order of channel blockers displacement were MK801[>] ketamine[>] memantine. This technique is applied to study the role of native human NMDA receptor as a marker of brain damage in drug-addicted patient.

Keywords: NMDA receptor, brain damage, human platelet, rat brain, glutamate, MK801, ketamine, memantine

The Influence of Vitamin E on Platelet Functions and Lipid Peroxidation in β -thalassemia/ Hemoglobin E Patients

Supeerun Unchern¹, Narumol Laoharuangpanya², Noppawan Phumala¹, Pormpan Sipankapracha³, Pensri Pootrakul³, Suthat Fucharoen³, Wanchai Wanachivanawin⁴, Udom Chanthalaksri¹.

¹ Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.

² Laboratory of Pathobiology, Chulabhorn Research Institute, Bangkok, Thailand.

³ Thalassemia Research Center, Institute of Science and Technology for Research and Development, Mahidol University, Bangkok 10900.

⁴ Department of Medicine, Faculty of Medicine, Mahidol University, Bangkok 10700.

Abstract.

A double-blind, cross-over, placebo-controlled study of the influence of vitamin E on platelet functions and lipid peroxidation was performed on nine splenectomized and sixteen nonsplenectomized β -thalassemia/ hemoglobin E (β -thalassemia/ HbE) patients. The patients were supplemented daily with vitamin E (525 IU) for three months. The functions of platelets were assessed by ADP induced platelet aggregation and platelet ATP release. Plasma α -tocopherol, plasma Thiobarbituric reactive substances (TBARs) and serum ferritin levels represent antioxidant status, lipid peroxidation status and iron status of the patients, respectively. Before experimentation, all patients had an iron overload and low plasma α -tocopherol levels. The splenectomized patients, who were severely overloaded with iron, had high plasma TBARs levels which showed negative correlation with plasma α -tocopherol. In addition, their platelets were more reactive to ADP than were those of the nonsplenectomized patients. Three months of daily vitamin E (525 IU) supplementation caused a significant increase of plasma α -tocopherol level and reduction of plasma TBARs level of all patients. As expected, serum ferritin levels of the patients were not altered. Vitamin E reduced the platelet reactivity of the splenectomized patients toward normal. The influence of vitamin E on platelet function may result in preventing/ delaying hypoxemia and pulmonary occlusion which commonly occur in splenectomized β -thalassemia/ HbE patients.

Key Words. Vitamin E, platelet reactivity, lipid peroxidation, splenectomized β -thalassemia/ hemoglobin E patients

The effects of G-protein activators, mastoparan and compound 48/80, on serotonin secretion and signaling pathway in human platelets

Supachoke Mangmool, Supeenun Unchern, Yupin Sanvarinda and Darawan Pinthong

Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.

Abstract

Mastoparan and compound 48/80 have been found to accelerate guanine nucleotide exchange and GTPase activity of purified GTP-binding protein. These compounds can directly activate secretory processes of mast cells, pancreatic islets and adrenal chromaffin cells by penetrating through plasma membranes and directly stimulate membrane GTPase activity and stimulates PLC-mediated events without mediating via receptor binding. This study aims to examine whether these compounds affect secretion of both intact and permeabilized human platelets, and examine the subtype of G-protein signaling. [³H]-serotonin labeled platelets were pre-incubated for 5 min and were activated with various concentrations of mastoparan and compound 48/80 for 3 min at room temperature or preincubated with streptolysin O (SLO) for 2 min before activation. The amounts of [³H]5-HT release were determined by liquid scintillation counting. Mastoparan was found to produce a concentration-dependent increase in 5-HT release from intact platelets with an EC₅₀ of 20 μ M.. The maximal secretion was obtained at the concentration of 60 μ M.. Similarly, compound 48/80 caused a concentration-dependent increase in 5-HT release with maximal secretion obtained at the concentration of 400 μ g/ml.. Permeabilized platelets with streptolysin O significantly increase serotonin secretion. To investigate whether the observed stimulation of serotonin secretion is mediated through the G_i subunit of G-protein, the G-protein blocking agents (e.g. G_i-sensitive pertussis toxin, benzalkonium chloride, a selective G_i inhibitor, and daunomycin, a lipid bilayer stabilizer) were used. Mastoparan- and compound 48/80-induced secretion was inhibited by preincubation with pertussis toxin only in SLO-permeabilized platelets whereas benzalkonium chloride and daunomycin did not affect mastoparan- and compound 48/80-induced secretion in both intact and SLO-permeabilized platelets. The results from this study suggested that mastoparan- and compound 48/80 promoted secretion by mechanisms involved neither the stimulation of G_i-subtype of G-protein nor interfering with lipid bilayer of the membranes. The secretory event may result either from a direct fusogenic action and/or from the stimulation of putative exocytosis-linked G-protein, G_e. Their mechanisms on small GTPase proteins, on G_e and on membrane perturbation in human platelets remain to be elucidated.

Keywords : G-protein activators, serotonin secretion, signaling pathway, human platelets

Characterization of imidazoline receptors on porcine renal cortex membranes

Pattraporn Pukklay, Surin Plasen, Yupin Sanvarinda and Darawan Pinthong

Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.

Abstract

Imidazoline receptors have been reported to play roles in kidney functions such as natriuresis and diuresis. The processes occurred in the segment of nephron, in particular, those that located in the cortex of kidney. The aim of this study is to characterize the subtype of imidazoline receptors (IR) and to determine receptor density and affinity of imidazoline receptors on porcine renal cortex membranes. From saturation binding assay, the maximum receptor density of IR on porcine renal cortex membranes labeled by [³H]-clonidine was 390.2 ± 89.09 fmol/mg protein with K_d value of 9.69 ± 3.8 nM. The maximum receptor density of I_2 receptor on porcine renal cortex membranes labeled by [³H]-idazoxan was 655.6 ± 49.17 fmol/mg protein with K_d value of 8.49 ± 1.29 nM. The result revealed that [³H]-idazoxan binding sites (I_2 site) were 1.7 fold higher than those of [³H]-clonidine binding whereas the affinities were comparable. In competitive binding assay, I_1 ligands, clonidine, rilmenidine, moxonidine, surprisingly competed with low affinities to I_2 site labeled by [³H]-clonidine. The rank order of potency of competing ligands was : idazoxan (459 ± 1.33 nM) > clonidine (730 ± 1.31 nM) > rilmenidine ($2,769 \pm 1.26$ nM) > oxymetazoline ($9,204 \pm 4.41$ nM) > moxonidine = esfaroxan ($>10^5$ nM). The result showed that this site differed from the typical I_1 sites. On the contrary, selective I_2 receptor ligand, idazoxan, competed with very high affinity to [³H]-idazoxan binding site whereas I_1 receptor ligands, clonidine, rilmenidine, moxonidine, oxymetazoline and esfaroxan also competed with very low affinity to I_2 site. The rank order of potency was : idazoxan (0.579 ± 0.06 nM) > clonidine ($16,100 \pm 0.15$ nM) > rilmenidine ($18,900 \pm 3.4$ nM) > oxymetazoline ($42,300 \pm 33.2$ nM) > moxonidine = esfaroxan ($>10^5$ nM). The results from this study suggested that the major imidazoline receptor subtype on porcine renal cortex is I_2 site. In conclusion, I_2 receptors are the main subtype exist on porcine renal cortex membranes which is suggested to be the functional receptors in kidney whereas I site labeled with [³H]-clonidine is different from the typical I_1 site. This site may be a new subtype of imidazoline receptor.

Key words : Imidazoline Receptor/ Porcine Renal Cortex

Modification of Lipoprotein in Acute Falciparum Malaria Infection.

Nathawut Sibmooh¹, Rachanee Udomsangpatch², Paveena Yamanont¹ and Sornchai Looareesuwan³

Department of Pharmacology¹ and Pathobiology², Faculty of Science, Mahidol University, Department of Clinical Tropical Medicine and Bangkok Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University³, Bangkok, Thailand.

The host response to an acute infection could induce oxidation and change in plasma lipid. The products of lipid peroxidation could in turn modulate host response processes. The present work was aimed to study the effect of acute infection with falciparum malaria on the plasma lipid. Plasma lipoproteins were isolated and determined in the patients with acute falciparum malaria (13 cases) and in 12 healthy individuals. The levels of cholesterol, protein and phospholipid in low density lipoprotein (LDL) and high density lipoprotein (HDL) were lower in the patients than in the controls. The levels of TBARs (the end-products of lipid peroxidation) were significantly higher in LDL and HDL from malaria patients than the controls. The fluidity of LDL measured by the steady-state fluorescence anisotropy using 1,6-diphenyl-1,3,5-hexatriene (DPH) was increased, and correlated with the levels of TBARs. These results could imply the association of oxidative modification of lipoproteins with the altered lipid pattern during acute malaria infection. The role of oxidized lipoprotein in pathogenesis of malaria remains to be investigated.

Paraquat is Not a Direct Hepatotoxin at Low Level of Exposure

Varaporn Podprasart ^{**} and Krongtong Yoovathaworn ^{*}

^{**}Graduate Program in Toxicology and ^{*}Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand

Abstract

Paraquat (PQ) is a well-known toxic herbicide widely used in agricultural countries. Though pulmonary toxicity is a main cause of death in patients after PQ exposure, many reports showed that PQ also causes liver damage and can be classified as a "direct hepatotoxicant". There were only few studies focusing on the toxicity of PQ on the liver after repeated exposure which mimics the human occupational exposure, or identifying the risk factors for PQ-induced hepatotoxicity. It is, therefore, interesting to investigate specifically on the PQ-induced liver damage after continuous exposure for a certain period of time. This study is established to examine the dose- and time-effect of PQ, in male *Wistar* rats, on the liver, by determining the change of liver enzyme markers including AST, ALT, AP, and also total bilirubin, total protein and albumin. Dose-response of PQ was studied in rats by subcutaneous injection of paraquat dichloride at the doses of 4.0, 5.0, and 6.0 mg/kg BW/d, 7 days. All PQ-treated rats had a significant decrease in BW, showed slow movement, and less response to the stimuli when compared with the untreated rats. All hepatic enzyme markers, total bilirubin, total protein, as well as albumin in the plasma obtained from the rats receiving PQ at these doses were not significantly different from the control group. PQ at the dose of 4.0 mg/kg/d was selected to determine the time-course of effect on the liver. The treated animals were sacrificed on days 3, 7, and 10 after PQ administration. The results obtained from this experiment were similar to the previous experiment. It may be concluded that repeated subcutaneous exposure to PQ at the doses up to 6.0 mg/kg/d for 7 days or 4.0 mg/kg/d up to 10 days did not cause either frank cytotoxic hepatic injury or disturb liver synthetic function even the highest dose used produced more than 50% mortality. These results are not in agreement with a number of previous studies, both in human and animal models that showed hepatotoxicity after exposure to PQ at high dose. However, the hexobarbital sleeping time in rats treated with PQ was significantly longer than that of the untreated animals. As hexobarbital sleeping time is one of the markers of drug- or xenobiotic-metabolizing enzyme activity, further study will explore the mechanism underlying the changes in the biological response to drugs in correlation with distribution of this pesticide.

Keywords: Paraquat, hepatotoxicant, liver function

EFFECTS OF MIDAZOLAM AND NITRIC OXIDE SYNTHASE INHIBITOR, L-NAME ON THE ELEVATED PLUS MAZE BEHAVIOR IN STRESS RATS

Noppamars Wongwitdecha, Sompop Soo-Ampon and Nattaporn Yoopan

Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, THAILAND

Objective: The aim of the present experiments was to compare the effect of midazolam with a nitric oxide synthase inhibitor, L-NAME on the elevated plus-maze behaviors in social isolation stress rats.

Methods: Male Wistar rats were reared from weaning (21 days of age) either alone (isolation rearing) or in groups of five rats/cage (social rearing). After five weeks, each rat was placed individually onto the elevated plus-maze following intraperitoneal injection with saline, midazolam or L-NAME 30 min before a 5 min test.

Results: Midazolam (0.5, 1 and 2 mg/kg, i.p.) dose-dependently produced anxiolytic effect on the rat elevated plus maze as indicated by increasing the percentage of open:total arm entries and time spent, in both socially and isolation reared rats. These anxiolytic profiles were greater in isolation than socially reared rats. Pretreatment with L-NAME (5, 10 and 50 mg/kg i.p.) in isolation reared rats also produced a dose-related anxiolytic profiles (increase in the percentage of open arm entries and time spent) on the elevated plus-maze. However, the anxiolytic-like properties of L-NAME were not observed in socially reared rats.

Conclusion: The present results demonstrate that nitric oxide synthase inhibitor, L-NAME possesses weaker anxiolytic effect than midazolam, and social isolation stress rats were more sensitive to the anxiolytic effect of both midazolam and L-NAME.

Keywords: Midazolam, L-NAME, elevated plus-maze, stress rats

EFFECT OF STRESS DURING BRAIN DEVELOPMENT ON THE BEHAVIORAL DESPAIR IN LITHIUM TREATED RATS

Ekawit Threenet* and Noppamars Wongwitdecha**

*Toxicology Program and **Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, THAILAND

Psychological stress during the early stage of life has been shown to alter the behaviors and the neurochemical properties of the adult animals and modify the responsitivity to various psychoactive agents (1-3).

Objective: The aim of the present experiment was to determined whether stress during brain development (social isolation from weaning) alters the behavioral response produced by lithium in the rat forced swimming test.

Methods: Male Wistar rats were raised from weaning either alone (isolation rearing) or in groups of five rats/cage (social rearing). Five weeks later, these rats were tested for their sensitivity to lithium chloride by using the forced swimming test (4).

Results: The results demonstrated that the saline treated isolation reared rats exhibited significantly less immobility and more struggling ($P<0.05$) than socially reared rats. Subchronic treatment with lithium chloride (50, 100 and 150 mg/kg i.p.) 24, 5 and 1 h before a 5 min forced swimming test produced a dose-related reduce behavioral despair (decrease immobility time) and increase struggling in socially reared rats. However, this effect was not observed in isolation reared rats.

Conclusion: The present results indicate that stress during brain development (rearing rats in social isolation from the early stage of life) alters the behavioral despair in lithium treated rats.

Keywords: Stress, lithium, behavioral despair, rats

References:

1. Wongwitdecha, N. and Threenet, E. (2002) The International Journal of Neuropsychopharmacology, 5(Suppl): S152.
2. Wongwitdecha, N. et al., (2002) The International Journal of Biology of Stress, 5(Suppl): 96.
3. Wongwitdecha, N. and Marsden, C.A. (1996) Behav. Brain Res., 75: 27-32.
4. Porsolt, R.D. et. al. (1979) Eur. J. Pharmacol., 57: 431-436.

รายนามผู้เข้าร่วมประชุม

ภาควิชาเคมีวิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

1. รศ. ดร. ยุพิน วงศ์วินทะ
2. ดร. อุดม จันทร์รักษ์คีรี
3. ผศ. ดร. พยอง วนิเกียรติ
4. นางสาว นิตยา ภู่ไพรชัยวงศ์
5. รศ. ดร.พิพิชญ์ ศุภวิไล
6. นาง ปวีณา ยามานนท์
7. นาง ปิยานี รัตน์ขัมกอง
8. ดร.สุรินทร์ พลเสน
9. ดร.นพวรรณ มองราเจส
10. รศ. ดร.กำพล ศรีวัฒนกุล
11. ผศ.ยุคลพร ลินรัชตานันท์
12. ผศ. ดร.ดาวาภรณ์ ปันทอง
13. ผศ. ดร.สุกันนท์ อัญเชิญ
14. รศ. ดร.นพมาศ วงศิริย์เดชา
15. รศ. ดร.กรทองทอง บุรากร
16. ดร.ณัฐุต ศิบหมู่
17. ผศ. ดร.อรทัย อร่ามพงษ์พันธ์
18. ภก. ธีรนันท์ นาคทองชูป
19. นางสาว หวานพร พจน์ประสาท
20. ภญ. ธีรินทร์ ลินไชย
21. นางสาว มนทกานต์ ไชยยลดวงศ์
22. นางสาว พัชราภรณ์ สุจيانันท์
23. น.สพ.มาสเกียรติ บุญยฤทธิ์
24. นาย เจริญ สาระสำคัญ
25. นางสาว เจติมชัย ใจมีช่วง
26. นางสาว วีรวราณा ศุภอิวิตต์
27. นางสาว อัญญาวนะ ศีบสมาน
28. ภก.ศุภโชค มั่นคง
29. นางสาว สิรินทร์ ปั่นเทา
30. ศพญ.พนิดา ฉัตศรีนพคุณ
31. นางสาว วสุโกรกัญจน์ จงธรรมคุณ
32. นางสาว น้ำฝน พวงศรี

33. นางสาว สมฤทัย ศรีสมบูรณ์เลิศ
34. นาย อุนุสรณ์ เต็มสกุลพงศ์
35. นางสาว นนทกานต์ ศรีเจริญ
36. นางสาว ฐิติพร ทับทิมทอง
37. นางสาว ประวีณ จันทร์ศรีขาวลา
38. นางสาว น้ำรุ่งนิล จันทร์รัตน์ในทัย
39. นางสาว ภัทรพร ผูกคล้าย

หน่วยเภสัชสันเทศ ฝ่ายเภสัชกรรม อ.พ. ศิริราช

40. นาย ณกนก ศิริสมุทร

ภาควิชาเภสัชวิทยา คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล

41. ผศ.นพ.อดิศักดิ์ วงศ์ชารศิลป์
42. พญ.เมธารี ชีพสมทวงศ์
43. ผศ.ปัญญา คุณวัฒน์
44. พญ.ธนัตสุดา เอื้อบุญฤทธิ์
45. พญ.สุริรัตน์ รัตนศิลป์
46. ภญ.พิพิญสุวนัน พุ่มสอด
47. นางสาว นิรญาพร เหลาสุวรรณ
48. นางสาว ญาดี แซ่จึง
49. นางสาว พิไลพักร์ ภูมาก

ภาควิชาเภสัชวิทยา คณะทันตแพทยศาสตร์ มหาวิทยาลัยมหิดล

50. ผศ.ทญ.วรางคณा ชิดช่วงชัย

คณะเภสัชศาสตร์ มหาวิทยาลัยมหิดล

51. รศ.ญาดี วงศ์กระจ่าง
52. นางสาว ภาณี สุทธิเลิศ
53. รศ. ดร.ศรีจันทร์ พรจิราศิลป์
54. รศ. สุภาภรณ์ พงศกร
55. รศ. อินิชา ฤทธิพัฒน์
56. นางสาว ศิริพันธ์ จิตตางกูร
57. นางสาว นวดอนงค์ หาดอุไร
58. นางสาว วนิดา ม่วงมิ่งศุข
59. นางสาว ศินานาญ บุญเลี้ยง
60. นางสาว อติยา ทรัพย์สังข์

61. รศ. ดร. จงกล เที่ยงด่าน
62. รศ. ดร. ยุรี สาระยา
63. รศ. ดร. สมใจ นครชัย
64. รศ. ดร. นงลักษณ์ ศุขวนิชย์ศิลป์

วิทยาลัยแพทยศาสตร์พระมงกุฎเกล้า

65. ร.ท. ศรรยา จิมดารัตน์
66. พ.อ. นภิญ์ ลุเช่น ภัทรภิจานิช
67. พ.อ. รศ. บพิตร กลางก์ลยา
68. ผศ. พ.อ. นภิญ์ นิสามณี สัตยบัน
69. รศ. พ.อ. ดร. ชัยณรงค์ เกิดชู
70. พล ต. ธนันท์ ใจนวีภาต

คณะแพทยศาสตร์ มหาวิทยาลัย ขอนแก่น

71. รศ. ดร. วีระพล คุ่คงวิริยพันธ์
72. รศ. ดร. ยุพา คุ่คงวิริยพันธ์
73. นางสาว ลัดดาวัลย์ เสิงกันไฟ
74. นางสาว เอื้อมเดือน ประภาพ
75. รศ. ดร. บุญเกิด คงยิ่งยศ
76. รศ. ดร. พัชรีรัตน์ บันหม่องเพ็ชร
77. รศ. ดร. จินตนา สัตยาศัย
78. นาง ถาวรี ยัคควิเชียร
79. ผศ. ดร. วิจิตร ทัศนียกุล
80. ผศ. ดร. วังศิริวัฒน์ ทัศนียกุล
81. ผศ. ประภาวดี พ้าไฟโรจน์
82. ผศ. สมธยา ศิมະເສດຖາໂສການ
83. อาจารย์ ปณิ ตั้งสุจิริ
84. นาย ยอดชาย บุญประกอบ

คณะสัตวแพทยศาสตร์ มหาวิทยาลัยขอนแก่น

85. ผศ. สพ. ญ. ดร. นพมาศ ธรรมการรังสี
86. รศ. สพ. ญ. ดร. ถาวรี ชัชวาลชลธีระ

คณะแพทยศาสตร์ มหาวิทยาลัยศรีนครินทรวิโรฒ

87. รศ. ดร. วีระ รัตนคุยารามณ์

88. ผศ.ดร.อรพิน วงศ์สวัสดิ์กุล
89. ผศ.ดร.อนันต์ญา นาวินประเสริฐ
90. ดร.สุวรา วัฒนพิทยกุล
91. ผศ.ดร.ปัทมา ลี้วันิช
92. พต.นฤบดิน ดร.ดวงพร พลเสน
93. ผศ.ดร.สัตดาวรรณ์ ผิวทองงาม
94. ผศ.ดร.วีรวรรณ เลี้กสกุลไชย

สถานวิทยาศาสตร์พิเศษ คณะแพทยศาสตร์ มหาวิทยาลัยธรรมศาสตร์

95. รศ. ดร.ไชยแสง ใจน์สถาพ
96. ภญ.นิภาวรรณ บุรากรุณ
97. ดร.อรกัญญา วิมูลสวัสดิ์
98. อาจารย์อมรา ไชยกาญจน์

ภาควิชาเภสัชวิทยา คณะทันตแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

99. ผศ.ทญ.ราษฎรพย์ ใจประดิษฐ์
100. ผศ.ภญ.อัจฉรา วัฒนาสนธิ์
101. ทพ.วัฒนา คงธีรานนท์

ภาควิชาเภสัชวิทยา คณะสัตวแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

102. รศ. ดร.สุพัตรา ศรีไชยรัตน์

หนสาขาวิชาเภสัชวิทยา จุฬาลงกรณ์มหาวิทยาลัย

103. นางสาว ศิริพรวณ พัฒนาฤทธิ์
104. นางสาว เมตตา เนี่ยนแสง
105. นางสาว สินทิพ ุ่น
106. นางสาว วัลยา จิตประสาทศิล
107. นางสาว ศุนันท์ วงศ์วิศวนะ
108. นางสาว มัชนา กานต์ไกรศรี
109. นางสาว พัชรินทร์ ห่องคำ
110. นางสาว นันทพร พรมพิลา
111. นาย เยมชาติ อกิบาลกุล
112. นาย ศิริชัย อดิศักดิ์วัฒนา
113. นางสาว วชราพร อัตพงศ์เพบูล์
114. นางสาว เยมลา เศดเชยพันธุ์เสรี
115. นางสาว จันทรีย์ เข้าพินพฤกษ์

116. นางสาว ปิยนุช วงศ์อนันต์
117. นางสาว โสร์ติยา เจริญสมประสงค์
118. นางสาว สายชล อดดี้แพพาล
119. นางสาว ทิพย์สุดา ปลื้มใจ
120. นางสาว ฤกากอร์น วัฒนา
121. นางสาว อุษณี ขาวัญสังข์
122. นางสาว ปีระนุช โตเอี่ยม

ภาควิชาเคมีวิทยา คณะเคมีศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

123. รศ.ศิริกานต์ ฟุ่งวิทยา
124. รศ.ดร.มยุรี ตันตีสิริยะ
125. ผศ.ดร.สุรชัย ขัญเชิญ
126. รท.ญ. ดร.ภัสรภาณ์ รัชฎา
127. ศ.พญ.มนติริยา ตันตีเกยูร
128. นาง วันรากานต์ เวกุต ณ อุณยวา
129. นางสาว ศศุติ รัตนจารัสโนจัน
130. นางสาว ศิริรัตน์ สุเชาวอนิพร
131. นางสาว อมรรัตน์ ขัยนกานทร์
132. นางสาว หวานฉัน บุญโญ
133. นางสาว กัลยานี อาชาสันติสุข
134. นางสาว จิตติมา ศรีสมบูรณ์
135. นางสาว ทิพย์รัตน์ ชึงสกุล
136. นางสาว ชนพันธ์ สุขสุดาด
137. นางสาว เพทิศรา ไกรปวัน
138. นาย ศุรชัย เพ็ญศิรินภา
139. นางสาว ชากรณ์ เจริญพิริยะ
140. นางสาว อรุณรัตน์ ศรีทำมา
141. นางสาว อุ้มฐุ สายเพชร
142. นางสาว รัชฎี ผ่องจิตต์
143. นางสาว พรหักธร วงศ์ทองแฉม
144. นาง พเยียรัตน์ นาคมนาชลาสินธุ์
145. นางสาว หวานี ภญญาวนิษกุล
146. นางสาว เสาวลักษณ์ อัครพินทร์
147. นางสาว อัจฉรา ฉัตรสุภารก์

ภาควิชาเภสัชวิทยา คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

148. นางสาว เยาวรัตน์ หินซุย
149. รศ.จันทนี อิทธิพานิชพงศ์
150. รศ.พญ.สุมนา ชุมพูทวีป
151. ผศ.ดร.วันชี ลิมปันสิทธิคุล
152. นพ.จิตติศักดิ์ พูลศรีสวัสดิ์
153. รศ.สุวิท ธรรมอวีร์
154. ผศ.พญ.กัทรา นันทวัน
155. รศ.สุพิชา วิทยาลัยปัญญา
156. นาย รัชพล โภนະฤทธิ์ ร.พ. บ่อไร่ ตราด
157. นางสาว นงเยาว์ ชื่อเลื่อม ร.พ. นครปฐม
158. พ.ท.หญิง กนกลาหาร พรหมพฤกษ์ โรงพยาบาลจุฬาลงกรณ์
159. ภก.บุรพัฒน์ เก้าอี้ยน ร.พ. หาดใหญ่ สงขลา
160. นางสาว ศุภิมล วงศ์เกิดแก้ว ร.พ.เจริญกรุงประทักษิณ กรุงเทพฯ
161. นางสาว นภาพร ชัยนันต์ฤทธิ์ ฝ่ายเภสัชกรรมชุมชน ร.พ. พิบูลมังสาหาร อุบลราชธานี
162. นาง จันทร์เพ็ญ ตั้งตระกูล สถาบันจิตเวชศาสตร์สมเด็จเจ้าพระยา กรุงเทพฯ
163. ภญ.วรรณภา พูลศุวรรณ กศุ์มงานเภสัชกรรม ร.พ. วชิรพยาบาล กรุงเทพฯ
164. นาย ทรงพล พอตาน ร.พ. แพทย์บัณฑิต กำแพงเพชร
165. ภก.ภาณุวัฒน์ แสงพุ่ม ร.พ. ราชพิพัฒน์ กรุงเทพฯ
166. นางสาว กรรณาภรณ์ สุรเสียง ร.พ. ยาง陶 กาฬสินธุ์
167. นางสาว ประเวณศุดา ลดอุณหพงศ์ ร.พ.ชลบุรี ชลบุรี
168. นางสาว รัตนาภรณ์ ศรียัน กศุ์มงานเภสัชกรรม ร.พ.ชลบุรี ชลบุรี
169. นางสาว อุไร เอี่ยมสีนما ก แผนกเภสัชกรรม ร.พ. กรุงเทพ กรุงเทพฯ
170. นางสาว นิตยา ดาววงศ์ญาติ กศุ์มงานเภสัชกรรม ร.พ.สราษฎร์อีประสังค์ อุบลราชธานี
171. ภก.ว่าที่ร.ต.เมธี พลยาฯ ฝ่ายเภสัชกรรมชุมชน ร.พ.แม่แตง เที่ยงไห่
172. นาย เขาวฤทธิ์ จันทร์ศรีศิลป์ ร.พ. จักรุณ ศรีราชา ชลบุรี
173. นาย วิชา เศศกุลลักษณ์ ร.พ. สีค้า ชัยภูมิ
174. นางสาว เพ็ญจันทร์ ศิวสุทัชศ์ ร้านยา หนองยา ปทุมธานี
175. นางสาว กานุจนา เกษมบุญ ร.พ. นวนคร ปทุมธานี
176. ภก.บุรฉัตร ฉุนรังษี ร.พ. นครธน กรุงเทพฯ

สถาบันวิจัยสมุนไพร กรมวิทยาศาสตร์การแพทย์ กระทรวงสาธารณสุข

177. นาย ทรงพล ชีวพัฒน์
178. นาง เอมนัสส ขัตติวิชญ์

สำนักงานคณะกรรมการอาหารและยา

179. นางสาว ศิริภรณ์ มีสิทธิ
180. นาง รัชดา พัฒนสมบัติสกุล
181. นาง พนิษนาฎ คำนัย
182. นาง ประภัสสร เสาตรนิสากร
183. นางสาว วัชราณี กระตื่องหน
184. ดร.สุชาติ จ่องประเสริฐ

185. ภญ.รศ.ปราวี ใจอชา
186. Dr. Rujee Duke Department of Pharmacology, University of Sydney, Australia
187. Dr. Colin Duke Department of Pharmacology, University of Sydney Australia

หน่วยงานเอกชน

188. นางสาว ประวีณอัคติ ลิ้มเจริญ
189. นางสาว ศิริพิ ไทยธรรมยานนท์ บริษัทโนวาร์ติส (ประเทศไทย) จำกัด
190. นาง นากจิตร์ สงไพบูล บริษัท เกสซ์กรุ๊มคีรีපะสิทธิ์ จำกัด
191. นางสาว ฐานิดา ศินธยิกิจ บริษัท เมดิแคป
192. นางสาว สายสุนี บริษัท เมดิแคป
193. นางสาว ปั้นมา ศุนทรสารทุก บริษัท คาวลินเมด จำกัด
194. นาง อัมพิกา อริยะสีบดี บริษัท แพรีพิค เอคลัฟฟ์ (ไทยแลนด์)
195. นางสาว วิมลศิริ ปัญจันศักดิ์ บริษัท ยัลค่อน แลบอราทอรีส์ (ประเทศไทย) จำกัด

คณะเภสัชศาสตร์ มหาสารคาม

196. นางสาว อริกา จาุ่มพิกมด

คณะเภสัชศาสตร์ มหาวิทยาลัยนัวเจีย

197. นาง นิตยาภรณ์ กุลยารรณ

คณะเภสัชศาสตร์ มหาวิทยาลัยเชียงใหม่

198. วศ.เกษตร นันทจิต

Thai Journal of Pharmacology

Instruction for Authors

The Thai Journal of Pharmacology serves as the official journal of the Pharmacological and Therapeutic Society of Thailand. The journal is designed to contribute to the publication of researches and information exchanges in the field of pharmacology and related fields. The manuscripts should not have been published before. Original full length scientific research papers, short communication, case report, letter to editor, minireviews, pharmacological digest and new drugs profile will be included in this journal.

Manuscripts

Three copies of manuscripts, diskette(s) and illustration(s) are required. Manuscript of research articles should be written in English, the others can be either English or Thai. The preparation of the manuscript should be in the form of Microsoft Word (front: Times New Roman size 10). Pages should be numbered consecutively, including the title page.

Table and illustration should be numbered with Arabic figures consecutively in the order of first citation in the text and supply a brief title for each. Explain in footnotes all non-standard abbreviation that are used. Illustrations should be professionally drawn and photographed or produced on a laser printer.

Nomenclature should follow the recommendations of the International Union for Pure and Applied Chemistry (IUPAC), and the International Union for Biochemistry (IUB). All measurements must be in System International (SI) units.

Research articles

The research papers should contain a) title, b) abstract, c) keywords, d) introduction, e) material and methods, f) result, g) discussion, h) references.

The title page: Should contain the title of the article, author(s) name and affiliation (s) laboratory or institute of origin and address. Name and complete address of author responsible for correspondence about the manuscript should be also placed at the foot of the title page. **An abstract** limited to approximately 250 words should be carried in this page. It should be informative and state concisely what was done, results obtained and conclusion. Three to ten **keywords** or short phrases appropriate for subject indexing should be typed at the bottom of abstract.

Introduction: State clearly the purpose of article, the rationale for the study or observation. Relevant previous study should be cited and do not review the subject extensively.

Materials and Methods: Describe the sufficient detail of the method, experimental subjects (patients or experimental animals, including controls) clearly. Identify the method, apparatus (manufacturer's name and address in parenthesis). Give references to established method, study design and statistical method .

Results: Present your results in logical sequence in the text, tables, and illustrations. Only important observations should be summarized and emphasized. Do not repeat in the text all the data in the table or illustrations.

Discussion: Comment on the results and integrate them with the existing knowledge and point out the field. Recommendation may also be included.

Acknowledgment: Persons, financial or technical helps which have contributed to the paper should be acknowledged in a paragraph.

References: Place the number references consecutively in the order in which they are first mention in the text. Use the style of the examples below:

Examples

Articles in journals

(1) Standard journal article (List all authors, but if the number exceeds three give three followed by et al)

You CH, Lee KY, Chen RY, et al. Electrogastrographic study of patients with unexplained nausea, blotting and vomiting. *Gastroenterology* 1980; 79:311-4.

(2) Organisation as author

The Royal Marsden Hospital Bone-marrow Transplantation Team. Failure of syngeneic bone-marrow graft without preconditioning in post-hepatitis marrow aplasia. *Lancet* 1977;2:742-4.

(3) No author given

Coffee drinking and cancer of the pancreas (editorial). *BMJ* 1981;283-628.

(4) Volume with supplement

Magni F, Borghi S, Berti F. BN-52021 protects guinea-pig from heart anaphylaxis. *Pharmacol Res Commun* 1988;20 suppl 5:75-8.

(5) Books and other monographs

5.1 Personal author(s)

Colson JH, Armour WJ. *Sports injuries and their treatment*. 2nd rev ed. London: S Paul, 1986.

5.2 Editor(s), compiler as author

Diener HC, Wilkinson M, editors. *Drug-induced headache*. New York Springer-Verlag, 1988.

5.3 Chapter in a book

Jaffe JH, Martin WR. Opioid analgesics and antagonists. In: Gilman AG, Goodman LS, Gilman A, editors. *The Pharmacological basic of therapeutics*. 6th ed. New York: MacMillan Publishing, 1980:494-543.

5.4 Conference proceedings

Vivian VL, editor. Child abuse and neglect: a medical community response. *Proceeding of the first AMA National Conference on Child Abuse and Neglect*; 1984; Mar 30-31; Chicago. Chicago: American Medical Association, 1985.

(6) Dissertation

Youseff NM. *School adjustment of children with congenital heart disease* (dissertation). Pittsburg (PA): Univ of Pittsburg, 1988.

(7) In press

Lillywhite HB, Donald JA. Pulmonary blood flow regulation in an aquatic snake. *Science*. In press.

Reviews

All reviews are usually peer-reviewed. If the manuscript is written in Thai, English title and abstract are also required.

Short communication

Short communication should contain new and unpublished results in a short form. It should not exceed 2 print pages and may contain one table and one illustration.

Manuscript submission

All manuscripts are to be submitted to editor or associate editors, Thai Journal of Pharmacology, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Chulalongkorn Hospital, Rama IV Road, Bangkok 10330, Thailand. All paper are critically reviewed by the invited referees. Reviewers' comments are usually returned to the authors. The editorial board will decide upon the time of publication and retain the right to modify the style of contribution. However, major changes will be agreed with the authors. Authors will receive 25 reprints free.

Copyright

The Pharmacological and Therapeutic Society of Thailand holds the copyright on all material appearing in the journal.

สมาคมเกสซ์วิทยาแห่งประเทศไทย

ใบสมัครเข้าเป็นสมาชิก

เบบันที่

วันที่.....เดือน..... พ.ศ.....

นาย

ข้าพเจ้า นาง ชื่อสกุล.....

นางสาว

อาชีพ ขอสมัครเข้าเป็นสมาชิกสมาคมเกสซ์วิทยาแห่งประเทศไทย และขอรับรองว่า จะปฏิบัติตามระเบียบข้อบังคับของสมาคมทุกประการ

ข้าพเจ้ายินดีจะชำระค่าบำรุงสมาคมโดย

- เป็นรายปี ปีละ 200 บาทต่อวัน
- ครั้งเดียว 1,000 บาทต่อวันสำหรับสมาชิกตลอดชีพ

ถุงที่อยู่

(.....)

เรียน

รศ. สม. ใจ นครชัย
ภาควิชาเกสซ์วิทยา คณะเกสซ์ศาสตร์
มหาวิทยาลัยมหิดล
ถนนศรีอยุธยา
กทม. 10400

สมาคมเภสัชวิทยาแห่งประเทศไทย

ใบสมัครเข้าเป็นสมาชิก

เบียนที่.....

วันที่..... เดือน..... พ.ศ.....

นาย

ข้าพเจ้า นาง ชื่อสกุล.....

นางสาว

อาชีพ ขอสมัครเข้าเป็นสมาชิกสมาคมเภสัชวิทยาแห่งประเทศไทย และขอรับรองว่า จะปฏิบัติตามระเบียบข้อบังคับของสมาคมทุกประการ

ข้าพเจ้ายินดีจะชำระค่าบำรุงสมาคมโดย

- เป็นรายปี ปีละ 200 บาทต่อวัน
- ครั้งเดียว 1,000 บาทต่อวันสำหรับสมาชิกตลอดชีพ

ลงชื่อ

(.....)

เรียน

รศ.สมใจ นครชัย
ภาควิชาเภสัชวิทยา คณะเภสัชศาสตร์
มหาวิทยาลัยมหิดล
ถนนศรีอยุธยา
กทม. 10400

ทะเบียนประวัติ

นาย

1. ชื่อ นาง ชื่อสกุล.....

นางสาว

ชื่อภาษาอังกฤษ (ตัวพิมพ์ใหญ่)

2. เกิดวันที่ เดือน..... พศ.....

3. ตำแหน่งหน้าที่หรือตำแหน่งทางวิชาการในปัจจุบัน

4. สถานที่ทำงาน

.....

.....

..... โทรศัพท์/แฟกซ์

e-mail address

5. ที่อยู่ปัจจุบัน

.....

.....

6. ประวัติการศึกษาขั้นอุดมศึกษา (เรียงลำดับจาก暮ีสูงสุด)

ปี พ.ศ.

ชื่อสถานศึกษา

วุฒิที่ได้รับ

.....

.....

.....

7. สาขาหรือแขนงวิชาที่สนใจหรือเชี่ยวชาญเป็นพิเศษ

.....

.....

.....

รายงานคณะกรรมการที่ปรึกษาและบริหารสมาคมเกสซ์วิทยาแห่งประเทศไทย
ประจำปี พ.ศ. 2545-2547

คณะกรรมการที่ปรึกษา

กก.พลตรี สุนันท์ ใจนวากาด
ศ.ดร.อ่านาย ติรุราพันธ์
รศ.พ.อ.ดร.บพิตร กลางกัลยา
รศ. พลตรี ดร.ทัศนัย สุริยจันทร์
รศ.พญ.สุมนา ชมพูทวีป
ดร.อุดม จันทรารักษ์คีรี
ผศ.ดร.เมธี สรรพาณิช
รศ.น.สพ.พีระพล อุยส์สวัสดิ์

คณะกรรมการบริหาร

นายกสมาคม
อุปนายก
ผู้รับตำแหน่งนายกสมาคม
เลขธิการ
ฝ่ายวิชาการ
เครือข่าย
ปฏิคม
นายทะเบียน
บรรณาธิการวารสาร
กรรมการกลาง

ภญ.รศ.ดร.ศรีจันทร์ พรจิราศิลป์
ภญ.รศ.ดร.ยุพิน สังวินทะ
กก.รศ.ดร.ชัยชาญ แสงดี
ภญ.รศ.สุพิชา วิทยเลิศปัญญา
ภญ.รศ.ดร.สุพัตรา ศรีไชยรัตน์
ภญ.รศ.ดร.จงกล เที่ยงดาว
ผศ.ดร.พยองค์ วนิเกียรติ
ภญ.รศ.สมใจ นครชัย
ภญ.รศ.ดร.สุพัตรา ศรีไชยรัตน์
ภญ.รศ.ดร.ไขแสง ใจนวากาด
ผศ.ดร.ลัดดาวลักษ์ ผิวทองงาม
รศ.ดร.นพ.ประวิทย์ อัครเสรีนันท์
ภญ.ผศ.ประภาวดี พัวไฟโรจน์
ภญ.รศ.ดร.มยุรี ตันดิสิริ
ผศ.ทพญ.วรรณา ชิดช่วงชัย

กิตติกรรมประกาศ

สมาคมเภสัชวิทยาแห่งประเทศไทย

ขอขอบพระคุณ

ผู้ให้การสนับสนุนการประชุมวิชาการประจำปี ครั้งที่ 25

วันที่ 20-21 มีนาคม 2546

ดังต่อไปนี้

บริษัท บี.ซี.บี (ประเทศไทย) จำกัด

บริษัท สยามฟาร์มาซูดิคอล จำกัด

บริษัท โอสถสภา จำกัด

บริษัท บี.เอล.เอช.เทรดดิ้ง จำกัด

บริษัท โนوار์ดีส (ประเทศไทย) จำกัด แผนกเวชภัณฑ์

บริษัท โคง-โคล่า (ประเทศไทย) จำกัด

บริษัท เนสท์เล่ (ประเทศไทย) จำกัด

บริษัท เซอร์วิร์ (ประเทศไทย) จำกัด

บริษัท เครื่องดื่มกระทิงแดง จำกัด

บริษัท แจนเซน-ซีแลก จำกัด

บริษัท ไทยนคพรพัฒนา จำกัด

บริษัท โทร (ประเทศไทย) จำกัด

บริษัท ชูมิตร จำกัด

บริษัท เชริง (กรุงเทพฯ) จำกัด

บริษัท ดีทแยล์ จำกัด

บริษัท แกลิกโซ่สมิทไคลน์ (ประเทศไทย) จำกัด

บริษัท แอ็บบอด ลับบอแรดอร์ส จำกัด

บริษัท เชอร์ง-พลาว จำกัด