CYTOCHROME B-5 REDUCTASE ACTIVITY AND METHEMOGLOBINEMIA IN HUMAN RED BLOOD CELLS OF THAI PATIENTS RECEIVING NITROGLYCERIN

Supatra Srichairat¹, Vanida Rujirasereechai², Vanee Taweesup³

ABSTRACT

Nitroglycerin and other organic nitrates have been used routinely in the treatment of angina pectoris and congestive heart failure. Clinical significant methemoglobinemia during administration of organic nitrates, including intravenous nitroglycerin, has been occasionally reported as a serious complication. In normal individuals, methemoglobin in red blood cell is maintained at a very low level (<1%). It is immediately reduced by cytochrome by reductase to the normal hemoglobin moiety. Since acquired methemoglobinemia is not only resulted from exposure to a variety of oxidizing agents but also related to cytochrome b₅ reductase deficiency, the present study was aimed to investigate the relationship of cytochrome b₅ reductase activity and methemoglobinemia. 114 normal blood samples from male and female healthy volunteers of 20-65 years old were used as control group and 40 blood samples of patients receiving 24,000-104,000 µg (0.5-3.0 µg/kg/min) intravenous nitroglycerin were collected. The concentrations of methemoglobin in 57 men and 57 women healthy volunteers were 0.05 ± 0.02 and 0.08 ± 0.02 % of total hemoglobin (mean ± SE) respectively. The cytochrome b₅ reductase activity in male was lower (p<0.05) than female. No severe methemoglobinemia was found in these patients. However, the methemoglobin concentration and cytochrome b₅ activity in the treatment group were significantly higher (P<0.05) than the normal group. Our results showed that methemoglobin content of erythrocyte was independent on the activity of cytochrome b₅ reductase. It was found that intravenous nitroglycerin administration in the total doses of 24,000-104,000 μg produced not only slight increase of methemoglobin content but also the significant increase of their cytochrome b₅ reductase activity. However, the increased methemoglobin levels of these patients were found to be within an acceptable level of normal condition. In conclusion, clinically significant methemoglobinemia was uncommon with low doses of intravenous nitroglycerin administration. In addition, the correlation between cytochrome b₅ reductase activity and nitroglycerin administration should be further investigated.

Key words: methemoglobin, nitroglycerin, cytochrome b5 reductase

¹ Department of Pharmacology, Faculty of Veterinary Science, ² Inter-Department of Pharmacology, Graduate School, ³ Department of Pharmacology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.

สมรรถนะของเอนไซม์ไซโตโครมบี 5 รีดัคเตสและภาวะเมทฮีโมโกลบินสูงใน เม็ดเลือดแดงของผู้ป่วยไทยที่ได้รับไนโตรกลีเซอรีน

สุพัดรา ศรีไชยรัดน์¹, วนิดา รุจิรเสรีไชย², วณี ทวีทรัพย์³

¹ภาควิชาเภสัชวิทยา คณะสัตวแพทยศาสตร์, ²สหสาขาเภสัชวิทยา บัณฑิตวิทยาลัย, ³ภาควิชาเภสัชวิทยา คณะทันตแพทยศาสตร์, จุฬาลงกรณ์มหาวิทยาลัย ถนนอังรีคูนังค์ กทม. 10330

บทคัดย่อ

ไนโตรกลีเซอรีนและสารประกอบอินทรีย์ในเตรทเป็นยาที่ใช้รักษาอาการปวดเค้นหน้าอกและ สภาวะหัวใจล้มเหลว สภาวะเมทฮิโมโกลบินในเลือดสูงเป็นฤทธิ์ไม่พึงประสงค์อย่างรุนแรงที่เกิดขึ้นจาก ยาในกลุ่มนี้รวมทั้งการให้ในโตรกลีเซอรีนทางหลอดเลือดดำ ในคนปกติระดับเมทฮีโมโกลบินในเม็ด เลือดแดงมีอยู่ในระดับที่ต่ำมากคือน้อยกว่า 1 เปอร์เซ็นต์ โดยมีเอนไซม์ใชโตโครมปี 5 รีดัคเตสทำ หน้าที่รีดิวส์เมทฮีโมโกลบินในเลือดให้กลับไปเป็นฮีโมโกลบิน เนื่องจากสภาวะเมทฮีโมโกลบินในเลือดที่ สงขึ้นไม่ใต้เกิดจากการสัมผัสกับสารที่เกิดออกซิเดชั่นได้ง่ายเท่านั้น แต่ยังสัมพันธ์กับการขาดเอนไซม์ไซ โตโครมบี 5 รีดัคเตสอีกด้วย การศึกษาครั้งนี้จึงต้องการดรวจหาความสัมพันธ์ของสมรรถนะเอนไซม์ไช โตโครมปี 5 รีดัคเตสและสภาวะเมทฮีโมโกลบินสูงในเลือด กลุ่มควบคุมเป็นตัวอย่างเลือดจำนวน 114 ตัวอย่าง ที่ได้จากผู้บริจาคเลือดที่มีสุขภาพดีทั้งหญิงและชาย อายุ 20-65 ปี และตัวอย่างเลือดจากผู้ ป่วยที่ได้รับการรักษาด้วยในโตรกลีเซอรีนทางหลอดเลือดดำในขนาด 24,000-104,000 ไมโครกรัม (0.5-3.0 ไมโครกรัม/กก./นาที) ค่าเฉลี่ย ± ความคลาดเคลื่อนมาตรฐานของความเข้มข้นของเมท ฮีโมโกลบินในชายและหญิงสุขภาพดีเป็น 0.05 ± 0.02 และ 0.08 ± 0.02 เปอร์เซ็นต์ของปริมาณ ฮีโมโกลบินทั้งหมดตามลำดับ สมรรถนะของไซโดโครมบี 5 รีดัคเตสในเพศชายมีค่าต่ำกว่าเพศหญิง อย่างมีนัยสำคัญทางสถิติ (p<0.05) ไม่พบการเกิดภาวะเมทฮีโมโกลบินในเลือดสูงอย่างรุนแรงในผู้ป่วย อย่างไรก็ตามความเข้มข้นของเมทฮีโมโกลบินและสมรรถนะของไซโตโครมบี 5 รีดัคเตสในกลุ่มที่ได้รับ ผลการศึกษาแสดงให้เห็นว่า ปริมาณเมทฮีโมโกลบินในเม็ด ยาสูงกว่ากลุ่มคนปกดิอย่างมีนัยสำคัญ เลือดแดงไม่ได้ขึ้นกับสมรรถนะของเอนไซม์ไซโดโครมบี 5 รีดัคเตส พบว่าการให้ยาโตรกลีเซอรีนทาง หลอดเลือดดำในขนาดรวม 24,000-104,000 ไมโครกรัม ทำให้เมทฮีโมโกลบินเพิ่มขึ้นเพียงเล็กน้อย แด่มีผลทำให้สมรรถนะของเอนไซม์บี 5 รีดัคเตสเพิ่มขึ้นอย่างมีนัยสำคัญ และค่าเมทฮีโมโกลบินที่เพิ่ม ขึ้นในผู้ป่วยเหล่านี้ยังอยู่ในระดับที่เป็นปกติ โดยสรุปภาวะเมทฮิโมโกลบินในเลือดที่มีความสำคัญทาง คลินิกไม่ค่อยเกิดขึ้นเมื่อได้รับไนโดรกลีเซอรีนในขนาดต่ำ ๆ อย่างไรก็ดีควรศึกษาต่อไปถึงความสัมพันธ์ ระหว่างการเพิ่มขึ้นของสมรรถนะของเอนไชม์ไซโตโครมบี 5 รีดัคเดสกับการได้รับไนโตรกลีเซอรีน

คำสำคัญ: เมทฮิโมโกลบิน, ไนโตรกลีเซอรีน, ไซโตโครมบี 5 รีดัคเตส

INTRODUCTION

Methemoglobinemia is a clinical condition characterized by cyanosis resulting from decreased oxygen transport. Methemoglobinemia may be inherited (e.g., abnormal hemoglobin or deficiency in methemoglobin reductase activity) or acquired. Acquired methemoglobinemia can result from exposure to certain drugs and chemicals such as nitrates and other direct oxidants, local anesthetics, aniline dyes and sulfonamides1. Organic nitrates such as nitroglycerin are often given intravenously at the onset of acute myocardial infarction. It is also very effective in the management of pain in patients with unstable angina. Nitrates caused venodilation and relief coronary vasoconstriction to ameliorate anginal attacks2. Besides common adverse effects of nitroglycerin, including headache and hypotension, clinical significant methemoglobinemia caused by denitration of nitroglycerin has been occasionally reported as a serious complication of intravenous nitroglycerin (NTG)3.5. In human erythrocytes, methemoglobin is reduced to oxyhemoglobin both by enzymatic and non-enzymatic systems. Under physiological conditions, methemoglobin reduction is accomplished mainly by red cell NADH-cytochrome b5 reductase. In hereditary cytochrome b5 deficiency and exposure to large amounts of oxidants, methemoglobinemia is postulated to be a potential adverse clinical consequence. This study was aimed to examine a possible correlation between the cytochrome b5 reductase in red blood cell activity and methemoglobin level in blood.

MATERIALS AND METHODS

Apparatus

UV-visible recording spectrophotometer (UV-1600A, Schimadzu) and high speed centrifuge (IE CB-22M) were used.

Reagents

NADH was purchased from Sigma Chemical Company. Dry diethyl-aminoethylcellulose (DEAE,DE-52) was purchased from Whatman. Drabkin's solution was obtained from Life Science Dynamics Division of Arnaparn Co.,Ltd. Other chemicals were analytical grade and obtained commercially.

Specimens

Control group: Blood samples of 100 healthy blood donors, 50 males and 50

females obtained from the Thai Red Cross Society, Bangkok, were used as normal control subjects. The age range was 20 to 65 years.

Sample group: Blood was withdrawn from 30 patients admitted to the Coronary Critical Care Unit of Chulalongkorn Hospital who were treated with i.v. NTG. Inform consent was obtained from each patient. The age range was 50 to 65 years. 15 were males and 15 were females. NTG in concentration of either 100 or 400 µg/ml was infused continuously. The infusion rate was started at 5-10 µg/min and increased as tolerated to 25-50 µg/min. The total doses of NTG were between 24.000-104.000 µg.

Approximately 3 ml whole blood was freshly collected in a plastic tube with EDTA as anticoagulant and placed on ice for immediate transport to the laboratory, where it was analyzed at once for methemoglobin content and within 12 hours for cytochrome b5 reductase activity.

Assay of methemoglobin in blood

Methemoglobin content was measured by micromethed described by Hegesh et al.⁶.

Assay of NADH-cytochrome b5 reductase activity

NADH-cytochrome b5 reductase activity of erythrocytes was determined according to the method of Hegesh et al⁷. The enzyme activity was measured in a reaction mixture which contained 20 µl of 0.25 M EDTA (pH 7), 100 µl of 0.05 M citrate buffer (pH 4.7), 3 ml of 0.5 mM potassium ferricyanide, 2 ml of 0.18 mM hemoglobin substrate (free from cytochrome b5 reductase), 3.48 ml distilled water and 10 µl of blood sample. Mixed and centrifuged the solution at 1500 x g for 5 minutes. 950 µl of hemolysate was pipetted in a cuvette having 1cm light path and 50 µl of NADH was added and mixed. The reference cuvett contained the same constituents except NADH. The mixture was measured for increasing rate of absorbance at 575 nm.

Statistical analysis

Results are expressed as mean \pm standard error of the mean. Unpaired Student ttest was used to compare groups. Correlation between methemoglobin content and cytochrome b5 reductase activity in normal and treated groups were determined. P value < 0.05 was considered significant.

RESULTS

There were age and sex variations of methemoglobin levels in normal erythrocytes. As shown in Table 1, there were significant difference between age groups and sexes. The average values \pm one standard error of mean of methemoglobin contents of male and female were found to be 0.09 \pm 0.02% and 0.08 \pm 0.02% respectively. Methemoglobin levels in both sexes ranged from 0 to 0.40%. The highest contents of methemoglobin in both sexes were in the age group of 41-50 years.

Results of cytochrome b_5 reductase activities in male and female are shown in Table 2. The mean values \pm standard error of mean of cytochrome b_5 reductase of male and

female were found to be 3.12 ± 0.05 and 3.32 ± 0.05 respectively.

Table 3 shows the levels of methemoglobin and cytochrome b₅ reductase activity of normal subjects and treated patients. Significant increases of methemoglobin level and cytochrome b₅ reductase activity in treated group were observed. When compared with the normal group with the same age of patients (> 50 years old), nitroglycerin produced significant increase in the amount of methemoglobin content and cytochrome b₅ reductase activity.

No correlation between methemoglobin level and cytochrome b_5 reductase activity was found in both normal group (r =0.5) and treated group (r = 0.25).

Table 1. Methemoglobin content in normal volunteers.

Group	Sex Age (years)	N	Methemoglobin content (%)			
			Range	Mean ± SE	Comparison	P value
A	Male : 20-30	15	0	0	A vs B A vs C A vs D	<0.05 <0.05 <0.05
В	31-40	15	0-0.31	0.04 ± 0.03	B vs C B vs D	<0.05 <0.05
С	41-50	15	0-0.33	0.09 ± 0.04	-	-
D	50 ⁺	12	0-0.38	0.09 ± 0.05		
E	TOTAL	57	0-0.38	0.09 ± 0.02	E vs J	< 0.05
F	Female : 20-30	15	0	0	F vs G F vs H F vs l	<0.05 <0.05 <0.05
G	31-40	15	0-0.39	0.09 ± 0.04	G vs I	< 0.05
Н	41-50	15	0-0.39	0.11 ± 0.04	HvsI	< 0.05
1	50 ⁺	12	0-0.40	0.06 ± 0.04		
J	TOTAL	57	0-0.40	0.08 ± 0.02	E vs J	< 0.05

Table 2. Cytochrome b₅ reductase activities in normal volunteers.

Group	Sex Age (years)	N	Cytochrome b ₅ reductase activity			P
			Range	Mean ± SE	Comparison	value
A	Male : 20-30	15	2.79-3.46	3.05 ± 0.06	A vs B A vs C A vs D	<0.05 <0.05 <0.05
В	31-40	15	2.76-3.94	3.11 ± 0.09	B vs S	< 0.05
С	41-50	15	2.76-4.20	3.09 ± 0.11	C vs D	< 0.05
D	50 ⁺	12	2.76-2.73	3.26 ± 0.18	•	
E	TOTAL	57	2.73-4.20	3.12 ± 0.05	E vs J	< 0.05
F	<u>Female</u> : 20-30	15	2.82-3.83	3.35 ± 0.09	F vs G F vs H F vs I	<0.05 <0.05 <0.05
G	31-40	15	2.78-4.26	3.29 ± 0.09	G vs H G vs I	<0.05 <0.05
Н	41-50	15	2.89-3.87	3.51 ± 0.11	H vs I	< 0.05
I	50 ⁺	12	2.78-3.64	3.11 ± 0.07	•	-
J	TOTAL	57	2.78-4.26	3.32 ± 0.05	E vs J	< 0.05

Table 3. Comparison of methemoglobin level and cytochrome b₅ reductase in erythrocytes between normal subjects and patients receiving nitroglycerin.

Group	N	Methemoglobin content (%)	Cytochrome b ₅ reductase activity (unit/min/g of hemoglobin)	
		Mean ± SE	Mean ± SE	
Normal	114	0.09 ± 0.01	3.22 ± 0.04	
Normal (50-60)	25	0.09 ± 0.03	3.17 ± 0.06	
Patients	40	0.10 ± 0.03*	3.34 ± 0.06	

^{*} P<0.05

DISCUSSION

Methemoglobinemia is a clinical condition in which more than 1% of hemoglobin is oxidized to methemoglobin¹. Methemoglobinemia may be inherited or acquired. The autosomal recessive condition results from an absence of cytochrome b5 reductase that normally converts methemoglobin back to normal hemoglobin thereby leading to an increase in methemoglobin. Acquired methemoglobinemia is the most common form of methemoglobinemia and follows exposure to drugs or toxins. It is usually mild and poses no major clinical problems. Occasionally, however, it may be severe or even fatal¹. The lethal level of methemoglobin in human is above 70%8.

Clinical significant elevation of methemoglobin level has been reported with the administration of nitroglycerin^{3-5,9-13}. The results from our study showed that the usual dose of i.v. NTG caused no clinical significant methemoglobinemia. None of the patients had methemoglobin level more than 1%. Thus,

intravenous NTG administration in the total doses of 24,000-104,000 µg produced no clinical significant methemoglobinemia.

It has been previously reported that variation of cytochrome b₃ reductase activity is an age and sex dependent 14-16. Our results was correlated well with the study of Moore et al.16 which found a significant difference in erythrocyte enzyme activity between 270 Jewish males and 285 Jewish females ranging in age from 12 to 77 years. However, these methemoglobin levels were weakly correlated positively with the activity of cytochrome b₅ reductase in the treated group. In contrast to the study in patients with hereditary methemoglobinemia of Matsuki et al. (1981) cytochrome by reductase activities in NTGtreated patients were significantly increased. The same incidence of increasing cytochrome b₅ reductase activity has also been reported recently in population exposed to high nitrate concentration in drinking water18. In view of these considerations, a possibility of adaptation of cytochrome b₅ reductase activity is suggested to be a regulatory mechanism.

REFERENCES

- Mansouri A, Lurie AA. Concise review: methemoglobinemia. Am J Hematol 1993; 42:7-12.
- Thadani U, Opie LH. Nitrates. In: Opie LH, editor. Drug for the Heart. 4th ed. Philadelphia: W.B. Saunders Company, 1995;40-42.
- 3. Saxon SA, Silverman ME. Effects of continuous infusion of intravenous nitroglycerin on Methemoglobin levels. Am J Cardiol 1985;56:461-464.
- 4. Kaplan KJ, Taber M, Russell J, et al, Association of methemoglobinemia and

- intravenous nitroglycerin administration. Am J Cardiol 1985;55:181-183.
- Robicsek F. Brief communication: acute methemoglobinemia during cardiopulmonary bypass caused by intravenous nitroglycerin infusion. J Thorac Cardiovasc Surg 1985;90(6):931-934.
- 6. Hegesh E, Gruener N, Cohen S, et al. A sensitive micromethod for the determination of methemoglobin in blood. Clin Chim Acta 1970; 30:679-82.
- 7. Hegesh E, Calmanovici N, Avron M. New method for determining ferrihemoglobin

- reductase (NADH-methemoglobin reductase) in erythrocytes. *J Lab Clin Med* 1968;72:339-344.
- 8. Curry S. Methemoglobinemia. Ann Emerg Med 1982; 11:214-221.
- Needleman P. Organic nitrate metabolism. Annu Rev Pharmacol Toxicol 1976; 16:81-93.
- Stetson JB. Intravenous nitroglycerin: a review. Int Anesthesiol Clin 1978; 16:261-298.
- Gibson GR, Hunter JB, Raabe DS Jr, et al. Methemoglobinemia produced by highdose intravenous nitroglycerin. Ann Intern Med 1982;96:615-616.
- Marshall JB, Ecklund RE. Methemoglobinemia from overdose of nitroglycerin. JAMA 1980;244-246.
- Fibuch EE, Cecil WT, Reed WA. Methemoglobinemia associated with organic nitrate therapy. Anesth Analg 1979; 58:521-523.
- Vetrella M, Astedt B, Barthelmai W, Neuvian D. Activity of NADH- and

- NADPH-dependent methemoglobin reductase in erythrocytes from fetal to adult age. Klin Wschr 1971;49:972-977.
- Panin G, Pernechele M, Giurioli R; et al. Cytochrome b5 reductase activity in erythrocytes and leukocytes as related to sex and age. Clin Chem 1984; 30(5): 701-703
- Moore MR, Conrad ME, Bradley EL Jr, Prchal JT. Studies of nicotinamide adenine dinucleotide methemoglobin reductase activity in a Jewish population. Am J Hematol 1982; 12:13-18.
- Matsuki T, Tamura M, Takeshita M, Yoneyama Y. Age-dependent decay of cytochrome b₅ and cytochrome b₅ reductase in human erythrocytes. *Biochem* J 1981;194:327-330.
- Gupta SK, Gupta RC, Seth AK, et al. Epidemiological evaluation of recurrent stomatitis, nitrates in drinking water, and cytochrome b₃ reductase activity. Am J Gastroenterol 1999; 94 (7): 1808-1812.