
JOURNAL OF FISHERIES AND ENVIRONMENT 2022, VOLUME 46 (2)

 
 The goods and services provided by rivers 
support human livelihoods in various forms and 
have a close relationship with human societies 
(i.e., culture and religion) (Khorooshi et al., 2016). 
Increasing population as well as urban and industrial 
development are among the key factors degrading 
water quality, altering hydrological cycles and 
changing the assemblage of aquatic fauna and river 
ecosystems (Tudesque et al., 2008; Altansukh 
and Davaa, 2011).  Monitoring of water quality, 
hydrological regimes, and aquatic faunal composition

is important for assessing river conditions, and can
support a precautionary approach that provides 
time and opportunity for improvement or recovery 
(Simeonov et al., 2010).

 The Chao Phraya River Basin is the most 
important system in central Thailand, with a drainage 
area of approximately 162,000 km2 (30 % of the 
country’s total area), and is home to 40 % of the 
Thai population (Nakamuro et al., 1982; Komori 
et al., 2012; Huang et al., 2019).  The basin can be 
considered as two parts-upper and lower-which 
are geographically divided by a narrow section in
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ABSTRACT

 Variability of water quality in the three largest tributaries of the Upper Chao Phraya River 
Basin (Ping, Nan, and Chao Phraya rivers) was examined over 11 years (2008-2018) using annual 
averages of 12 water quality parameters from six surface water stations.  We applied two multivariate 
methods, namely a self-organizing map (SOM) and principal component analysis (PCA) to assess 
the spatio-temporal variation.  The results revealed strong spatio-temporal patterns of water quality 
conditions, evidenced by three distinct clusters of samples (ANOSIM, p<0.05).  The PCA explains as 
much variation as possible in two dimensions, which eigenvalues of two axis is 45.08 %.  The graphical 
PCA shows that cluster B is completely separated, while the cluster A and C overlap.  Parameters in 
cluster A (comprising many of the Ping, Nan, and Chao Phraya samples between 2009-2018, and further 
separated by drought and floods years) were within the regulated standards for surface water.  In cluster B, 
which only included the Chao Phraya stations during the dry period from 2013-2015, the water quality 
was affected by community waste, as indicated by high total coliform bacteria and fecal coliform bacteria. 
Meanwhile, cluster C comprised 2008, 2011, 2012 and 2017 samples from the Ping, Nan, and Chao 
Phraya rivers in high flood periods, and was further divided into two sub-clusters.  It was characterized 
by high turbidity (121.70±47.59 NTU) and total solids (240.96±30.75 mgL-1), which were caused by 
heavy rains and flooding.  Our analyses show that the variability of water quality in the studied area 
was largely affected by human activities and seasonal variation.       
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Nakhon Sawan Province (Komori et al., 2012).  The 
upper river basin is mountainous with a floodplain
along the river, and contains the Ping River (33,900 
km2 of watershed area), the Wang River (10,800 
km2), the Yom River (24,047 km2), and the Nan 
River (34,300 km2) (Komori et al., 2012; Wichakul 
et al., 2014).  The Chao Phraya River (and the lower 
basin) originates from the union of these four rivers 
(i.e., Ping, Wang, Yom, and Nan) in Nakhon Sawan 
Province.  Downstream, the Chao Phraya joins with 
the Sakae Krang River at Chai Nat Province, then 
flows through floodplain in the country’s central 
region, which covers 55,290 km2 (35 % of the total 
basin area) (Office of Natural Water Resources 
Committee of Thailand, 2003; Komori et al., 2012).

 The river supports many activities such as 
agriculture, fisheries, recreation, industry, and 
municipal uses (Huang et al., 2019; Singkran et al., 
2019).  People living in the riparian area depend 
on the water resources; for example, in Nakhon 
Sawan Province, it is estimated that 31 % of GPP is 
from agriculture and livestock, which rely on water 
supplies from the Chao Phraya (Nakhon Sawan 
Statistical Office, 2018).  Recently, the area along 
the river has shown a rapid change due to vast 
urbanization, economic growth, industry expansion, 
intensive agriculture development, and other 
human activities (Molle, 2007).  The anthropogenic 
stressors along the river have inevitably led to a 
deterioration of water quality.  Besides these direct 
stressors, climate change has also been recognized 
as a tremendous cause of changes in the timing 
and intensity of precipitation, and of hydrological 
characteristics of the river (e.g., flooding and 
flow) (Naik and Jay, 2011; Singkran et al., 2019).  
Moreover, nutrient transport and eutrophication 
are affected by the change in river flow, and 
consequently impact the river’s aquatic flora and 
fauna (Prathumratana et al., 2008).

 Flood and drought periods, as well as 
changes in stream flow, can lead to eutrophication 
and nutrient transport, which affect water quality 
factors such as DO, BOD, NH4

+ and turbidity 
(Senhorst and Zwolsman, 2005; Prathumratana 
et al., 2008).  DO represents available oxygen for 
aquatic animals, while BOD is the collective 
amount needed for bacteria to decompose organic

compounds.  The level of pH is critical for the
toxicity of heavy metals and their metabolism by
aquatic organisms (Sidabutar et al., 2017).  Nitrogen 
compounds (ammonia and nitrate) are toxic to 
aquatic life at high pH, while nitrite is a main cause 
of eutrophication (MPCA 2008; Sidabutar et al., 
2017).  Furthermore, total coliform bacteria and 
fecal coliform bacteria are commonly used 
indicators of water contaminated by the feces of 
humans and other warm-blooded animals (Huang 
et al., 2019).  Turbidity, total solids, and suspended 
solids, meanwhile, affect the penetration of light 
into water, which influences both photosynthesis 
and water temperature (Bidorn et al., 2016).  
Population pressure and environmental phenomena 
are increasing sediment loads and suspended solids 
through deforestation for agriculture, water resource 
development, and heavy floods (Bidorn et al., 2016; 
Sidabutar et al., 2017).

 Water quality data encompass a large 
and complex set of parameters, often with 
multidimensional, non-linear, and non-normal 
distribution (Ye et al., 2015; An et al., 2016). 
Meanwhile, many statistical methods have the 
weakness of requiring normal distribution of data. 
The assessment of water quality, especially variation 
in space and time, is performed by multivariate 
analysis techniques such as principal component 
analysis (PCA) and self-organizing maps (SOM), 
which are powerful tools when applied to these 
types of data.  Both techniques have been widely 
applied in water quality, aquatic ecology, hydrology 
and the environment (Kalteh et al., 2008; Mishra, 
2010; Ye et al., 2015; An et al., 2016; Chea et al., 
2016; Sowmiya and Raj, 2016; Orak et al., 2020). 
Although PCA is limited to classification, it is an 
effective technique to identify important parameters 
and explain the variance of a large dataset of 
correlated variables with a smaller set of independent 
variables (Mishra, 2010; An et al . ,  2016).  
Meanwhile, SOM can be used for monitoring and 
determining spatio-temporal variation by clustering 
and classification (Ye et al., 2015).  SOM is an 
unsupervised artificial neural network, which is 
a powerful method for the analysis of large data 
sets by reducing high dimensional input data to 
a low dimensional map in an output layer (Chea 
et al., 2016).         
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 The surface water quality in Thailand is 
monitored by the Pollution Control Department 
(PCD).  A general water quality assessment is 
conducted based on the surface water quality 
standards and water quality index, and is reported 
every year (Simachaya, 2000; Wongaree, 2019). 
Most previous studies of water quality in the Chao 
Phraya River Basin were focused on only one effect 
on water quality, such as season, flood or drought, 
climate change, and anthropogenic effects that do 
not relate to spatio-temporal variation (Komori 
et al., 2012; Wichakul et al., 2014; Singkran et al., 
2019).  However, recognizing long-term changes 
(i.e., over decades) of some important water quality 
parameters and their patterns of change in space 
and time is also important for resource managers 
to better maintain or improve water quality.  This 
paper, therefore, aims to assess the spatio-temporal 
variation of 12 selected water quality parameters 
among representative stations over 11 years of 
sampling in the upper part of Chao Phraya (i.e., 
Nakhon Sawan Province).

 Water quality parameters considered for this

study included physical, chemical, and biological 
properties that are affected by anthropogenic stress, 
eutrophication, or climate change.  The selected 
water quality parameters comprised pH, dissolved 
oxygen (DO, mgL-1), biochemical oxygen demand 
(BOD, mgL-1), water temperature (WT, °C), turbidity 
(Tur, NTU), total solids (TS, mgL-1), suspended 
solids (SS, mgL-1), total coliform bacteria (TCB, 
MPN100 mL-1), fecal coliform bacteria (FCB, 
MPN100 mL-1), ammonia nitrogen (NH3-N, mgL-1), 
nitrate (NO-

3-N, mgL-1), and nitrite (NO-
2-N, mgL-1).  

Water quality parameters were obtained from 
monitoring data used in surface water quality 
standards and a water quality index (WQI) developed 
by the Thailand Pollution Control Department, 
which describes methods for water quality analysis 
(Simachaya, 2000; Pitakwinai et al., 2018).  All 
parameters were obtained from six stations (PI01, 
PI02, NA01, NA1.1, CH30, and CH32) during 
2008-2018 (Figure 1).  The abbreviations PI, NA, 
and CH stand for Ping, Nan, and Chao Phraya 
rivers, respectively.  The PI and CH stations are in 
community zones, while NA is representative of 
a rural zone (Table 1).  The raw data were supplied 
by Regional Environmental Office 4, in which the 
monitoring of surface water quality parameters is 
conducted four times per year.   

MATERIALS AND METHODS
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Figure 1. Location of surface water sampling stations in Nakhon Sawan Province (marked yellow in inset). 
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 The data were then prepared as a matrix 
of samples in columns (i.e., observation at surface 
water station x year, for example CH32_08 is the 
observation from station CH32 in year 2008) and 
annual average values for water quality parameters 
(12 variables) in rows.

 A self-organizing map (SOM) was used to 
investigate spatio-temporal variation by clustering 
the samples according to differences in water quality 
data.  The SOM is an unsupervised algorithm of 
an artificial neural network (ANN) (Kohonen, 1982). 
It has been applied to studies of water resources 
and ecology, and is capable of clustering and 
classification.  SOM is a powerful method for 
the analysis of complex data with non-linear 
relationships; it classifies similar elements from
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 Table 1. Location and characteristics of surface water stations used for water quality study of the Upper Chao 
 Phraya River.

Geographical co-ordinates

100.1208° N 

15.7257° E

99.9790° N 

15.9294° E

100.1897° N 

15.7270° E

100.3102° N 

15.8979° E

100.1385° N 

15.4226° E

100.1260° N

15.6857° E

                                   Characteristics

This reach of Ping River receives water from agricultural 

areas and riparian communities. The topography of the 

river is shallow and narrow.

This reach of Ping River receives water from agricultural 

areas and community areas in Banphot Phisai District, 

Nakhon Sawan Province. The topography of the river is 

shallow and narrow.

This reach of Nan River receives water from agricultural 

areas and riparian communities. The topography of the 

river is narrow and deep.

This reach of Nan River receives water from agricultural 

areas and community areas in Chum Saeng District, 

Nakhon Sawan Province. The topography of the river is 

narrow and deep.

This reach of Chao Phraya River receives water from 

agricultural areas, community and market areas in Phayuha 

Khiri District, Nakhon Sawan Province. The topography 

of the river is wide and deep.

This reach of Chao Phraya River receives water from the 

community and market area in Muang District, Nakhon 

Sawan Province. The topography of the river is narrow 

and deep.

Station Name

PI01

PI02

NA01

NA1.1

CH30

CH32

high dimensional input data into a low dimensional 
map in an output layer (Kalteh et al., 2008; Orak 
et al., 2020).  The SOM consists of two layers 
(input and output) that are connected by weight 
vectors (An et al., 2016).  The input layer in our 
case contained 12 neurons (water quality parameters), 
which connected 66 input vectors (i.e., samples) 
to the output layer. The output layer comprised 42 
neurons, which was represented by a lattice map 
with six rows and seven columns.  The number 
of neurons on the map was calculated from the 
equation C = 5×√ n , as proposed by the laboratory 
of Computer and Information Science (CIS), Helsinki 
University, where C is the number of cells and n is 
the number of observations, and which guarantees 
a minimum of quantization and topographic errors.  
The hierarchical cluster analysis (Ward’s method)



JOURNAL OF FISHERIES AND ENVIRONMENT 2022, VOLUME 46 (2)

was used to help in decisions on cluster classification. 
Significant differences among clusters were 
determined by the analysis of similarity (ANOSIM), 
which uses occurrence probability from the 
connection intensity during the learning process 
in SOM at α = 0.05.

 The interrelationship among samples and 
the 12 water quality parameters was determined by 
principal component analysis (PCA).  All parameters 
have different units of measurement, which creates 
substantial variance.  The data were standardized by 
a covariant matrix with a mean of 0 and a standard 
deviation of 1 (Souza et al., 2020).  The Monte Carlo 
method was used to test significance of results with 
1,000 random permutations.  Differences among 
clusters of each water quality parameter was also 
tested by Kruskal-Wallis, and Wilcoxon’s post-test 
was applied if a significant difference was found 
at α = 0.05.  All statistical methods were performed 
by Program R (R Core team, 2020) with kohonen 
(Wickham, 2016), factoextra (Wehrens and Kruisselbrink, 
2018) and ggplot2 packages (Kassambara and Fabian, 
2020).

Self-organizing map (SOM)
 
 The SOM categorized the samples into 
42 cells, with each cell representing a different 
suite of water quality parameter values (i.e., 
samples within a cell have similar values for all 
parameters).  As similar samples are mapped close 
together and dissimilar ones farther apart, SOM 
cells were grouped into three clusters, based on 
the hierarchical dendrogram results (Figure 2 
and Figure 3).  ANOSIM indicated significant 
dissimilarity among the three clusters (p<0.05). 
Cluster A samples were mostly from the Ping 
(PI01 and PI02) and Nan (NA01 and NA1.1) rivers 
between 2013 and 2016.  Cluster Bincluded only 
Chao Phraya River samples (CH30 and CH32), 
which clearly separated it from the other clusters.  
Samples in this cluster were exclusively taken 
between 2013 and 2015, a notably dry period. 
Cluster C contained the remaining samples and 
could be divided into two sub-clusters.     

RESULTS AND DISCUSSION
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Figure 2.  Output layer of 42 neurons as clustered by self-organizing map (SOM).



JOURNAL OF FISHERIES AND ENVIRONMENT 2022, VOLUME 46 (2)

Principal component analysis (PCA)

 The PCA represents the relationship and 
direction of water quality parameters among stations 
(Figure 4).  The PCA explains as much variation as 
possible in two dimensions (i.e., along two axes). 
The eigenvalues of principal component axis 1 (PC1) 
and axis 2 (PC2) show that they explain 28.57 % 
and 16.51 % of variance, respectively (together they 
explain 45.08 %).  DO, Tur, and TS had the highest 
loading scores in PC1, and reflect contamination 
by study area and season.  The second axis (PC2) 
had strong loading scores from BOD, TCB, and 
FCB, which indicate contamination by human or 
animal feces.  The diagrams clearly show correlation 
and direction among water parameters and samples 
(Figure 4), and the Monte Carlo test was significant 
(1,000 permutations, p-value<0.001).  Meanwhile, 
the variable loadings >|0.25| were considered 
important in structuring samples, implying high 
influence during the study period (Table 2) (Fischer 
and Paukert, 2008).  The graphical PCA shows 
that only observations belonging to cluster B are 
completely separated, while the observations for 
clusters A and C overlap.  This indicates that the 
water quality in cluster B was explicitly different 
from the two remaining clusters.  

Cluster characteristics
 
 By combining the SOM and PCA results, 
the characteristics of each cluster can be further 
explored.

 Cluster A includes samples from the Ping, 
Nan and Chao Phraya rivers between 2009 and 2018, 
and is further divided into two periods, i.e., dry 
years (2013 to 2016) and flood years (2009, 2010 
and 2018).  DO was highest in this cluster, whereas 
TCB, FCB, Tur, NH3-N, and NO-

2-N were lower 
than in clusters B and C (Figure 5).  This cluster 
was also characterized by slightly higher BOD, 
TCB, and FCB in dry periods.  DO concentration 
is related to flow conditions, for which there is 
a seasonal effect (Voutsa et al., 2001).  The high 
water in the rainy season causes dilution and general 
improvement of water quality along with increasing 
the DO level (Qadir et al., 2008; Huang et al., 2019). 
This phenomenon of water fluctuation, which is 
created by alternate dry and flood periods, dilutes 
water pollution and moves it downstream (Simachaya 
et al., 2000).  This process is a form of natural self-
purification, and is reflected by the seasonal effect on 
water quality (Zubaidah et al., 2019).  Water quality 
in cluster A was thus better than in clusters B and C. 
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Figure 3. Hierarchical dendrogram produced by SOM.
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 Table 2.  Principal component (PC) loading scores for water quality parameters at six sites in the Upper Chao Phraya 
 River Basin during 2008-2018.

PC2

-0.16

-0.06

-0.48

-0.22

-0.09

0.05

-0.51

-0.56

-0.28

-0.13

-0.01

Water quality parameter

pH

Dissolved Oxygen (DO, mg.L-1)

Biochemical Oxygen Demand (BOD, mg.L-1)

Water Temperature (WT, °C)

Turbidity (Tur, NTU)

Total solids (TS, mg.L-1)

Total Coliform Bacteria (TCB, MPN.100 mL-1)

Fecal Coliform Bacteria (FCB, MPN.100 mL-1)

Ammonia nitrogen (NH3-N, mg.L-1)

Nitrate (NO-
3-N, mg.L-1)

Nitrite (NO-
2-N, mg.L-1) 

PC1

0.16

0.36

0.19

0.23

-0.46

-0.46

-0.10

-0.09

-0.13

-0.23

-0.14

       Note: Bold text indicates variable loadings <|0.25|.

Figure 4.  PCA of 12 water quality parameters for three clusters of surface water samples from the Upper Chao 
 Phraya River.
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 Cluster B is limited to only samples from 
CH30 and CH32 (Chao Phraya River), and only 
during a period of low water volume between 2013 
and 2015 (drought period).  Significantly high 
loadings of TCB and FCB were found in this cluster 
(Figure 4 and 5), which implied effects from human 
activities, domestic wastewater, and livestock waste 
(Campos and Cachola, 2007).  In addition, TCB 
and FCB are used as indicators of the sanitary 
quality of water and to detect contamination by 
feces of humans and other warm-blooded animals 
(Huang et al., 2019).  The Thai surface water quality 
standards prescribe TCB and FCB levels of not more 
than 20,000 and 4,000 MPN100 mL-1, respectively;

higher values imply that water quality is poor 
(Simachaya, 2000).  Meanwhile, average BOD, 
NH3-N, and NO-

2-N were higher than in clusters
A and C (Figure 5).  Stations CH30 and CH32 are 
located in municipal and central plain areas with 
high densities of population, industry, and livestock. 
Wastewater from these land uses is the main cause 
of decreased DO and increased BOD (Kunacheva 
et al., 2011).  Moreover, NH3-N and NO-

2-N are 
harmful to humans and animals, especially aquatic 
animals.  These pollutants are discharged into the 
river via animal feed lots, agricultural fertilizers, 
manure, industrial waste, and garbage dumps 
(MPCA , 2008; Thongdonphum et al., 2011). 
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Figure 5.  Boxplot showing distribution of values for each parameter in three clusters of water quality monitoring 
 samples from the Upper Chao Phraya River Basin.
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 Cluster C includes samples from the Ping, 
Nan, and Chao Phraya rivers, but only in high flood 
periods.  It was divided into two sub-clusters (C1 
and C2).  Sub-cluster C1 was represented by only 
the Nan and Chao Phraya rivers in high flood years 
(2008, 2011 and 2012).  Notably, Nan River samples 
had high Tur, SS, and TS, whereas Chao Phraya 
samples had high FCB and TCB.  Sub-cluster C2 
included samples from all three rivers during high 
flood years (2008-2012).  The parameters Tur, SS, 
and TS were high for this sub-cluster, but FCB 
and TCB showed fluctuation.  The differences in 
average TS and SS compared to clusters A and B 
were highly significant (Figure 5).  Heavy rainfall 
increases surface runoff, which carries and deposits 
both sediment and warm-blooded animal feces into 
the river (An et al., 2016; Bidorn et al., 2016; Huang 
et al., 2019; Singkran et al., 2019).  Furthermore, the 
transported soil particles can bring pollutants such as 
fertilizers, pesticides, and heavy metals into the river, 
which may lead to algal blooms, oxygen decline, 
and impaired health of aquatic life (Khatri and Tyagi, 
2015).  In addition, seasonal variation and long-
term anthropogenic factors impact turbidity (Zhou 
et al., 2021).  Turbidity blocks light penetration, 
and thus reduces photosynthesis and transparency 
(Sidabutar et al., 2017; Shen et al., 2019).

 A self-organizing map (SOM) was applied 
to analyze a large array of data on the water quality 
of the Ping, Nan, and Chao Phraya rivers from sites 
in Nakhon Sawan Province.  The results showed 
three main clusters based on the similarity of water 
quality parameters among samples taken from 2008-
2018.  In cluster B, water quality was poorer than 
in the other clusters, and this corresponded with 
low water levels at the sites.  This study indicates
that water quality is affected by anthropogenic 
sources, especially domestic wastewater (Cluster B).  
Meanwhile, the natural effects of heavy rainfall 
and drought on water quality are also evident 
(Clusters A and C).  These results can illustrate 
basic information about water quality to authorities 
responsible for water management.  In addition, 
sufficient sewage systems and other forms of 
treatment are necessary for domestic, agricultural,

and commercial sources of wastewater, as they 
have the greatest effect on water quality in the Chao 
Phraya River.

 The authors are grateful to Regional 
Environmental Office 4 for providing the raw data.
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