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A major obstacle to the treatment and control of malaria is the emergence of drug
resistance in Plasmodium falciparum. Drug resistance has been defined as 'the ability of a
parasite isolate to survive and/or multiply despite the administration and absorption of a
drug in doses equal to or higher than those usually recommended but within limits of
tolerance of the subject™,

The intensity and frequency of resistance from each foci varies substantially. These
factors are dependent upon such variables as the amount of local drug pressure, the rate of
active malaria transmission in the area and the length of time that drug resistance has been
acquired within that area, The emergence of drug resistance is thought to have come about
by the selection of existing resistant mutants through drug pressure, although it is accepted
that parasite isolates expressing natural variations in drug susceptibility do exist’. This
selective drug pressure has most likely been applied by the unsupervised use of subcurative
doses of antimalarials that have been made widely available to the public in many parts of
the world, but may also be due to non-compliance, vomiting and/or diarrhoea after drug
intake. As drug resistance is genetically determined, it will be spread by active malaria
transmission, as gametocytes from resistant isolates will produce resistant offspring,
Antimalarial resistance has been shown to be a stable phenotype maintained in in vitro
culture for many years in the absence of continued drug pressure”.

Chloroquine (CQ) resistance in P. falciparum was first reported in the late 1950°s
from 2 separate foci; South America® and Southeast Asia®. Today CQ resistance effects
most areas of the we='1 in which the drug has been used”®. Indeed, in some areas CQ is
now almost completely ineffective. Parasite resistance is not confined to CQ. There have
been recent reports which suggest that amodiaquine (AQ), a niore active analogue of CQ,
commonly used in Africa in the therapy of CQ treatment failures is also subject to
resistance mediated treatment failures®'’. The increasing problem of parasite resistance to
CQ had prompted the use of combinations of existing drugs, in addition to the
development of novel antimalarials. During the 1970’s a combination of pyrimethamine
and sulphadoxine, named Fansidar, was employed. However, the development of
resistance to this combination and adverse reactions has limited its use in many areas''.
Furthermore, parasite resistance to the new generation of antimalarial drugs has been
reported. Resistance to mefloquine (MQ) in P. falciparum was observed as early as in
1982 in Southeast Asia and 1983 in Africa'®!® and clinical resistance persists despite an
increasing of the therapeutic dose'®, Early clinical failure to new drugs such as MQ and
halofantrine (HF) may be explained by cross-resistance' 2%, Further compounding the
situation is the continued drop in the sensitivity to quinine (QN)!", which now has to be
routinely administered together with tetracycline®', Artemisinin and its derivatives arc
highly effective for treatment of multidrug-resistant falciparum malaria, To date, a few
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treatment failures have been reported®’; however, actual parasite resistance to these drugs
has not been documented.

Clinical resistance to CQ in P. vivax has been recently reported particularly from
Southeast Asia and Oceania®?® and resistance to pyrimethamine is also we known®.
However, because of the difficulty of in vifro culture, mechanism of drug resistance in P.

vivax is less explored.

Mechanism of resistance to antifolate drugs in P. falciparum

Pyrimethamine binds and inhibits malarial dihydrofolate reductase (DHFR) and
sulphadoxine acts on dihydropteroate synthase (DHPS). The combination of pyrimethamine
and sulphadoxine gives a synergistic action against P. falciparum. Resistance to this
combination has long established particularly in Southeast Asia'''% Specific mutations in
both target enzymes can evade the action of these drugs. Kinetic studies of DHFR showed
that resistance in P. falciparum was associated with a reduced affinity binding between drug
and target enzymc”'zs. It is well established that pyrimethamine resistance is a result of the
mutations in the P. falciparum dhfi- gene. A single point mutation on codon 108 from Ser to
Arn is linked to pyrimethamine resistance. Additional changes in codons 59 (Cyst to Arg)
and/or 51 (Asn to Ile) confer higher level resistance”>!. Different mutations on this gene
conferring pyrimethamine resistance in P. falciparum have been reported’”. Interestingly,
with these 3 mutations, changing at codon 164 (Ile to Leu) confers cross-resistance between
pyrimethamine and cycloguanil, the active metabolite of proguanil (a I [FR inhibitor).
While changing of codon 108 (Ser to Thr) and 16 (Ala to Val) is only associated with
resistance to cycloguanil®?*. The importance of the mutations associated with
pyrimethamine resistance has been confirmed by the experiments using both homologous
and heterologous transformation .

The gene encoding P. falciparum DHPS has been sequenced. Specific point
mutations on this gene have been linked to sulphadoxine resistance in vitro. Mutations
associated with decreased susceptibility to sulphadoxine include codon 436 (Ser to
Phe/Ala), 437 (Ala to Gly), 540 (Lys to Glu), 581 (Ala to Gly) and 631 (Ala to Thr/Ser)’’ ™,

Mechanism(s) of resistance to quinolines in P. falciparum

Unlike antifolate drugs, the mechanism(s) underlying quinoline resistance is/are less
clarified. However, the studies performed so far, mainly involving CQ, have produced a
number of important, and widely accepted, insights into these resistance mechanisms.

Chloroquine resistance :

Proposed mechanisms for CQ resistance have been based on the evidence that CQ-
resistant parasite accumulates less drug than its susceptible counterpartJMz. Therefore most
of the proposed mechanisms have usually been linked to the reduction of drug available to
the site of action; the food vacuole of the parasite.

As the major driving force for 4-aminoquinoline accumulation in the parasite is the
transmembrane proton gradient“, changing in the magnitude of this proton gradient can
alter parasite susceptibility. Resistance in P. falciparum could therefore result from an
elevation of basal vacuolar pH in the resistant parasite. Based upon these ideas, Williams
and Fanimo (1974) suggested that the lower steady state level of drug seen in resistant
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parasites might be due to alterations in the regulation of vacuolar pH in resistant isolates™,
It is accepted that vacuolar pH in P. falciparum is maintained by a balance between an
inward proton transporter, the vacuolar ATPase pump, and outward proton leak™.
Therefore, an increased intravacuolar pH in resistant parasites could be due to either an
increased proton leak or reduced vacuolar ATPase activity. Indirect support for this
hypothesis using a mathe; tical model showed that the di. = wcyt +» 1s = s
drug levels seen in CQ-resistant and -susceptible isolates conld be &> ' i -d simply due to a
reduced force for uptake in the resistant isolates®. Further evidence in support of this
hypothesis was that CQ-resistant parasites were more sensitive to the effects of bafilomycin
Al, a specific vacuolar proton pumping ATPase inhibitor, than their susceptible
counterparts®’. Two subunits of the vacuolar ATPase from P. falciparum have been cloned
and the proteins characterised which showed significant sequence homology with the A and
B subunit of those found in a variety of organisms, However no differences have been
identified between CQ-resistant and CQ-sensitive parasite in either of these subunits that
could explain CQ resistance phenotype™® ™. It must be noted that although direct
measurement of the intravacuolar pH of resistant and susceptible isolates has been
attempted (independently), none of the studies described have compared absolute vacuolar
pH values of resistant and susceptible isolates within the same study’**,

Based on the finding that resistant parasites released pre-accumulated CQ 40-50
times more rapidly than their susceptible counterparts and verapamil (VP) was able to
inhibit this enhanced efflux and increase steady state levels of drug®', it was then suggested
that rapid efflux was responsible for CQ resistance in P. falciparum. Since VP is a classical
chemosensitiser that can reverse drug efflux in multidrug-resistant tumour cells. However,
these findings have since been questioned by a number of workers who failed to show
differences in efflux rates between resistant and susceptible isolates*” **. Furthermore, the
study using mathematical model derived for the time course CQ accumulation by Ginsburg
and Stein (1991) concluded that the differences in CQ accumulation between resistant and
sensitive parasites could - explained purely by the differences in uptake force™. The
observations that differences in drug activity correlated more favourably with rates of drug
uptake rather than drug efflux have been confirmed i later studies®*®, According to
Ginsburg and Stein’s model, Bray ef al. (1994) suggested that the resistant isolates may
have an enhanced efflux capacity for CQ, this is however only at very low extern: drug
concentrations which is possibly therapeutically irrelevant™,

The level of CQ accumulation in malaria parasites could be due, at least in part, to
the presence of a specific drug importer or ‘permease’. Warhurst (1988) hypothesised that
the differences seen in levels of CQ accumulation between resistant and susceptible isolates
could be due to differences in the quantity, affinity for substrate and/or location of the
‘permease’ in resistant isolates™ . It was also suggested that the permease could be situated
on both the plasma membrane and the food vacuole membrane, but working in reverse to
export drug from the vacuole, into the cytoplasm and then out of the parasite. This
hypothesis is consistent with the earlier observations of Moreau et al. (1986) who showed
that a closely related analogue of CQ was accumulated predominantly in the acid
compartments of CQ susceptible P. berghei, whereas in resistant isolates this compound
was highly localised in the cytoplasm also™.
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Recent work from Sanchez ef al. (1997) based on the inhibition of saturable CQ
uptake by the amiloride analogue, EIPA (a specific blocker of the plasma membrane Na*/H*
exchanger)” in the progeny of a genetic cross between CQ-resistant and CQ-sensitive
clone® suggested that CQ is actively imported into the parasite by the Na* binding domain
of the Na"/H" exchanger, in exchange of protons. With modification, it was later suggested
tt "Qis T T it Na'vv o’ a’ st " “Estimulated sodium/proton
exchange™. These authors then sugg ‘ed that changes in the CQ importer could generate
CQ resistance. However several evidences contradict this hypothesis, Bray et al. (1999)
showed that CQ uptake by free parasites was identical when the extracelluiar sodium was
replaced by either choline or glucamine. Moreover EIPA could compete for CQ
accumulation SJmply by binding to haem which has been demonstrated to be vital for CQ
accumulation®. Although the gene responsible for CQ resistance in these progeny has been
identified and postulated to encode for a transporter, Su ef agl. (1997) could find no
meaningful sequence with any ion channel or Na'/H" exchanger®.

Finally, it has been suggested that CQ resistance may be due to a reduced affinity of
the intraparasitic binding site for CQ i resistant isolates®®. Using a mathematical model
based on the hypothesis that the high-affinity drug accumulation, rather than whole-cell
accumulation, is responsible for its pharmacological activity, it has been shown that the
apparent K, for high-affinity uptake is significantly increased in resistant isolates and this
apparent K. can be reduced in the presence of VP without any effect on low-affinity
uptake®. Further, it has been demonstrated that CQ-resistant and -sensitive isolates
accumulate similar amounts of CQ at high affinity when external concentrations correspond
to their respective ICso values. The low-affinity uptake is equivalent in both isolates,
however, because of the increased K, of the high-affinity process in resistant isolates, the
contribution of low-afﬁmty accumulation is greater. This model can explain the
observations that differences in CQ accumulation between sensitive and resistant isolates
are not as great as the differences in their dose-response to CQ"™* ' and that the increased
CQ accumulation brought by VP is insufficient to explain the increased susceptibility to CQ
also seen in the presence of VP***’,

Mefloquine/halofantrine resistance

The mechanism of action of and resistance to M(Q and HF remain unclear. It has
been shown that drug susceptibility to MQ and HF correlate with accumulation. By the
analysis as Bray ef al. (1998) did®, the activity of both MQ and HF depend on specific
accumulation at a high affinity site with in the parasite®. Although there are a number of
candidate accumulation sites®’, haem would appear to be a good candidate. Using a specific
inhibitors of plasmepsin and a cysteine proteinase inhibitor suggest that MQ and HF exert
their effect by an haem dependent mechansim®,

Penfuridol can reverse MQ and HF resistance in P. falciparum™ ", similar to the
effect of VP on the CQ resistance. The ability of penfuridol to enhance susceptlblhty in

resistant isolates is associated with an enhancement of drug accumulation™. 66

69-70

Molecular characterisation of quinoline resistance
The demonstration that CQ resistance in P. falciparum could be partially reversed
by VP led to the investigations at the molecular level”'. This phenomenon had been linked
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to that of mammalian multidrug-resistant (MDR) cancer cells where drug resistance is also
associated with the reduction of intracellular drug accumulation. In cancer cells, VP is able
to reverse the resistance phenotype by competing with the cytotoxic drug for an active
eftlux component on the cell membrane. This protein namely P-glycoprotein is encoded by
the mar geneu'M. Therefore, by analogy, it was suggested that VP exerted its
chemosensitisatic =f” ts,in P. £ 7@ 1, byir™™" g actc S 20 eomp’)
In cancer cells, selection for {I  usually coincides with ar ) "a P-
glycoprotein and amplification of the mdr genes that encode this protein’®. P-glycoprotein
belongs to the family of Adenine nucleotide Binding Cassette (ABC) transporters. The
classical P-glycoproteins are large plasma membrane glycoproteins consisting of two
similar halves; each containing six putative transmembrane segments and an ATP-binding
site. Drug resistance is caused by the ability of P-glycoprotein to extrude drugs. against a
concentration gradient, resulting in a decrease of the intracellular drug concentration
available to the drug target. Studies with P. falciparum have resulted in the isolation and
characterisation of three P-glycoprotein homologues, namely pfindrl, pfindr2 and
pfecn20®®, Of these three mdr-like genes, only the pfindrl gene has been linked to the

quinoline resistance phenotype.

pfmdrl and Chloroquine resistance

Stronger evidence has been forwarded to implicate a possible role for pfindrl in
drug resistance in P. falciparum. The pfindr] gene, which is situated on chromosome 5, has
been shown to encode a 162 kDa protein, P-glycoprotein homologue 1 (Pghl) which
belongs to the ATP binding cassette (ABC) transporter family and shows 54 % homology
with mammalian P-glycoprotein™. The protein consists of two homologous halves and an
asparagine-rich hinge region; each half molecule contains 6 transmembranous domains and
a nucleotide binding fold. The protein is present throughout all the asexual intraerythrocytic
stages of the parasites life cycle and is located mainly on the membrane of the digestive acid
food vacuole and to a lesser extent on the plasma membrane of the parasite®. More recent
studies also localised this protein to other membrane structures in the parasite®.

Original studies involving a limited number of P. falciparum isolates of varying
susceptibility, suggested that CQ resistance might be linked to amplification of pfindrl and
overexpression of Pghi”. However, subsequent studies have failed to correlate
amplification of pfindr1 and parasite sensitivity to CQ™. Indeed these studies have indicated
that not only can similar levels of Pghl be observed in both CQ-resistant and -susceptible
isolates, but also that certain susceptible isolates could have higher levels of expression than
the resistant parasites, In fact, subjecting moderately CQ resistant strains of P. falciparum to
CQ to produce a higher level of CQ resistance resulted in deamplification of the pfindri
gene from 3 copies to 1%,

The lack of a correlation between Pghl expression and CQ resistance led
investigators to speculate whether specific mutations in pfindr] might be responsible for CQ
resistance. Studies by Foote ef al. (1990) suggested that resistance to CQ might indeed be
correlated with amino acid differences in the pfindr]l gene®, although again, these findings
are not without controversy. In this study, the authors identified two “alleles’ that appeared
to be related to CQ resistance. The authors were able to predict the sensitivity status of 34
out of 36 isolates of P. falciparum based solely upon whether or not they possessed these
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alleles. One of the alleles (termed the K1 type) involved a single amino acid change (Asn®
to Tyr*), the second (termed the 7G8 type) involved three amino acid substitutions (Ser'®*
to Cys'™, Asn'™? to Asp'® and Asp'**® to Tyr'?*). Further studies, involving sequencing
pfindrl from P. falciparum isolates from Afiica, have also reported a strong relationship
between the K1-type mutation and CQ resistance®*®, However, several reports failed to
identify a mplete © | I v yofthe ~ " mns Q- s ph  ty; in
bott “e'*" ' % and culture-adapted isolates®®™*,

Following the observation that application of CQ pressure to laboratory isolates of
P. falciparum, resulting in an increase in CQ resistance, was accompanied by a
deamplification of the pfindrl gene®. It was suggested that the Pghl might be involved in
the accumulation of CQ in the food vacuole of the parasite. This hypothesis has been
examined by transfection the pfindrl gene into Chinese hamster ovary cells (CHO), it has
been shown that those cells expressing the wild-type Pghl are hypersensitive to CQ as a
result of increased CQ accumulation™. However the transfected cells with the double
mutant pfindrl gene with amino acid replacements at positions 1034 and 1042, showed
neither CQ hypersensitivity nor the ability to accumulate CQ. Following work has indicated
that cells expressing the wild-type Pghl have a lower intravacuolar pH compared to cells
expressing the mutant Pghl or non-transfected cells’. It was proposed therefore that Pghl
mediated increased CQ accumulation by decreasing vacuolar pH. Further, the author
hypothesised that Pghl may be acting as a chloride channel, although no direct evidence
was forwarded. This work has therefore strengthened the hypothesis that pfindrl may play a
role in concentrating CQ within the malaria parasite’s food vacuole, by reducing
intravacuolar pH and thus increasing the force for drug accumulation in this cell type.

cg2 and Chloroquine resistance

The studies described above provide a rather confusing picture as to whether or not
the pfindrl gene is involved in CQ resistance in P. falciparum. However, studies involving
the analysis of a single genetic cross between a CQ-resistant and CQ-susceptible isolate of
P. falciparum appear to provide the strongest evidence so far that the pfindr]l gene is not
involved in CQ resistance®® *’. The progeny exhibited the phenotypic characteristics of
either the resistant or susceptible parent; this was seen as evidence that a single genetic
locus may be responsible for the drug phenotype. In the initial study, inheritance of parental
pfindrl did not segregate with the drug response. Further work by Su ef af. (1997) identified
cg2, a gene on chromosome 7 which encodes CG2 a unique ~300 kDa protein with
complex polymorphism®. The polymorphism of this gene was linked to the CQ-resistant
phenotype in these progeny. It must be noted that chromosome 7 contains no pfindr genes
(pfindrl is situated on chromosome 5). The CG2 protein was localised to the peripheral
membrane and in association with haemozoin of the food vacuole prompting speculation
that CG2 is a drug trafficking protein. However the experiments of genetic transformation
by the same group indicated that CG2 may not play a role in CQ resistance’®. Recently a
novel, complex polymorphic gene named pffcr has been identified and linked to CQ
resistance in the genetic cross progeny and field isolates®. Further studies of mechanistic
role of this gene has to be done.
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Pfmdr1 and Mefloquine/Halofantrine resistance

Although the role of the pfmdrl gene in CQ resistance is unclear, several studies
have identified a link between the amplification of pfindrl and MQ and HF resistance, A
number of workers have shown that the selection of MQ-resistant isolates by subjecting
parent lines to sequentially increasing MQ concentrations was associated with an
amplification of pfir " 17 '™ Jt must also be "t “inthestu™ 5 * eril
decrease in MQ susceptibility ' ‘ned in " se drug pressure experim¢ ‘s was
accompanied by cross-resistance to HF and QN and also an increase in CQ susceptibility.
Conversely, both Barnes et al. (1992) and Peel et al. (1994) have shown that CQ resistance
selected by CQ pressure, was accompanied by a deamplification of pfindr{ and an increase
in susceptibility to MQ and HF* '!, These observations have further strengthened the link
between MQ and by implication HF (which share similar cross-resistance patterns to MQ)
resistance and pfmdr1 gene expression. In addition, work by Wilson ef al. (1993) involving
the analysis of a number of resistant field isolates from Thailand, appeared to confirm that
both MQ and HF resistance is indeed linked to pfindrl amplification®. Experiments in a
heterologous yeast system showed that Pghl can act as a transporter, expression of pfindrl
has been shown to functionally complement the ste6 mutation in Saccharomyces
cerevisiae'. The yeast ste6 gene encodes a P-glycoprotein that exports the yeast a-type
mating factor, mutants being unable to export this peptide'®. These workers provided
further evidence for the functional importance of aniino acid differences in the pfidr1 gene.
Cells expressing Pghl containing 2 of 3 7G8-type mutations were unable to complement
the ste6 mutation, Using this yeast model, it has been demonstrated that the pfindrl gene
confers resistance in yeast cells to MQ, HF, QN and mepacrinelm. Drug resistance in
pfindr transformants was associated with decreased drug accumulation and an increase in
drug release from preloaded cells. Again it was also reported that mutations associated with
the 7G8 CQ-resistant allele resulted in loss of function.

However recent reports question the role of pfindrl in aminoalcohol resistance.
Studies of a HF-resistant isolate (K1Hf), selected by intermittent drug exposure, has
indicated that the decrease in HF susceptibility obtained, which is accompanied by a
decrease in MQ susceptibility and an increase in CQ susceptibility, is not accompanied by
an amplification of pfindrl 19 Furthermore, similar findings have been reported for cloned
lines selected for MQQ resistance by the application of MQ drug pressuremﬁ. Recent work
also shows no association between reduced sensitivity to MQ and HF and the level of
pfindrl amplification and expression in recently adapted and fresh Thai isolates™® 197108
These studies indicate that the acquisition of MQ and HF resistance need not always be
accompanied by an amplification of pfindr1.
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