

SY7 MECHANISMS OF DRUG RESISTANCE IN *PLASMODIUM FALCIPARUM*

Mathirut Mungthin

Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, Thailand

A major obstacle to the treatment and control of malaria is the emergence of drug resistance in *Plasmodium falciparum*. Drug resistance has been defined as 'the ability of a parasite isolate to survive and/or multiply despite the administration and absorption of a drug in doses equal to or higher than those usually recommended but within limits of tolerance of the subject'¹⁻².

The intensity and frequency of resistance from each foci varies substantially. These factors are dependent upon such variables as the amount of local drug pressure, the rate of active malaria transmission in the area and the length of time that drug resistance has been acquired within that area. The emergence of drug resistance is thought to have come about by the selection of existing resistant mutants through drug pressure, although it is accepted that parasite isolates expressing natural variations in drug susceptibility do exist³. This selective drug pressure has most likely been applied by the unsupervised use of subcurative doses of antimalarials that have been made widely available to the public in many parts of the world, but may also be due to non-compliance, vomiting and/or diarrhoea after drug intake. As drug resistance is genetically determined, it will be spread by active malaria transmission, as gametocytes from resistant isolates will produce resistant offspring. Antimalarial resistance has been shown to be a stable phenotype maintained in *in vitro* culture for many years in the absence of continued drug pressure⁴.

Chloroquine (CQ) resistance in *P. falciparum* was first reported in the late 1950's from 2 separate foci; South America⁵ and Southeast Asia⁶. Today CQ resistance effects most areas of the world in which the drug has been used⁷⁻⁸. Indeed, in some areas CQ is now almost completely ineffective. Parasite resistance is not confined to CQ. There have been recent reports which suggest that amodiaquine (AQ), a more active analogue of CQ, commonly used in Africa in the therapy of CQ treatment failures is also subject to resistance mediated treatment failures⁹⁻¹⁰. The increasing problem of parasite resistance to CQ had prompted the use of combinations of existing drugs, in addition to the development of novel antimalarials. During the 1970's a combination of pyrimethamine and sulphadoxine, named Fansidar, was employed. However, the development of resistance to this combination and adverse reactions has limited its use in many areas¹¹⁻¹³. Furthermore, parasite resistance to the new generation of antimalarial drugs has been reported. Resistance to mefloquine (MQ) in *P. falciparum* was observed as early as in 1982 in Southeast Asia and 1983 in Africa¹⁴⁻¹⁵ and clinical resistance persists despite an increasing of the therapeutic dose¹⁶. Early clinical failure to new drugs such as MQ and halofantrine (HF) may be explained by cross-resistance¹⁷⁻²⁰. Further compounding the situation is the continued drop in the sensitivity to quinine (QN)¹⁷, which now has to be routinely administered together with tetracycline²¹. Artemisinin and its derivatives are highly effective for treatment of multidrug-resistant falciparum malaria. To date, a few

treatment failures have been reported²²; however, actual parasite resistance to these drugs has not been documented.

Clinical resistance to CQ in *P. vivax* has been recently reported particularly from Southeast Asia and Oceania²³⁻²⁵ and resistance to pyrimethamine is also well known²⁶. However, because of the difficulty of *in vitro* culture, mechanism of drug resistance in *P. vivax* is less explored.

Mechanism of resistance to antifolate drugs in *P. falciparum*

Pyrimethamine binds and inhibits malarial dihydrofolate reductase (DHFR) and sulphadoxine acts on dihydropteroate synthase (DHPS). The combination of pyrimethamine and sulphadoxine gives a synergistic action against *P. falciparum*. Resistance to this combination has long established particularly in Southeast Asia¹¹⁻¹². Specific mutations in both target enzymes can evade the action of these drugs. Kinetic studies of DHFR showed that resistance in *P. falciparum* was associated with a reduced affinity binding between drug and target enzyme²⁷⁻²⁸. It is well established that pyrimethamine resistance is a result of the mutations in the *P. falciparum dhfr* gene. A single point mutation on codon 108 from Ser to Arn is linked to pyrimethamine resistance. Additional changes in codons 59 (Cyst to Arg) and/or 51 (Asn to Ile) confer higher level resistance²⁹⁻³¹. Different mutations on this gene conferring pyrimethamine resistance in *P. falciparum* have been reported³². Interestingly, with these 3 mutations, changing at codon 164 (Ile to Leu) confers cross-resistance between pyrimethamine and cycloguanil, the active metabolite of proguanil (a DHFR inhibitor). While changing of codon 108 (Ser to Thr) and 16 (Ala to Val) is only associated with resistance to cycloguanil³³⁻³⁴. The importance of the mutations associated with pyrimethamine resistance has been confirmed by the experiments using both homologous and heterologous transformation³⁵⁻³⁶.

The gene encoding *P. falciparum* DHPS has been sequenced. Specific point mutations on this gene have been linked to sulphadoxine resistance *in vitro*. Mutations associated with decreased susceptibility to sulphadoxine include codon 436 (Ser to Phe/Ala), 437 (Ala to Gly), 540 (Lys to Glu), 581 (Ala to Gly) and 631 (Ala to Thr/Ser)³⁷⁻³⁸.

Mechanism(s) of resistance to quinolines in *P. falciparum*

Unlike antifolate drugs, the mechanism(s) underlying quinoline resistance is/are less clarified. However, the studies performed so far, mainly involving CQ, have produced a number of important, and widely accepted, insights into these resistance mechanisms.

Chloroquine resistance

Proposed mechanisms for CQ resistance have been based on the evidence that CQ-resistant parasite accumulates less drug than its susceptible counterpart³⁹⁻⁴². Therefore most of the proposed mechanisms have usually been linked to the reduction of drug available to the site of action; the food vacuole of the parasite.

As the major driving force for 4-aminoquinoline accumulation in the parasite is the transmembrane proton gradient⁴³, changing in the magnitude of this proton gradient can alter parasite susceptibility. Resistance in *P. falciparum* could therefore result from an elevation of basal vacuolar pH in the resistant parasite. Based upon these ideas, Williams and Fanim (1974) suggested that the lower steady state level of drug seen in resistant

parasites might be due to alterations in the regulation of vacuolar pH in resistant isolates⁴⁴. It is accepted that vacuolar pH in *P. falciparum* is maintained by a balance between an inward proton transporter, the vacuolar ATPase pump, and outward proton leak⁴⁵. Therefore, an increased intravacuolar pH in resistant parasites could be due to either an increased proton leak or reduced vacuolar ATPase activity. Indirect support for this hypothesis using a mathematical model showed that the discrepancy between steady state drug levels seen in CQ-resistant and -susceptible isolates could be explained simply due to a reduced force for uptake in the resistant isolates⁴⁶. Further evidence in support of this hypothesis was that CQ-resistant parasites were more sensitive to the effects of baflomycin A1, a specific vacuolar proton pumping ATPase inhibitor, than their susceptible counterparts⁴⁷. Two subunits of the vacuolar ATPase from *P. falciparum* have been cloned and the proteins characterised which showed significant sequence homology with the A and B subunit of those found in a variety of organisms. However no differences have been identified between CQ-resistant and CQ-sensitive parasite in either of these subunits that could explain CQ resistance phenotype⁴⁸⁻⁴⁹. It must be noted that although direct measurement of the intravacuolar pH of resistant and susceptible isolates has been attempted (independently), none of the studies described have compared absolute vacuolar pH values of resistant and susceptible isolates within the same study⁵⁰⁻⁵³.

Based on the finding that resistant parasites released pre-accumulated CQ 40-50 times more rapidly than their susceptible counterparts and verapamil (VP) was able to inhibit this enhanced efflux and increase steady state levels of drug⁴¹, it was then suggested that rapid efflux was responsible for CQ resistance in *P. falciparum*. Since VP is a classical chemosensitiser that can reverse drug efflux in multidrug-resistant tumour cells. However, these findings have since been questioned by a number of workers who failed to show differences in efflux rates between resistant and susceptible isolates^{42, 54}. Furthermore, the study using mathematical model derived for the time course CQ accumulation by Ginsburg and Stein (1991) concluded that the differences in CQ accumulation between resistant and sensitive parasites could be explained purely by the differences in uptake force⁴⁶. The observations that differences in drug activity correlated more favourably with rates of drug uptake rather than drug efflux have been confirmed in later studies⁵⁴⁻⁵⁶. According to Ginsburg and Stein's model, Bray *et al.* (1994) suggested that the resistant isolates may have an enhanced efflux capacity for CQ, this is however only at very low external drug concentrations which is possibly therapeutically irrelevant⁵⁵.

The level of CQ accumulation in malaria parasites could be due, at least in part, to the presence of a specific drug importer or 'permease'. Warhurst (1988) hypothesised that the differences seen in levels of CQ accumulation between resistant and susceptible isolates could be due to differences in the quantity, affinity for substrate and/or location of the 'permease' in resistant isolates⁵⁷. It was also suggested that the permease could be situated on both the plasma membrane and the food vacuole membrane, but working in reverse to export drug from the vacuole, into the cytoplasm and then out of the parasite. This hypothesis is consistent with the earlier observations of Moreau *et al.* (1986) who showed that a closely related analogue of CQ was accumulated predominantly in the acid compartments of CQ susceptible *P. berghei*, whereas in resistant isolates this compound was highly localised in the cytoplasm also⁵⁸.

Recent work from Sanchez *et al.* (1997) based on the inhibition of saturable CQ uptake by the amiloride analogue, EIPA (a specific blocker of the plasma membrane Na^+/H^+ exchanger)⁵⁹ in the progeny of a genetic cross between CQ-resistant and CQ-sensitive clone⁶⁰ suggested that CQ is actively imported into the parasite by the Na^+ binding domain of the Na^+/H^+ exchanger, in exchange of protons. With modification, it was later suggested that CQ is carried through the Na^+/H^+ exchanger in a burst of self-stimulated sodium/proton exchange⁶¹. These authors then suggested that changes in the CQ importer could generate CQ resistance. However several evidences contradict this hypothesis, Bray *et al.* (1999) showed that CQ uptake by free parasites was identical when the extracellular sodium was replaced by either choline or glucamine. Moreover EIPA could compete for CQ accumulation simply by binding to haem which has been demonstrated to be vital for CQ accumulation⁶². Although the gene responsible for CQ resistance in these progeny has been identified and postulated to encode for a transporter, Su *et al.* (1997) could find no meaningful sequence with any ion channel or Na^+/H^+ exchanger⁶³.

Finally, it has been suggested that CQ resistance may be due to a reduced affinity of the intraparasitic binding site for CQ in resistant isolates⁶⁴. Using a mathematical model based on the hypothesis that the high-affinity drug accumulation, rather than whole-cell accumulation, is responsible for its pharmacological activity, it has been shown that the apparent K_a for high-affinity uptake is significantly increased in resistant isolates and this apparent K_a can be reduced in the presence of VP without any effect on low-affinity uptake⁶⁵. Further, it has been demonstrated that CQ-resistant and -sensitive isolates accumulate similar amounts of CQ at high affinity when external concentrations correspond to their respective IC_{50} values. The low-affinity uptake is equivalent in both isolates, however, because of the increased K_a of the high-affinity process in resistant isolates, the contribution of low-affinity accumulation is greater. This model can explain the observations that differences in CQ accumulation between sensitive and resistant isolates are not as great as the differences in their dose-response to CQ^{42, 54-55} and that the increased CQ accumulation brought by VP is insufficient to explain the increased susceptibility to CQ also seen in the presence of VP^{42, 55}.

Mefloquine/halofantrine resistance

The mechanism of action of and resistance to MQ and HF remain unclear. It has been shown that drug susceptibility to MQ and HF correlate with accumulation. By the analysis as Bray *et al.* (1998) did⁶⁵, the activity of both MQ and HF depend on specific accumulation at a high affinity site within the parasite⁶⁶. Although there are a number of candidate accumulation sites⁶⁷, haem would appear to be a good candidate. Using a specific inhibitor of plasmepsin and a cysteine proteinase inhibitor suggest that MQ and HF exert their effect by an haem dependent mechanism⁶⁸.

Penfurdol can reverse MQ and HF resistance in *P. falciparum*⁶⁹⁻⁷⁰, similar to the effect of VP on the CQ resistance. The ability of penfurdol to enhance susceptibility in resistant isolates is associated with an enhancement of drug accumulation⁶⁶.

Molecular characterisation of quinoline resistance

The demonstration that CQ resistance in *P. falciparum* could be partially reversed by VP led to the investigations at the molecular level⁷¹. This phenomenon had been linked

to that of mammalian multidrug-resistant (MDR) cancer cells where drug resistance is also associated with the reduction of intracellular drug accumulation. In cancer cells, VP is able to reverse the resistance phenotype by competing with the cytotoxic drug for an active efflux component on the cell membrane. This protein namely P-glycoprotein is encoded by the *mdr* gene⁷²⁻⁷⁴. Therefore, by analogy, it was suggested that VP exerted its chemosensitisation effects, in *P. falciparum*, by inhibiting the actions of an efflux pump⁷¹. In cancer cells, selection for MDR usually coincides with an over-expression of a P-glycoprotein and amplification of the *mdr* genes that encode this protein⁷⁵. P-glycoprotein belongs to the family of Adenine nucleotide Binding Cassette (ABC) transporters. The classical P-glycoproteins are large plasma membrane glycoproteins consisting of two similar halves; each containing six putative transmembrane segments and an ATP-binding site. Drug resistance is caused by the ability of P-glycoprotein to extrude drugs against a concentration gradient, resulting in a decrease of the intracellular drug concentration available to the drug target. Studies with *P. falciparum* have resulted in the isolation and characterisation of three P-glycoprotein homologues, namely *pfmdr1*, *pfmdr2* and *pfgcn20*⁷⁶⁻⁷⁸. Of these three *mdr*-like genes, only the *pfmdr1* gene has been linked to the quinoline resistance phenotype.

pfmdr1 and Chloroquine resistance

Stronger evidence has been forwarded to implicate a possible role for *pfmdr1* in drug resistance in *P. falciparum*. The *pfmdr1* gene, which is situated on chromosome 5, has been shown to encode a 162 kDa protein, P-glycoprotein homologue 1 (Pgh1) which belongs to the ATP binding cassette (ABC) transporter family and shows 54 % homology with mammalian P-glycoprotein⁷⁹. The protein consists of two homologous halves and an asparagine-rich hinge region; each half molecule contains 6 transmembranous domains and a nucleotide binding fold. The protein is present throughout all the asexual intraerythrocytic stages of the parasites life cycle and is located mainly on the membrane of the digestive acid food vacuole and to a lesser extent on the plasma membrane of the parasite⁸⁰. More recent studies also localised this protein to other membrane structures in the parasite⁸¹.

Original studies involving a limited number of *P. falciparum* isolates of varying susceptibility, suggested that CQ resistance might be linked to amplification of *pfmdr1* and overexpression of Pgh1⁷⁹. However, subsequent studies have failed to correlate amplification of *pfmdr1* and parasite sensitivity to CQ⁸⁰. Indeed these studies have indicated that not only can similar levels of Pgh1 be observed in both CQ-resistant and -susceptible isolates, but also that certain susceptible isolates could have higher levels of expression than the resistant parasites. In fact, subjecting moderately CQ resistant strains of *P. falciparum* to CQ to produce a higher level of CQ resistance resulted in deamplification of the *pfmdr1* gene from 3 copies to 1⁸².

The lack of a correlation between Pgh1 expression and CQ resistance led investigators to speculate whether specific mutations in *pfmdr1* might be responsible for CQ resistance. Studies by Foote *et al.* (1990) suggested that resistance to CQ might indeed be correlated with amino acid differences in the *pfmdr1* gene⁸³, although again, these findings are not without controversy. In this study, the authors identified two 'alleles' that appeared to be related to CQ resistance. The authors were able to predict the sensitivity status of 34 out of 36 isolates of *P. falciparum* based solely upon whether or not they possessed these

alleles. One of the alleles (termed the K1 type) involved a single amino acid change (Asn⁸⁶ to Tyr⁸⁶), the second (termed the 7G8 type) involved three amino acid substitutions (Ser¹⁰³⁴ to Cys¹⁰³⁴, Asn¹⁰⁴² to Asp¹⁰⁴² and Asp¹²⁴⁶ to Tyr¹²⁴⁶). Further studies, involving sequencing *pfmdr1* from *P. falciparum* isolates from Africa, have also reported a strong relationship between the K1-type mutation and CQ resistance⁸⁴⁻⁸⁵. However, several reports failed to identify a complete linkage between any of the mutations and CQ-resistance phenotype in both field isolates and culture-adapted isolates⁸⁶⁻⁹⁴.

Following the observation that application of CQ pressure to laboratory isolates of *P. falciparum*, resulting in an increase in CQ resistance, was accompanied by a deamplification of the *pfmdr1* gene⁸². It was suggested that the Pgh1 might be involved in the accumulation of CQ in the food vacuole of the parasite. This hypothesis has been examined by transfection the *pfmdr1* gene into Chinese hamster ovary cells (CHO), it has been shown that those cells expressing the wild-type Pgh1 are hypersensitive to CQ as a result of increased CQ accumulation⁹⁵. However the transfected cells with the double mutant *pfmdr1* gene with amino acid replacements at positions 1034 and 1042, showed neither CQ hypersensitivity nor the ability to accumulate CQ. Following work has indicated that cells expressing the wild-type Pgh1 have a lower intravacuolar pH compared to cells expressing the mutant Pgh1 or non-transfected cells⁹⁶. It was proposed therefore that Pgh1 mediated increased CQ accumulation by decreasing vacuolar pH. Further, the author hypothesised that Pgh1 may be acting as a chloride channel, although no direct evidence was forwarded. This work has therefore strengthened the hypothesis that *pfmdr1* may play a role in concentrating CQ within the malaria parasite's food vacuole, by reducing intravacuolar pH and thus increasing the force for drug accumulation in this cell type.

cg2 and Chloroquine resistance

The studies described above provide a rather confusing picture as to whether or not the *pfmdr1* gene is involved in CQ resistance in *P. falciparum*. However, studies involving the analysis of a single genetic cross between a CQ-resistant and CQ-susceptible isolate of *P. falciparum* appear to provide the strongest evidence so far that the *pfmdr1* gene is not involved in CQ resistance^{60, 97}. The progeny exhibited the phenotypic characteristics of either the resistant or susceptible parent; this was seen as evidence that a single genetic locus may be responsible for the drug phenotype. In the initial study, inheritance of parental *pfmdr1* did not segregate with the drug response. Further work by Su *et al.* (1997) identified *cg2*, a gene on chromosome 7 which encodes CG2 a unique ~300 kDa protein with complex polymorphism⁶³. The polymorphism of this gene was linked to the CQ-resistant phenotype in these progeny. It must be noted that chromosome 7 contains no *pfmdr* genes (*pfmdr1* is situated on chromosome 5). The CG2 protein was localised to the peripheral membrane and in association with haemozoin of the food vacuole prompting speculation that CG2 is a drug trafficking protein. However the experiments of genetic transformation by the same group indicated that CG2 may not play a role in CQ resistance⁹⁸. Recently a novel, complex polymorphic gene named *pfcr* has been identified and linked to CQ resistance in the genetic cross progeny and field isolates⁹⁹. Further studies of mechanistic role of this gene has to be done.

Pfmdr1 and Mefloquine/Halofantrine resistance

Although the role of the *pfmdr1* gene in CQ resistance is unclear, several studies have identified a link between the amplification of *pfmdr1* and MQ and HF resistance. A number of workers have shown that the selection of MQ-resistant isolates by subjecting parent lines to sequentially increasing MQ concentrations was associated with an amplification of *pfmdr1*^{76, 100-101}. It must also be noted that in the studies described the decrease in MQ susceptibility obtained in these drug pressure experiments was accompanied by cross-resistance to HF and QN and also an increase in CQ susceptibility. Conversely, both Barnes *et al.* (1992) and Peel *et al.* (1994) have shown that CQ resistance selected by CQ pressure, was accompanied by a deamplification of *pfmdr1* and an increase in susceptibility to MQ and HF^{82, 101}. These observations have further strengthened the link between MQ and by implication HF (which share similar cross-resistance patterns to MQ) resistance and *pfmdr1* gene expression. In addition, work by Wilson *et al.* (1993) involving the analysis of a number of resistant field isolates from Thailand, appeared to confirm that both MQ and HF resistance is indeed linked to *pfmdr1* amplification⁸⁶. Experiments in a heterologous yeast system showed that Pgh1 can act as a transporter, expression of *pfmdr1* has been shown to functionally complement the *ste6* mutation in *Saccharomyces cerevisiae*¹⁰². The yeast *ste6* gene encodes a P-glycoprotein that exports the yeast a-type mating factor, mutants being unable to export this peptide¹⁰³. These workers provided further evidence for the functional importance of amino acid differences in the *pfmdr1* gene. Cells expressing Pgh1 containing 2 of 3 7G8-type mutations were unable to complement the *ste6* mutation. Using this yeast model, it has been demonstrated that the *pfmdr1* gene confers resistance in yeast cells to MQ, HF, QN and mepacrine¹⁰⁴. Drug resistance in *pfmdr1* transformants was associated with decreased drug accumulation and an increase in drug release from preloaded cells. Again it was also reported that mutations associated with the 7G8 CQ-resistant allele resulted in loss of function.

However recent reports question the role of *pfmdr1* in aminoalcohol resistance. Studies of a HF-resistant isolate (K1Hf), selected by intermittent drug exposure, has indicated that the decrease in HF susceptibility obtained, which is accompanied by a decrease in MQ susceptibility and an increase in CQ susceptibility, is not accompanied by an amplification of *pfmdr1*¹⁰⁵. Furthermore, similar findings have been reported for cloned lines selected for MQ resistance by the application of MQ drug pressure¹⁰⁶. Recent work also shows no association between reduced sensitivity to MQ and HF and the level of *pfmdr1* amplification and expression in recently adapted and fresh Thai isolates^{70, 107-108}. These studies indicate that the acquisition of MQ and HF resistance need not always be accompanied by an amplification of *pfmdr1*.

References

1. WHO. Resistance of malaria parasites to drugs. *WHO Tech Rep Ser No 296*, World Health Organisation, Geneva 1965.
2. WHO. Chemotherapy of malaria and resistance to antimalarials. *WHO Tech Rep Ser No 529*, World Health Organisation, Geneva 1973.
3. Peters W. Drug resistance in malaria - a perspective. *Trans R Soc Trop Med Hyg* 1969; 63: 25-45.

4. Le Bras J, Deloron P, Ricour A, et al. *Plasmodium falciparum*: drug sensitivity of *in vitro* isolates before and after adaptation to continuous culture. *Exp Parasitol* 1983; 56: 9-14.
5. Maberti, S. Desarrollo de resistencia a la pirimetamina. Presentacion de 15 casos estudiados en Trujillo, Venezuela. *Arch Venez Medi Trop Parasitol Medica* 1960; 3: 239-259.
6. Harinasuta, T, Migasen, S, Boonnag, D. Chloroquine resistance in Thailand. *UNESCO 1st Regional Symp on Sci Knowledge of Trop Parasites*, University of Singapore, 1962; 143-153.
7. WHO Advances in malaria chemotherapy. *WHO Tech Rep Ser No 711*, World Health Organisation, Geneva 1984.
8. WHO. World malaria situation in 1994. *Weekly Epidemiol Rep* 1997; 72: 269-276.
9. Hall AP, Segal HE, Pearlman EJ, et al. Amodiaquine resistant *falciparum* in Thailand. *Am J Trop Med Hyg* 1975; 24: 575-580.
10. Childs GE, Boudreau EF, Milhous WK, et al. A comparison of the *in vitro* activities of amodiaquine and desethylamodiaquine against isolates of *Plasmodium falciparum*. *Am J Trop Med Hyg* 1989; 40: 7-11.
11. Chongsuphajaisiddhi T, Sabchareon A. Sulphadoxine and pyrimethamine resistant *falciparum* malaria in Thai children. *Southeast Asain J Trop Med Public Health* 1981; 12:418-421.
12. Johnson DE, Roendej P, Williams F. Falciparum malaria acquired in the area of Thai-Khmer border resistant to treatment with Fansidar. *Am J Trop Med Hyg* 1982; 31:907-912.
13. WHO. Development of recommendations for the protection of short stay travellers to malaria endemic areas: memorandum from two WHO meeting. *Bull. WHO* 1988; 66:177-196.
14. Oduola AMJ, Milhous W, Salako LA, et al. Reduced *in vitro* susceptibility to mefloquine in West African isolates of *Plasmodium falciparum*. *Lancet* 1987; 2: 1304-1305.
15. Karwacki JJ, Webster HK, Limsomwong N, et al. Two cases of mefloquine resistant malaria in Thailand. *Trans R Soc Trop Med Hyg* 1989; 83: 152-153.
16. Karbwang J, Na Bangchang K, Thanavibul A, et al. Comparison of oral artemether and mefloquine in acute uncomplicated falciparum malaria. *Lancet* 1992; 340:1245-1248
17. Suebsaeng L, Wernsdorfer WH, Rooney W. Sensitivity to quinine and mefloquine of *Plasmodium falciparum* in Thailand. *Bull WHO* 1986; 64: 759-765.
18. Webster HK, Thaithong S, Pavanand K, et al. Cloning and characterization of mefloquine-resistant *Plasmodium falciparum* from Thailand. *Am J Trop Med Hyg* 1985; 34: 1022-1027.
19. Wongsrichanalai C, Webster MK, Wimonwatrawatee T, et al. Emergence of multi-drug resistant *Plasmodium falciparum* in Thailand. *In vitro* tracking. *Am J Trop Med Hyg* 1992; 47: 112-116.
20. Knowles G, Davidson WL, Jolley D, et al. The relationship between the *in vitro* response of *Plasmodium falciparum* to chloroquine, quinine and mefloquine. *Trans R Soc Trop Med Hyg* 1984; 78: 146-150.
21. Bunnag D, Harinasita T. Quinine and quinidine in malaria in Thailand. *Acta Leiden* 1987; 55: 163-166.
22. Luxemburger C, Brockman A, Silamut K, et al. Two patients with falciparum malaria and poor *in vivo* responses to artesunate. *Trans R Soc Trop Med Hyg* 1998; 92: 668-669.
23. Rieckmann KH, Davis DR, Hutton DC. *Plasmodium vivax* resistance to chloroquine? *Lancet* 1989; 334: 1183-1184.
24. Baird JK, Nalim MFS, Basri H, et al. Survey of resistance to chloroquine by *Plasmodium vivax* in Indonesia. *Trans R Soc Trop Med Hyg* 1996; 90: 409-411.
25. Marlar-Than, Myat-Phone-Kyaw, Aye-Yu-Soe, et al. Development of resistance to chloroquine by *Plasmodium vivax* in Myanmar. *Trans R Soc Trop Med Hyg* 1995; 89: 307-308.
26. Peters W. *Chenotherapy and Drug resistance in Malaria*. London: Academic Press.
27. McCutchan TF, Welsh JA, Dame JB, et al. Mechanism of pyrimethamine resistance in recent isolates of *Plasmodium falciparum*. *Antimicrob Agents Chemother* 1984; 26: 656-659.
28. Walter RD. Altered dihydrofolate reductase in pyrimethamine-resistant *Plasmodium falciparum*. *Mol Biochem Parasitol* 1986; 19: 61-66.
29. Peterson DS, Walliker D, Wellemes TE. Evidence that a point mutation in dihydrofolate reductase-thymidylate synthase confers resistance to pyrimethamine in falciparum malaria. *Proc Natl Acad Sci USA* 1988; 85: 9114-9118.
30. Cowman AF, Morry MJ, Biggs BA, et al. Amino acid changes linked to pyrimethamine resistance in the dihydrofolate reductase-thymidylate synthase gene of *Plasmodium falciparum*. *Proc Natl Acad Sci USA* 1988; 85: 9109-9113.

31. Zolg JW, Plitt JR, Chen GX, et al. Point mutations in the dihydrofolate reductase-thymidylate synthase gene as the molecular basis for pyrimethamine resistance in *Plasmodium falciparum*. *Mol Biochem Parasitol* 1989; 36: 253-262.
32. Plowe CV, Cortese JF, Djimde A, et al. Mutations in *Plasmodium falciparum* dihydrofolate reductase and dihydropteroate synthase and epidemiologic patterns of pyrimethamine-sulfadoxine use and resistance. *J Infect Dis* 1997; 176: 1590-1596.
33. Peterson DS, Milhous WK, Wellems TE. Molecular basis of differential resistance to cycloguanil and pyrimethamine in *Plasmodium falciparum* malaria. *Proc Natl Acad Sci USA* 1990; 87: 3018-3022.
34. Foote SJ, Galatis D, Cowman AF. Amino acids in the dihydrofolate reductase-thymidylate synthase gene of *Plasmodium falciparum* involved in cycloguanil resistance differ from those involved in pyrimethamine resistance. *Proc Natl Acad Sci USA* 1990; 87: 3014-3017.
35. Wu Y, Kirkman LA, Wellems TE. Transformation of *Plasmodium falciparum* malaria parasites by homologous integration of plasmids that confer resistance to pyrimethamine. *Proc Natl Acad Sci USA* 1996; 93: 1130-1134.
36. Wooden JM, Hartwell LH, Vasquez B, et al. Analysis in yeast of antimalaria drugs that target the dihydrofolate reductase of *Plasmodium falciparum*. *Mol Biochem Parasitol* 1997; 85: 25-40.
37. Wang P, Read M, Sim PF, et al. Sulfadoxine resistance in the human malaria parasite *Plasmodium falciparum* is determined by mutations in dihydropteroate synthetase and an additional factor associated with folate utilisation. *Mol Microbiol* 1997; 23: 979-986.
38. Wang P, Lee C-H, Bayoumi R, et al. Resistance to antifolates in *Plasmodium falciparum* monitored by sequence analysis of dihydropteroate synthetase and dihydrofolate reductase alleles in a large number of field samples of diverse origins. *Mol Biochem Parasitol* 1997; 89: 161-177.
39. Fitch CD. Chloroquine resistance in malaria: a deficiency of chloroquine binding. *Proc Natl Acad Sci USA* 1969; 64: 1181-1187.
40. Verdier F, Le Bras J, Clavier F, et al. Chloroquine uptake by *Plasmodium falciparum*-infected human erythrocytes during *in vitro* culture and its relationship to chloroquine resistance. *Antimicrob Agents Chemother* 1985; 27: 561-564.
41. Krogstad DJ, Gluzman IY, Kyle DE, et al. Efflux of chloroquine from *Plasmodium falciparum*: mechanism of chloroquine resistance. *Science* 1987; 235: 1283-1285.
42. Bray PG, Howells RE, Ritchie GY, et al. Rapid chloroquine efflux phenotype in both chloroquine-sensitive and chloroquine-resistant *Plasmodium falciparum*. *Biochem Pharmacol* 1992; 44: 1317-1324.
43. Yayon A, Cabantchik ZI, Ginsburg H. Susceptibility of human malaria parasites to chloroquine is pH dependent. *Proc Acad Sci USA* 1985; 82: 2784-2788.
44. Williams SG, Fanimo O. Malaria studies *in vitro* IV: chloroquine resistance and the intracellular pH of erythrocytes parasitised with *P. berghei*. *Ann Trop Med Parasito* 1974; 69: 303-309.
45. Ginsburg H. Antimalarial drugs: is the lysosomotropic hypothesis still valid? *Parasitol Today* 1990; 6: 334-337.
46. Ginsburg H, Stein WD. Kinetic modelling of chloroquine uptake by malaria infected erythrocytes. *Biochem Pharmacol* 1991; 41: 1463-1470.
47. Bray PG, Howells RE, Ward SA. Vacuolar acidification and chloroquine sensitivity in *Plasmodium falciparum*. *Biochem Pharmacol* 1992; 43: 1219-1227.
48. Karcz SR, Herrmann VR, Cowman AF. Cloning and characterisation of a vacuolar ATPase A subunit homologue from *Plasmodium falciparum*. *Mol Biochem Parasitol* 1993; 58: 333-334.
49. Karcz SR, Herrmann VR, Trottein F, et al. Cloning and characterisation of the vacuolar ATPase B subunit from *Plasmodium falciparum*. *Mol Biochem Pharmacol* 1994; 65: 123-133.
50. Ohkuma S, Poole B. Fluorescence probe measurement of the intralysosomal pH and the perturbation of pH by various agents. *Proc Natl Acad Sci USA* 1978; 75: 3327-3331.
51. Yayon A, Cabantchik ZI, Ginsburg H. Identification of the acidic compartment of *Plasmodium falciparum*-infected human erythrocytes as the target of the antimalarial drug chloroquine. *EMBO J* 1984; 3: 2695-2700.
52. Krogstad DJ, Schlesinger PH, Gluzman IY. Antimalarials increase vesicle pH in *Plasmodium falciparum*. *J Cell Biol* 1985; 101: 2302-2309.
53. Geary TG, Jensen JB, Ginsburg H. Uptake of ^3H chloroquine by drug sensitive and resistant strains of the human malarial parasite *Plasmodium falciparum*. *Biochem Pharmacol* 1986; 35: 3805-3812.

54. Martiney JA, Cerami A, Slater AFG. Verapamil reversal of chloroquine resistance in the malaria parasite *Plasmodium falciparum* is specific for resistant parasites and independent of the weak base effect. *J Biol Chem* 1995; 270: 22393-22398.
55. Bray PG, Boulter MK, Ritchie GY, et al. Relationship of global chloroquine transport and reversal of resistance in *Plasmodium falciparum*. *Mol Biochem Parasitol* 1994; 63: 87-94.
56. Bray PG, Hawley SR, Mungthin M, et al. Physicochemical properties correlated with drug resistance and the reversal of drug resistance in *Plasmodium falciparum*. *Mol Pharmacol* 1996; 50: 1559-1566.
57. Warhurst DC. Mechanism of chloroquine resistance in malaria. *Parasitol Today* 1988; 4: 211-213.
58. Moreau S, Prensier G, Maalla J, et al. Identification of distinct accumulation sites of 4-aminoquinolines in chloroquine sensitive and resistant *Plasmodium berghei*. *Eur J Cell Biol* 1986; 42: 207-210.
59. Sanchez CP, Wunsch S, Lanzer M. Identification of a chloroquine importer in *Plasmodium falciparum*: differences in import kinetics are genetically linked with the chloroquine-resistant phenotype. *J Biol Chem* 1997; 272: 2652-2658.
60. Wellemes TE, Panton LJ, Gluzman IY, et al. Chloroquine resistance not linked to mdr-like gene in a *Plasmodium falciparum* cross. *Nature* 1990; 345: 253-255.
61. Wunsch S, Sanchez CP, Gekle M, et al. Differential stimulation of the Na^+/H^+ exchanger determines chloroquine uptake in *Plasmodium falciparum*. *J Cell Biol* 1998; 26: 335-345.
62. Bray PG, Janneh O, Raynes KJ, et al. Cellular uptake of chloroquine is dependent of NHE activity in *Plasmodium falciparum*. *J Cell Biol* 1999; 145:363-376.
63. Su X, Kirkman LA, Fugioka H, et al. Complex polymorphisms in an ~330 kDa protein are linked to chloroquine-resistant *P. falciparum* in Southeast Asia and Africa. *Cell* 1997; 91: 593-603.
64. Fitch CD. Chloroquine-resistant *Plasmodium falciparum*: a difference in the handling of ^{14}C -amodiaquine and ^{14}C -chloroquine. *Antimicrob Agents Chemother* 1973; 3: 545-548.
65. Bray PG, Mungthin M, Ridley RG, et al. Access to haematin: the basis of chloroquine resistance. *Mol Pharmacol* 1998; 54: 170-179.
66. Mungthin M, Bray PG, Ward SA. Studies on the basis of mefloquine and halofantrine resistance in *Plasmodium falciparum*. Proceeding of the 9th annual Asia-Pacific Military Medicine conference; 1999; Mar 7-12; Bangkok Thailand.
67. Desneves J, Thorn G, Berman A, et al. Photoaffinity labelling of mefloquine-binding proteins in human serum, uninfected erythrocytes and *Plasmodium falciparum*-infected erythrocytes. *Mol Biochem Parasitol* 1996; 82:181-194.
68. Mungthin M, Bray PG, Ridley RG, et al. Central role of hemoglobin degradation in mechanisms of action of 4-aminoquinolines, quinoline methanols and phenanthrene methanols. *Antimicrob Agents Chemother* 1998; 42:2973-2977.
69. Oduola AMJ, Omitowoju GO, Gerena L, et al. Reversal of mefloquine resistance with penfluridol in isolates of *Plasmodium falciparum* from south-west Nigeria. *Trans R Soc Trop Med Hyg* 1992; 87:81-83.
70. Mungthin M, Bray PG, Ward SA. Phenotypic and genotypic characteristics of recently adapted isolates of *Plasmodium falciparum* from Thailand. *Am J Trop Med Hyg* 1999; 60:469-474.
71. Martin SK, Oduola AMJ, Milhous WK. Reversal of chloroquine resistance in *Plasmodium falciparum* by verapamil. *Science* 1987; 235: 899-901.
72. Slater LM, Murray SL, Wetzel MW, et al. Verapamil restoration of daunorubicin-resistant Ehrlich ascites carcinoma. *J Clin Invest* 1982; 70: 1131-1134.
73. Rogan AM, Hamilton TC, Young RC, et al. Reversal of adriamycin resistance by verapamil in human ovarian cancer. *Science* 1984; 244: 994-996.
74. Fojo AT, Akiyama S, Gottesman MM, et al. Reduced drug accumulation in multiple drug-resistant human KB carcinoma cell lines. *Cancer Res* 1985; 45: 3002-3007.
75. Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. *Ann Rev Biochem* 1993; 62: 385-427.
76. Wilson CM, Serrano AE, Wasley A, et al. Amplification of a gene related to mammalian mdr genes in drug resistant *P. falciparum*. *Science* 1989; 244: 1184-1186.
77. Zalis MG, Wilson CM, Zhang Y, et al. Characterisation of the *pfsmdr2* gene for *Plasmodium falciparum*. *Mol Biochem Parasitol* 1993; 62: 83-93.

78. Bozdech Z, Delling U, Volkman SK, et al. Cloning and sequence analysis of a novel member of the ATP-binding cassette (ABC) protein gene family from *Plasmodium falciparum*. *Mol Biochem Parasitol* 1996; 81: 41-51.
79. Foote SJ, Thompson JK, Cowman AF, et al. Amplification of the multidrug resistance gene in some chloroquine resistant isolates of *Plasmodium falciparum*. *Cell* 1989; 57: 921-930.
80. Cowman AF, Karcz S, Galatis D, et al. A P-glycoprotein homologue of *Plasmodium falciparum* is localised on the digestive vacuole. *J Cell Biol* 1991; 113: 1033-1045.
81. Volkman SK, Wirth DF. Functional analysis of *pfmdr1* gene of *Plasmodium falciparum*. *Methods Enzymol*. 1998; 292: 174-181.
82. Barnes DA, Foote SJ, Galatis D, et al. Selection for high-level chloroquine resistance results in deamplification of the *pfmdr1* gene and increased sensitivity to mefloquine in *Plasmodium falciparum*. *EMBO J* 1992; 11: 3067-3075.
83. Foote SJ, Kyle DE, Martin RK, et al. Several alleles of the multidrug resistance gene are closely linked to chloroquine resistance in *Plasmodium falciparum*. *Nature* 1990; 345: 255-258.
84. Basco LK, Le Bras J, Rhoades Z, et al. Analysis of *pfmdr1* and drug susceptibility in fresh isolates of *Plasmodium falciparum* from sub-Saharan Africa. *Mol Biochem Parasitol* 1995; 74: 157-166.
85. Adagu IS, Warhurst DC, Carucci DJ, et al. *Pfmdr1* mutations and chloroquine -resistance in *Plasmodium falciparum* isolates from Zaria, Nigeria. *Trans R Soc Trop Med Hyg* 1995; 89: 132.
86. Wilson CM, Volkman SK, Thaithong S, et al. Amplification of *pfmdr1* associated with mefloquine and halofantrine resistance in *Plasmodium falciparum* from Thailand. *Mol Biochem Parasitol* 1993; 57: 151-160.
87. Awad-El-Kariem FM, Miles MA, Warhurst DC. Chloroquine-resistant *Plasmodium falciparum* isolates from the Sudan lack two mutations in the *pfmdr1* gene thought to be associated with chloroquine resistance. *Trans R Soc Trop Med Hyg* 1992; 86: 587-589.
88. Haruki K, Bray PG, Ward SA, et al. Chloroquine-resistance of *Plasmodium falciparum*: further evidence for lack of association with mutations of the *pfmdr1* gene. *Trans R Soc Trop Med Hyg* 1994; 88: 694.
89. Cox-Singh J, Singh B, Alias A, et al. Assessment of the association between three *pfmdr1* point mutations and chloroquine resistance *in vitro* of Malasian *Plasmodium falciparum* isolates. *Trans R Soc Trop Med Hyg* 1995; 89: 436.
90. Basco LK, Depecoulas PE, Le Bras J, et al. *Plasmodium falciparum*: molecular characterization of multidrug-resistant Cambodian isolates. *Exp Parasitol* 1996; 82: 97-103.
91. von Seidlein L, Duraisingh MT, Drakeley CJ, et al. Polymorphism of the *pfmdr1* gene and chloroquine resistance in *Plasmodium falciparum* in the Gambia. *Trans R Soc Trop Med Hyg* 1997; 91: 450-453.
92. Grobusch MP, Adagu IS, Kremsner PG, et al. *Plasmodium falciparum* : *in vitro* chloroquine susceptibility and allele-specific PCR detection of *pfmdr1* ^{Asn}86^{Tyr} polymorphism in Lambarene, Gabon. *Parasitology* 1998; 116: 211-217.
93. Povoa MM, Adagu IS, Oliveira SG, et al. *Pfmdr1* ^{Asn}1042^{Asp} and ^{Asp}1246^{Tyr} polymorphisms, thought to be associated with chloroquine resistance, are present in chloroquine-resistant and -sensitive Brazilian field isolates of *Plasmodium falciparum*. *Exp Parasitol* 1998; 88: 64-68.
94. Basco LK, Ringwald P. Molecular epidemiology of malaria in Yaounde, Cameroon.III. Analysis of chloroquine resistance and point mutations in the multidrug resistance 1 (*pfmdr1*) gene of *Plasmodium falciparum*. *Am J Trop Med Hyg* 1998; 59: 577-581.
95. Van Es, HHG, Karcz S, Chu F, et al. Expression of the plasmoidal *pfmdr1* gene in mammalian cells is associated with increased susceptibility to chloroquine. *Mol Cell Biol* 1994; 14: 2419-2428.
96. Van Es HHG, Renkema H, Aerts H, et al. Enhanced lysosomal acidification leads to increased chloroquine accumulation in CHO cells expressing the *pfmdr1* gene. *Mol Biochem Parasitol* 1994; 68: 209-215.
97. Wellemes TE, Walker-Jonah A, Panton LJ. Genetic mapping of the chloroquine resistance locus on *Plasmodium falciparum* chromosome 7. *Proc Natl Acad Sci USA* 1991; 88: 3382-3386.
98. Cooper RA, Fidock DA, Nomura T, et al. Investigations of the large, low complexity CG2 protein of *Plasmodium falciparum*. *Proceeding of the 48th annual meeting of the American Society of Tropical Medicine and Hygiene*; 1999; Nov28-Dec2; Washington DC. *Am J Trop Med Hyg* 1999.
99. Talley AK, Fidock DA, Nomura T, et al. Transfection based studies defining the chloroquine resistance determinant in *Plasmodium falciparum*. *Proceeding of the 48th annual meeting of the American Society of Tropical Medicine and Hygiene*; 1999; Nov28-Dec2; Washington DC. *Am J Trop Med Hyg* 1999.

100. Cowman AF, Galatis D, Thompson JK. Selection for mefloquine resistance in *Plasmodium falciparum* is linked to amplification of the *pfmdr1* gene and cross-resistance to halofantrine and quinine. *Proc Natl Acad Sci USA* 1994; 91: 1143-1147.
101. Peel SA, Bright P, Yount B, et al. A strong association between mefloquine and halofantrine resistance and amplification, overexpression, and mutation in the P-glycoprotein gene homologue (*pfmdr1*) of *Plasmodium falciparum*. *Am J Trop Med Hyg* 1994; 51: 648-658.
102. Volkman SK, Cowman AF, Wirth DF. Functional complementation of the *ste6* gene of *Saccharomyces cerevisiae* with the *pfmdr1* gene of *Plasmodium falciparum*. *Proc Natl Acad Sci USA* 1995; 92: 8921-8925.
103. Michaelis S, Kistler A, Sapperstein S, et al. Molecular analysis of STE6, the yeast a-factor transporter. *FASEB J* 1993; 7: A1195.
104. Ruetz S, Delling U, Brault M, et al. The *pfmdr1* gene of *Plasmodium falciparum* confers cellular resistance to antimalarial drugs in yeast cells. *Proc Natl Acad Sci USA* 1996; 93: 9942-9947.
105. Ritchie GY, Munghin M, Bray PG, et al. *In vitro* selection of halofantrine resistance in *Plasmodium falciparum* is not associated with increased expression of Pgh1. *Mol Biochem Parasitol* 1996; 83: 35-46.
106. Lim ASY, Galatis D, Cowman AF. *Plasmodium falciparum*: amplification and overexpression of *pfmdr1* is not necessary for increased mefloquine resistance. *Exp Parasitol* 1996; 83: 295-303.
107. Chaiyaroj SC, Buranakiti A, Angkasekwinai P, et al. Analysis of mefloquine resistance and amplification of *pfmdr1* in multidrug-resistant *Plasmodium falciparum* isolates from Thailand. *Am J Trop Med Hyg* 1999; 61:780-783.
108. Price RN, Cassar C, Brockman A, et al. The *pfmdr1* gene is associated with a multidrug-resistant phenotype in *Plasmodium falciparum* from the western border of Thailand. *Antimicrob Agents Chemother* 1999; 43:2943-2949.