RESEARCH ARTICLES

GASTROPROTECTIVE EFFECT OF THAI PROPOLIS

Chaiyong Rujjanawate¹, Duangporn Amornlerdpison², Duangta Kanjanapothi³

¹Laboratory of Natural Products, ²Chulabhorn Research Institute, ³Research Center at Chiangmai University, Faculty of Medicine, Chiangmai University, Chiangmai 50200, Thailand.

ABSTRACT

Propolis is a resinous substance collected by honeybees from plant exudates. The present study was undertaken to evaluate Thai propolis for its anti-gastric ulcer activity by experimental models. Oral administration of the propolis at 100 and 200 mg/kg significantly inhibited gastric ulcer formation induced by indomethacin, HCl/EtOH, and water immersion restraint-stress in rats. In pylorus ligated rats, pretreatment with propolis had no effect on gastric volume and pH thus indicating the lack of antisecretory effect of propolis. In ethanol-induced ulcerated rats, gastric wall mucus and hexosamine content were markedly preserved by the propolis pretreatment. The findings indicated that Thai propolis possessed gastroprotective potential related to preservation of gastric mucus synthesis and secretion.

Key words: bee, propolis, gastric ulcer, gastroprotective

ฤทธิ์ปกป้องกระเพาะอาหารของพรอพอลิสไทย

ไชยยง รุจจนเวท¹, ดวงพร อมรเลิศพิศาล², ดวงตา กาญจนโพธิ์^ง

้ห้องปฏิบัติการผลิตภัณฑ์ธรรมชาติ, *สถาบันวิจัยจุฬากรณ์, *สูนย์วิจัย ณ มหาวิทยาลัยเชียงใหม่ คณะแพทยศาสตร์ มหาวิทยาลัยเชียงใหม่ เชียงใหม่ 50200

บทคัดย่อ

พรอพอลิสเป็นสารเหนียวที่ผึ้งสร้างจากสารคัดหลั่งของพืชที่ผึ้งเก็บสะสมมา ได้ทำการ ศึกษาเพื่อประเมินฤทธิ์ของพรอพอลิสไทยในการต้านการเกิดแผลกระเพาะอาหารโดยใช้รูปแบบ การทดลองต่าง ๆ พบว่าเมื่อให้พรอพอลิสทางปากในขนาด 100 และ 200 มก./กก. สามารถ ป้องกันการเกิดแผลในกระเพาะอาหารที่เกิดจากอินโดเมทาซิน กรดเกลือ/เอทานอล และ ความเครียดจากการแช่น้ำได้อย่างมีนัยสำคัญ เมื่อให้พรอพอลิสแก่หนูที่ถูกผูกกระเพาะส่วน ไพลอรัส พบว่าพรอพอลิสไม่มีผลลดปริมาณของเหลวในกระเพาะอาหารและความเป็นกรด ซึ่งชี้ ให้เห็นว่าพรอพอลิสไม่ได้ออกฤทธิ์ต้านการหลั่งกรด พรอพอลิสสามารถรักษาปริมาณมิวคัสและ เฮกโซซามีนในกระเพาะอาหารของหนูที่ได้รับกรด/เอทานอลได้ ทั้งหมดนี้ชี้ให้เห็นว่าพรอพอลิส ของไทยมีฤทธิ์ปกป้องกระเพาะอาหารได้โดยผ่านทางการสังเคราะห์และการหลั่งมิวคัสของ กระเพาะอาหาร

คำสำคัญ: ผึ้ง, พรอพอลิส, แผลกระเพาะอาหาร, การปกป้องกระเพาะอาหาร

INTRODUCTION

Traditional bee keeping in Thailand was started about 100 years ago with Apis cerana in coconut plantations on Samui Island. Modern bee keeping with Apis mellifera was started in the early 1940's but did not increase markedly until the early 1970's¹. It has been estimated by the Northern Beekeeper Association of Thailand that by 1998 the number of bee colonies in Thailand had increased to about 250,000. Bee products are honey, wax, royal jelly, pollen and propolis.

Honey, the principal bee product, has been reported to have an antibacterial effect on Helicobacter pylori2, a pathogenic bacteria causing peptic ulcer, and a protective effect on acute gastric mucosal lesions induced by 50% ethanol3. It was demonstrated that a natural mixture of higher aliphatic primary alcohols isolated from beewax possessed anti-gastric ulcer effect when tested in different experimental models⁴. The anti-ulcerogenic property of the mixture was suggested to be related to a cytoprotective mechanism via enhancement of the quantity and quality of the gastric mucus^{5,6}. The mixture was also reported to have a protective effect on the preulcerative phase of carrageenan-induced colonic ulceration in the guinea-pig7.

Propolis is a resinous substance collected by honeybees from plant exudates. Bees use propolis to seal holes in their honeycombs and protect the entrance against intruders but more importantly it appears to act as an antiseptic to prevent microbial infection of larvae, honey stores and the combs8. Propolis is reputed to have antiseptic, antimycotic, bacteriostatic, astringent, choleric, spasmolytic, anti-inflammatory, anaesthetic and anti-oxidant properties 8-10. Propolis is also used by herbalists to treat duodenal ulcers and in homeopathic medicine⁸. Propolis from South America was found to have antibacterial activity against Gram positive bacteria¹¹. It was reported that phenolic compounds isolated from Brazilian propolis showed activity against Trypanosoma cruzi and bacteria, and a relaxant effect in guinea-pig isolated trachea¹².

The present study was aimed to investigate the anti-gastric ulcer effect of Thai propolis in experimental models.

MATERIALS AND METHODS

Propolis

Propolis in tablet form (25 mg/tab)

was kindly provided by the Bee Products Industry Co., Ltd., Thailand. It was ground and suspended in 0.5% carboxymethylcellulose (CMC) to desired concentrations.

Animals

Male Sprague-Dawley rats weighing 150-200 g were purchased from the National Laboratory Animal Center, Salaya Mahidol University, Thailand. They were acclimatized for at least 7 days in an animal room where the temperature was maintained at 22 ± 3 °C and there was a 12 hours light-dark cycle. The food was supplied by Pokphan Animal Feed Co., Ltd., Bangkok. The bedding was autoclaved. The rats had free access to food and water unless stated otherwise. All animals received humane care in compliance with the ethics in the use of animals issued by the National Research Council of Thailand 1999.

Indomethacin-induced gastrlc ulcers

Propolis was administered orally to 48 hr. fasted rats 60 min prior to induction of gastric ulcers by indomethacin suspended in 0.5% carboxymethylcellulose at a single i.p. dose of 30 mg/kg¹³. After 5 hr the rats were sacrificed and examined for gastric ulcers.

HCVEtOH-induced gastrlc ulcers

Propolis was administered orally to 48 hr fasted rats 60 min prior to induction of gastric ulcers by 1.0 ml HCl-EtOH (60 ml ethanol + 1.7 ml HCl + 38.3 ml water) p.o. 14. The animals were sacrificed and examined for gastric ulcers 60 min later.

Restraint water immersion stress-induced gastric ulcers

Propolis was administered orally to 48 hr fasted rats. Sixty minutes later, rats were restrained individually in stainless steel cages and immersed up to their xiphoid in a water bath maintained at 22 ± 2 °C, according to the method of Takagi et al¹⁵. After 5 hr of this exposure, the rats were sacrificed and examined for gastric ulcers.

Evaluation of the gastric ulcers

After each rat had been sacrificed, the stomach was removed, opened along the greater curvature and the glandular portion of the stomach was examined. The length in mm

of each lesion was measured under a dissecting microscope and the sum of the length of all lesions was designated as the ulcer index.

Pylorus ligation

Propolis was administered orally to 48 hr fasted rats. One hour later, pylorus ligation as described by Shay et al. was performed. Briefly, rats were lightly anesthetized by ether. The abdomen was opened and the pylorus was ligated. The abdomen was closed by suturing. The animals were killed 5 hr later by an over dose of ether. The stomach was removed and its content was subjected to measurement of volume and pH and assayed for titratable acidity.

Determination of gastric wall mucus content

Gastric wall mucus was determined by the Alcian blue method¹⁷. Briefly, propolis was administered orally to 48 hr fasted rats 60 min prior to induction of gastric ulcers by 1.0 ml HCl/EtOH (60 ml ethanol + 1.7 ml HCl + 38.3 ml water) p.o.¹⁴. Sixty minutes later, the animals were sacrificed and the stomach was excised and opened along the lesser curvature, weighed and immersed in 0.1% w/v Alcian blue solution for 2 hours. The excessive dye was then removed by two successive rinses in 0.25 M sucrose solution. Dye complexed with gastric wall mucus was extracted with 0.5 M MgCl₂ for 2 hours. The blue extract was then shaken vigorously with an equal volume of diethyl ether and the resulting emulsion was

centrifuged. The optical density of Alcian blue in the aqueous layer was read against a buffer blank at 580 nm using a spectrophotometer. The quantity of Alcian blue extracted per gram wet stomach was then calculated from a standard curve.

Measurement of gastric hexosamine content

Hexosamine content in gastric tissue was assayed by the method of Glick¹⁸. Briefly, propolis was administered orally to 48 hr fasted rats 60 min prior to induction of gastric ulcers by 1.0 ml HCl/EtOH (60 ml ethanol + 1.7 ml HCl + 38.3 ml water) p.o. 14. Sixty minutes later, the animals were sacrificed and the antral part of the stomach was hydrolyzed with 6 N HCl overnight. The tissue was neutralized with 6 N NaOH and incubated with acetylacetone at 100 °C for 15 min. The mixture was then coupled with Ehrlich's reagent and allowed to stand at room temperature for 40 min. The optical density of the sample was measured spectrophotometrically at 530 nm using glucosamine as a standard.

Statistical analysis

Data were subjected to statistical analysis using ANOVA and statistical comparison was done using Duncan Multiple Range Test. The value exceeding 99% confidence limits was considered to be significant.

Table 1. Effects of propolis on gastric ulcers in rats

Group	GASTRIC ULCER INDUCER					
	Indomethacin		HCI/E(OH		Stress	
	Ulcer index (mm)	I (%)	Ulcer index (mm)	I (%)	Ulcer index (mm)	1 (%)
Control	7.5 ± 1.3		101.0 ± 11.9		9.9 ± 0.9	
Propolis 100 mg/kg	2.2 ± 0.6 *	71	9.4 ± 4.5*	91	2.7 ± 0.6 *	73
Propolis 200 mg/kg	0.5 ± 0.2*	93	1.4 ± 0.9*	. 99	0.1 ± 0.0 *	99

Note: data expressed as mean \pm S.E.M. (n = 8)

* significantly different from the control group (p < 0.01) I (%) = inhibition of ulcer formation expressed as percentage

RESULTS

Propolis at doses of 100 and 200 mg/kg significantly (p<0.01) inhibited ulcer formation induced by indomethacin, ethanol and water immersion stress as shown in Table 1. The inhibition was dose related. In the pylorus ligated rats, the mean gastric volume and pH were not affected by propolis

pretreatment. Only the acidity output in the propolis 200 mg/kg treated group was significantly (p<0.01) decreased from that of the control group (Table 2). Table 3 shows that the mean value of the gastric mucus content in HCI/EtOH induced ulcerated rats was significantly lower than that of the control group. Propolis at doses of 100 and 200 mg/kg significantly (p<0.01) restored the mucus

content back to the level comparable to that of the non-ulcerated rats. The mean gastric hexosamine content in control ulcerated rats was significantly less than that in the normal non-ulcerated group as shown in Table 4. Pretreatment with propolis at 100 and 200 mg/kg significantly incerased the hexosamine content. The effect of propolis on gastric wall mucus content and gastric hexosamine content was not dose related.

Table 2. Effects of propolis on gastric secretion in rats

Group	Gastric vol. (ml)	Gastric pH	Acidity mEq/L
Control	9.5 ± 0.8	1.62 ± 0.08	126 ± 5
Propolis 100 mg/kg	8.4 ± 1.0	1.87 ± 0.42	100 ± 9
Propolis 200 mg/kg	8.6 ± 0.8	1.64 ± 0.07	51 ± 4*

Note: data expressed as mean \pm S.E.M. (n = 8)

Table 3. Effects of propolis on gastric wall mucus content in rats

Group	Gastric wall mucus		
	(µg Alcian blue/g wet stomach)		
Control HCl/EtOH ulcerated rats	804 ± 29		
Propolis 100 mg/kg	1597 ± 72*		
Propolis 200 mg/kg	1072 ± 70*		
Non-ulcerated rats	1167 ± 16*		

Note: Data expressed as mean ± S.E.M. (n = 10)

Table 4. Effects of propolis on gastric hexosamine content in rats

Group	Hexosamine content (μg /100 mg wet stomach)
Control HCl/EtOH ulcerated rats	21.7 ± 1.6
Propolis 100 mg/kg	30.3 ± 1.2*
Propolis 200 mg/kg	47 ± 1.6*
Non-ulcerated rats	37.0 ± 2.2*

Note: Data expressed as mean ± S.E.M. (n = 8)

DISCUSSION

It is known that poplar trees (Populus spp.) are the major source of propolis in temperate countries and that the chemical constituents of this material fall into four major groups, namely beeswax constituents (fatty acids, esters, long chain alcohols), flavonoids, other phenolic compounds, and volatile compounds (mainly terpenes)9. In tropical regions propolis can be expected to have different compositions because of different tree species involved, as has been shown for Brazilian propolis 12,19,20 and for propolis from the Canary Islands²¹. Therefore no comment can be made at present about the constituents of Thai propolis which might be responsible for the observed pharmacological effects.

Results obtained in this study show the anti-gastric ulcer activity of Thai propolis

when evaluated in the most commonly utilized experimental models which include indomethacin, HCl/EtOH and restraint water immersion stress - induced gastric lesions in rats^{22,23}.

The pathogenesis of gastric ulcers is often depicted as an imbalance between mucosal integrity and aggressive factors. Factors that impair mucosal defense are HCl, gastrin, histamine, Helicobacter pylori, aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs), ethanol, caffeine and stress while factors that promote mucosal integrity are gastric mucus and bicarbonate, gastric mucosal barrier, prostaglandins (PGs) and mucosal blood flow^{24,25}.

According to the experimental models used in this study, non-steroidal anti-inflammatory drugs (NSAIDs) like indomethacin induce ulcer formation by depleting cytoprotective prostaglandins, e.g. PGE_2 and

^{*} significantly different from the control group (p < 0.01)

^{*} significantly different from control ulcerated rats (p < 0.01)

^{*} significantly different from control ulcerated rats (p < 0.01)

PGI₂ in the cyclooxygenase pathway of arachidonic acid metabolism26, PGE2 and PGI2 of gastric and duodenal mucosa are responsible for inucus production and maintaining cellular integrity of the gastric mucosa²⁷. In the HCI/EtOH induced gastric ulceration model, HCl causes severe damage to gastric mucosa²⁸ whereas ethanol produces necrotic lesions by direct necrotizing action which in turn reduces defensive factors, the secretion of bicarbonate and production of mucus29. The water immersion stress-induced ulcers are mediated by increases in gastric acid secretion30 and decreases in mucosal inicrocirculation³¹ and mucus content³². Since propolis could prevent ulceration in all three models and its anti-ulcer effect was much more pronounced in the ethanol model, it was not likely that inhibition of gastric secretion was the action of propolis. This was in accordance with the finding that in pylorus ligated rats propolis had no effect on gastric volume and pH though the acidity output was significantly decreased.

The gastric wall mucus, obligatory components of which are hexosamines, is

thought to play an important role as a defensive factor against gastrointestinal damages33. The determined gastric wall mucus was used as an indicator for gastric mucus secretion while the mucosal hexosa-mine content was used as an indicator for gastric wall mucus synthesis34. In the present study, the gastric wall mucus and hexosamine contents in HCI/EtOH ulcerated rats were markedly lowered when compared with those of the non-ulcerated group. It was found that pretreatment with propolis significantly incerased both gastric mucus and hexosamine contents in HCl/EtOH ulcerated rats. This finding indicated that propolis preserved both gastric mucus synthesis and secretion in the experimental rats.

In conclusion this study provides evidence that propolis obtained from bee farming in Thailand possesses an anti-gastric ulcer effect which is related to a cytoprotective mechanism via preservation of gastric mucus synthesis and secretion.

REFERENCES

- Wongsiri S, Tangkanasing P, Sylvester HA. Mites, pests and bee keeping with Apis cerana and Apis mellifera in Thailand. Am Bee J 1987; 127(7): 500-503.
- Osato MS, Reddy SG, Graham DY. Osmotic effect of honey on growth and viability of *Helicobacter pylori*. Dig Dis Sci 1999; 44: 462.
- Al-Swayeh OA, Ali ATMM. Effect of ablation of capsaicin-sensitive neurons on gastric protection by honey and sucralfate. Hepatogastroenterology 1998;45: 297.
- Carbajal D, Molina V, Valdes S, et al. Anti-ulcer activity of higher primary alcohols of beewax. J Pharm Pharmacol 1997; 47(9): 731-733.
- Carbajal D, Molina V, Valdes S, et al. Possible cytoprotective mechanism in rats of D-002, an anti-ulcerogenic product isolated from beeswax. J Pharm Pharmacol 1997; 48(8): 858-860.
- Carbajal D, Molina V, Noa M, et al. Effect of D-002 on gastric mucus composition in ethanol-induced ulcer. *Pharmacol Res* 2000; 42(4): 329-332.
- Noa M, Mas R. Effect of D-002 on the pre-ulcerative phase of carrageenaninduced colonic ulceration in the guinea-

- pig. J Pharm Pharmacol 1998; 50(5): 549-553.
- Houghton P. Propolis as a medicine, are there scientific reasons for its reputation?
 In: Munn P, editor. Beewax & propolis for pleasure and profit. Cardiff: International Bee Research Association, 1998: 10-15.
- 9. Ghisalberti EL. Propolis: a review. Bee World 1979; 60: 59-84.
- Maria I, Nieva Moreno, Maria I, et al. Comparison of free radical-scavenging activity of propolis from several regions of Argentina. J Ethnopharmacol 2000; 71: 109-114.
- Nieva Moreno MI, Isla MI, Cudmani NG, et al. Screening of antibacterial activity of Amaicha del Valle (Tucuman, Argentina) propolis. J Ethnopharmacol 1999; 68: 97-102.
- Mercucci MC, Ferreres F, Garcia-Viguera C, et al. Phenolic compounds from Brazilian propolis with pharmacological activities. *J Ethnopharmacol* 2001; 74: 105-112.
- Djahanguiri B. The production of acute gastric ulceration by indomethacin in the rat, Scand J Gastroenterol 1966; 265-267.

- Mizui T, Doteuchi M. Effect of polyamines on acidified ethanol-induced gastric lesions in rats. *Jpn J Pharmacol* 1988; 33: 939-945.
- Takagi T, Kasuya Y, Watanabe K. Studies on the drug for peptic ulcer. A reliable method for producing stress ulcer in rats. Chem Pharm Bull (Tokyo) 1963; 12: 465-472.
- Shay H, Komarov SA, Fels SE, et al. A simple method for the uniform production of gastric ulceration in the rat. Gastroenterology 1945; 5: 43-61.
- Corne SJ, Morrisey SM, Woods RJ, A method for the quantitative estimation of gastric barrier mucus. J Physiol 1974; 242: 116-117.
- Glick D. Methods of biochemical analysis. Volume 2. USA: Interscience Publication, 1967: 279-335.
- Tazawa S, Warashina T, Noro T, et al. Studies on the constituents of Brazilian propolis. Chem Pharm Bull 1998; 46(9): 1477-1479.
- Tazawa S, Warashina T, Noro T, Studies on the constituents of Brazilian propolis II. Chem Pharm Bull 1999; 47(10): 1388-1392.
- 21. Vassya SB, Roumen SC, Anastasio DT. Lignans and other constituents of propolis from the Canary Islands. *Phytochemistry* 1998; 49(5): 1411-1415.
- Robert A, Nezamis JE, Lancaster C, et al. Cytoprotection by prostaglandins in the rats, prevention of gastric necrosis produced by alcohol, HCl, NaOH, hypertonic NaCl, and thermal injury. Gastroenterology 1979; 77: 433-443.
- 23. Murakami M, Lam SK, Inada M, et al. Pathophysiology and pathogenesis of acute gastric mucosal lesions after hypothermic restraint stress in rats. Gastroenterology 1985; 88: 660-665.
- Brunton LL. Agents for control of gastric acidity and treatment of peptic ulcer. In: Hardman JG, Limbird LE, Molinoff PB,

- et al, editors. *The Pharmacological Basis* of *Therapeutics*. 9th ed. New York: Macmillan Puublishing 1996: 901-915.
- 25. Friedman LS, Peterson WL. Peptic ulcer and related disorders. In: Fanci AS, Braunwald E, Isselbacher KJ, et al, editors. Harrison's Principles of Internal Medicine. 14th ed. New York: McGraw-Hill Companies, 1998: 1597-1610.
- Sato H, Inada I, Hirata T. et al. Indomethacin produces gastric ulcers in the refed rat. Gastroenterology 1981; 81: 719-725.
- 27. Konturek. SJ, Obtulowiez W, Kwiecieu N, et al. Generation of prostaglandin in gastric mucosa of patients with peptic ulcer disease, effect of non-steroidal anti-inflammatory compounds. Scand J Gastroenterol 1948; 19 Suppl 101: 75-77.
- Yamahara J, Mochizuki M, Fujimura F, et al. The anti-ulcer effect in rats of ginger constituents. *J Ethnopharmacol* 1988; 23: 299-304.
- Marhuenda E, Martin MJ, Alarcon de la Lastra C. Antiulcerogenic activity of aescine in different experimental models. Phytother Res 1993; 7: 13-16.
- 30. Kitagawa H, Fujiwara M, Osumi Y. Effect of water immersion stress on gastric secretion and nucosal blood flow in rats. *Gastroenterology* 1979; 77: 98-302.
- 31. Guth PH. Gastric blood flow in restraint stress. *Dig Dis Sci* 1972; 17: 807-813.
- Koo MWL, Ogle CW, Cho CH. Effect of verapamil, carbenoxolone and Nacetylcysteine on gastric wall mucus and ulceration in stressed rats. *Pharmacology* 1986; 32: 326-334.
- 33. Davenport HW. Destruction of the gastric mucosal barrier by detergents and urea. *Gastroenterology* 1968; 54: 175-180.
- Lukie BE, Forstner GG. Synthesis of intestinal glycoproteins. Incorporation of [1-¹⁴C] glucosamine. Biochim Biophys Acta 1972; 261: 353-364.