

NMDA RECEPTOR AND THE THERAPEUTIC POTENTIAL OF ITS LIGANDS

Panya Khunawat

Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700

ABSTRACT

NMDA is the excitatory amino acid receptor subtype that is most thoroughly studied. It is an ionotropic receptor with Mg^{2+} blockage in a voltage-dependent manner. Functional NMDA receptor consists of a heterodimer of NMDAR1 and NMDAR2 subunits. Alternative splicing of the products of exons 5, 21 and 22 results in 7 naturally occurring isoforms. Important allosteric binding sites on the NMDA receptors are Zn^{2+} , glycine and polyamine binding sites. Since the competitive NMDA antagonists and the noncompetitive antagonists are mostly associated with psychotomimetic effects, attention has recently been paid toward the development of ligands that bind to the glycine and polyamine binding sites. The most promising compounds that have potentials as anticonvulsants are partial and competitive antagonists of the glycine binding site and competitive antagonists of the polyamine binding sites.

Key words : NMDA receptor, therapeutic potential

INTRODUCTION

Excitatory amino acids that function as neurotransmitters are chiefly glutamate and aspartate. There are currently 4 subtypes of excitatory amino acid receptors named after the relatively specific agonists¹.

1. NMDA (N-methyl-D-aspartate) receptor
2. AMPA (a-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid) receptor
3. Kainate receptor
4. Metabotropic receptor

The first 3 subtypes are ionotropic receptors by having integral cation-specific channel in the receptor molecule. The last subtype couple with G-protein to control the synthesis of intracellular messengers which involves the metabolism of phosphatidylinositol 4,5-bisphosphate.

NMDA receptor contains a single cation channel which is blocked by Mg²⁺ in a voltage-dependent manner. Partial depolarization of the membrane displaces Mg²⁺ from the channel lumen and allow cation entry (Ca²⁺ is preferred over Na⁺) to depolarize the neuron. Phencyclidine (PCP), ketamine and dizocilpine (MK-801) are noncompetitive antagonists which block open channel close to the magnesium binding site.

This review will focus on the subunit constitution of NMDA receptor, its important binding sites and the compounds that show some promises in therapeutic uses.

SUBUNIT CONSTITUTION OF NMDA RECEPTOR

Functional NMDA receptor must be at least a heterodimer having 2 subunits, NMDAR1 and NMDAR2². NMDAR1 subunit is the product of a single gene. There are 7 isoforms from alternative splicing of the products of exons 5, 21 and 22³. Exon 5 encodes 21 amino acids at the N-terminal while exons 21 and 22 encodes 37 and 38 amino acids, respectively, at the C-terminal⁴. Therefore, there are 8 (2³) possible splice variants of these exon products. So far, 7 isoforms have been identified (NMDAR1A to NMDAR1G) which contain 938, 959, 901, 922, 885, 922 and 906 amino acid residues, respectively. The splice variant that contains the products of exons 5 and 21 but not the product of exon 22 has not been found in the cDNA library. The characteristics of NMDAR1 subunit are⁴:

1. having a large extracellular N-terminal, up to half of the subunit's molecular weight.
2. having three transmembrane domains (TM1, TM3 and TM4)
3. TM2 is bent in the membrane and line the cation channel (pore-forming region or P-region)⁵
4. having S1 and S2 regions that bind glutamate and glycine, respectively.
5. having 4 or 5 residues at the C-terminal that can be phosphorylated by protein kinase C.

NMDAR2 subunit has 4 subtypes from 4 different genes^{1,6} (NMDAR2A to NMDAR2D) that contain 1464, 1482, 1250 and 1323 amino acid residues, respectively. Its structure in relation to the cell membrane seems to be similar to NMDAR1 with a large intracellular C-terminal extension from TM4. The

distribution of each subtype in the rat brain is heterogenous. From autoradiographic studies, each subtype is present with high densities in the following brain regions¹:

NMDAR2A	-	hippocampus and cerebral cortex
NMDAR2B	-	forebrain
NMDAR2C	-	cerebellum
NMDAR2D	-	diencephalon and lower brainstem

ALLOSTERIC SITES ON THE NMDA RECEPTOR

A. Zn^{2+} binding site

Zn^{2+} is a potent noncompetitive NMDA receptor antagonist that blocks the open channel of NMDA receptor with little sensitivity to changes in glycine concentration or membrane voltage⁷. At low concentrations, Zn^{2+} block the response to NMDA in this manner^{8,9}. At high concentrations, Zn^{2+} block the open channel in a voltage-dependent manner at the Mg^{2+} binding site. The latter type of blockade is not important because Zn^{2+} concentration has to be very high.

B. Glycine binding site

NMDA receptor is a new type of receptor that requires two different agonists to bind simultaneously to activate the ion channel. Endogenous agonists in this case are glutamate and glycine. Glycine is absolutely required for NMDA receptor activation¹⁰; without glycine, the receptor could not be activated. Glycine therefore acts as coagonist at this site of NMDA receptor which is strychnine-insensitive. Binding of glycine in the presence of NMDA agonist increases the frequency of cation channel opening with little effect on the mean open time. Extracellular concentration of glycine in most parts of the

brain (> 1 mm) is more than enough to saturate the glycine binding sites¹¹. In other words, glycine is present in the concentration that is high enough to activate the NMDA receptor together with the NMDA agonist. Although glutamate mediates synaptic transmission, changes in the extracellular glycine levels modulate the NMDA receptor's contribution to the transmission.

Partial agonists for the glycine binding site are HA-966¹² (3-amino-1-hydroxypyrrolidone) and D-cycloserine¹³. HA-966 noncompetitively inhibits glutamate binding and enhances the binding of competitive NMDA antagonists. Competitive antagonists of glycine's action are kynurenic acid derivatives e.g. 7-chlorokynurenic acid¹⁴ and 5,7-dichlorokynurenic acid (MDL 29,814). Kynurenic acid is the product of kynurenine pathway of tryptophan metabolism. It is a nonselective antagonist that binds to the NMDA site, AMPA receptor and kainate receptor. The concentration in human brain tissue is about 1 mm. In the experimental animals it has anticonvulsant effect and protects the animals from global cerebral ischemia. 7-Chlorokynurenic acid antagonizes the action of glycine and HA-966.

In experimental animals R(+)-HA-966 and 5,7-dichlorokynurenic acid have anxiolytic effect¹⁵ and blocks mesolimbic activation and associated hyperactivity by amphetamine¹⁶. Anxiolysis from these compounds is better than those from NMDA antagonists because there is less muscle relaxation at equivalent anxiolytic doses in the model that measures ultrasonic vocalization of rat pups following the separation from their mothers. 1-Amino-1-carboxycyclopropane and R(+)-cis-4-methyl-HA-966 (L 687414) are partial

agonists with potent anticonvulsant action. The latter compound does not have psychotomimetic effect or behavioral stimulation¹⁷. D-cycloserine has been shown to produce cognitive enhancing effect in experimental animals¹⁸.

C. Polyamine binding site

Polyamines are highly charged cationic compounds that have their positive charges separated by their chain lengths. They have roles in all enzymatic processes that involve RNA or DNA in cellular growth and development¹⁹. Spermine and spermidine are polyamines that potentiate the response of NMDA receptor stimulation²⁰. NMDA receptor activation is necessary to the potentiating effect of these polyamines. Ifenprodil and its derivative, eliprodil (SL 82.0715) are antagonists at the polyamine binding site²¹. These compounds have the following actions:

1. anticonvulsant action in the maximal electroshock models and in the NMDA-induced²² and audiogenic seizures²³.
2. cytoprotective effect in focal cerebral ischemia model²⁴. Besides the action on NMDA receptor, they have inverse steal action from constriction of pial vessels.
3. neuroprotective effect from the toxicity of NMDA²⁵
4. eliprodil blocks voltage-sensitive calcium channel²⁶ and is a high affinity ligand to the s-receptor with unknown function.

NONCOMPETITIVE NMDA ANTAGONISTS

Although dizocilpine (MK-801) show promising results in many animal models of epilepsy and cerebral ischemia, trials of this compound and related antagonists in patients with

epilepsy and stroke are disappointing because of associated psychotomimetic effects. The most promising compound in this group is memantine which is related to the antiviral amantadine. It produces good results in rat ischemic models and is clinically well-tolerated²⁷.

COMPETITIVE NMDA ANTAGONISTS

D-CPP-ene (SDZ EAA-494), a competitive antagonists at the NMDA binding site on the NMDA receptor, has no anticonvulsant action and many serious adverse effects in human complex partial seizures²⁸ although promising results have been reported in many animal models of epilepsy²⁹. Selfotel (CGS 19755) has been shown to reduce intracranial pressure in patients with severe head injury³⁰. Its use in stroke patients has been limited by hallucinations at doses similar to those used in head injury.

REFERENCES

1. Nakanishi S. Molecular diversity of glutamate receptors and implications for brain function. *Science* 1992; 258: 597-603.
2. Sucher NJ, Awobuluyi M, Choi Y-B, et al. Lipton SA. NMDA Receptors: from genes to channels. *Trends Pharmacol Sci* 1996; 17: 348-355.
3. Sugihara H, Moriyoshi K, Ishii T, et al. Structures and properties of seven isoforms of the NMDA receptors generated by alternative splicing. *Biochem Biophys Res Commun* 1992; 185: 826-832.
4. Zukin RS, Benette MVL. Alternatively spliced isoforms of the NMDAR1 receptor subunit. *Trends Neurol Sci* 1995; 18: 306-313.
5. Barinaga M. A new face for the glutamate receptor. *Science* 1995; 267: 177-178.
6. Kutsuwada T, Kashiwabuchi N, Mori H, et al. Molecular diversity of the NMDA receptor channel. *Nature* 1992; 358: 36-41.

7. Mayer ML, Vyklicky L, Westbrook GL. Modulation of the response to excitatory amino acids by group IIB metal cations in cultured mouse hippocampal neurones. *J Physiol* 1989; 415: 329-350.
8. Christine CW, Choi DW. Effect of zinc on NMDA receptor-mediated channel currents in cortical neurons. *J Neurosci* 1990; 10: 108-116.
9. Legendre P, Westbrook GL. The inhibition of single NMDA-activated channels by zinc ions on cultured rat neurones. *J Physiol* 1990; 429: 429-449.
10. Johnson JW, Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurones. *Nature* 1987; 325: 529-531.
11. Ferraro TN, Hare TA. Free and conjugated amino acids in human CSF: evidence of age and sex. *Brain Res* 1985; 338: 53-60.
12. Foster AC, Kemp JA. HA-966 antagonizes N-methyl-D-aspartate receptors through selective interaction with the glycine modulatory site. *J Neurosci* 1989; 9: 2191-2196.
13. Hood WF, Compton RP, Monahan JB. D-cycloserine: a ligand for the N-methyl-D-aspartate coupled glycine receptor has partial agonist characteristics. *Neurosci Lett* 1989; 98: 91-95.
14. Kemp JA, Foster AC, Leeson PD, et al. 7-Chlorokynurenic acid is a selective antagonist at the glycine modulatory site of the N-methyl-D-aspartate receptor complex. *Proc Natl Acad Sci USA* 1988; 85: 6547-6550.
15. Dunn RW, Flanagan M, Martin LL. Stereoselective R-(+)-enantiomer of HA-966 displays anxiolytic effects in rodents. *Eur J Pharmacol* 1992; 214: 207-214.
16. Hutson PH, Bristow LJ, Thorn L, et al. R-(+)- HA-966, a glycine NMDA receptor antagonist, selectively blocks the activation of the mesolimbic dopamine system by amphetamine. *Br J Pharmacol* 1991; 103: 2037-2044.
17. Singh L, Menzies R, Tricklbank MD. The discriminative stimulus properties of (+)-HA-966, an antagonist at the glycine N-methyl-D-aspartate receptor. *Eur J Pharmacol* 1990; 186: 129-132.
18. Monahan JB, Handlemann GE, Hood WF, et al. D-cycloserine, a positive modulator of the N-methyl-D-aspartate receptor, enhances performance of learning tasks in rats. *Pharmacol Biochem Behav* 1989; 34: 649-653.
19. Carter C, Benavides J, Corinue D, et al. Non-competitive NMDA antagonists acting on the polyamine binding site. In: Meldrum BS, ed. *Excitatory amino acid antagonists*. London: Blackwell 1991; 130-163.
20. Carter C, Lloyd KG, Zivkovic B, et al. Ifenprodil and SL82.0715 as cerebral anti-ischemic agents III: evidence for antagonist effects at the polyamine modulatory site within the NMDA receptor complex. *J Pharmacol Exp Ther* 1990; 253: 475-482.
21. Carter C, Rivy JP, Scatton B. Ifenprodil and SL 82.0715 are antagonists at the polyamine site of the N-methyl-D-aspartate (NMDA) receptor. *Eur J Pharmacol* 1989; 164: 611-612.
22. Perrault C, Morel E, Jody D, et al. Comparison of the pharmacological profiles of four NMDA antagonists, ifenprodil, SL 82.0715, MK-801 and CPP, in mice. *Br J Pharmacol* 1989; 97: 580P.
23. Perrault C, Morel E, Jody D, et al. Differential psycho-pharmacological profiles of NMDA antagonists: ifenprodil-like, PCP-like and CPP-like compounds. *Eur J Pharmacol* 1990; 183: 942.
24. Gotti B, Duverger D, Berlin J, et al. Ifenprodil and SL 82.0715 as cerebral anti-ischemic agents. I. Evidence for efficacy in models of focal cerebral ischemia. *J Pharmacol Exp Ther* 1988; 247: 1211-1221.
25. Zeevalk GD, Nicklas WJ. Action of the anti-ischemic agent ifenprodil on N-methyl-D-aspartate and kainate mediated excitotoxicity. *Brain Res* 1990; 522: 135-139.
26. Muir KW, Lees KR. Clinical experience with excitatory amino acid antagonists drugs. *Stroke* 1995; 26: 503-513.
27. Chen HS, Pellegrini JW, Aggarwal SK, et al. Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity. *J Neuroscience* 1992; 12: 4427-36.
28. Sveinbjornsdottir S, Sander JW, Upton D, et al. The excitatory amino acid antagonist D-CPP-ene (SDZ EAA-494) in patients with epilepsy. *Epilepsy Res* 1993; 16:165-74.
29. Lowe DA, Emre M, Frey P, et al. The pharmacology of SDZ EAA 494, a competitive NMDA antagonist. *Neurochem Int* 1994; 25: 583-600.
30. Bullock R. Strategies for neuroprotection with glutamate antagonists. Extrapolating from evidence taken from the first stroke and head injury studies. *Ann NY Acad Sci* 1995; 765:272-278.