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Spatio-Temporal Variability of Water Quality in the Upper
Chao Phraya River, Thailand, between 2008 and 2018

Piyathap Avakul!>2, Tuantong J utagate3, Pornpirat Kantatasiri" 2 and Napon Anuttamnggoonl’ 2

ABSTRACT

Variability of water quality in the three largest tributaries of the Upper Chao Phraya River
Basin (Ping, Nan, and Chao Phraya rivers) was examined over 11 years (2008-2018) using annual
averages of 12 water quality parameters from six surface water stations. We applied two multivariate
methods, namely a self-organizing map (SOM) and principal component analysis (PCA) to assess
the spatio-temporal variation. The results revealed strong spatio-temporal patterns of water quality
conditions, evidenced by three distinct clusters of samples (ANOSIM, p<0.05). The PCA explains as
much variation as possible in two dimensions, which eigenvalues of two axis is 45.08 %. The graphical
PCA shows that cluster B is completely separated, while the cluster A and C overlap. Parameters in
cluster A (comprising many of the Ping, Nan, and Chao Phraya samples between 2009-2018, and further
separated by drought and floods years) were within the regulated standards for surface water. In cluster B,
which only included the Chao Phraya stations during the dry period from 2013-2015, the water quality
was affected by community waste, as indicated by high total coliform bacteria and fecal coliform bacteria.
Meanwhile, cluster C comprised 2008, 2011, 2012 and 2017 samples from the Ping, Nan, and Chao
Phraya rivers in high flood periods, and was further divided into two sub-clusters. It was characterized
by high turbidity (121.70+47.59 NTU) and total solids (240.96+30.75 mg-L™"), which were caused by
heavy rains and flooding. Our analyses show that the variability of water quality in the studied area
was largely affected by human activities and seasonal variation.
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INTRODUCTION

is important for assessing river conditions, and can
support a precautionary approach that provides

The goods and services provided by rivers
support human livelihoods in various forms and
have a close relationship with human societies
(i.e., culture and religion) (Khorooshi et al., 2016).
Increasing population as well as urban and industrial
development are among the key factors degrading
water quality, altering hydrological cycles and
changing the assemblage of aquatic fauna and river
ecosystems (Tudesque et al., 2008; Altansukh
and Davaa, 2011). Monitoring of water quality,
hydrological regimes, and aquatic faunal composition

time and opportunity for improvement or recovery
(Simeonov et al., 2010).

The Chao Phraya River Basin is the most
important system in central Thailand, with a drainage
area of approximately 162,000 km? (30 % of the
country’s total area), and is home to 40 % of the
Thai population (Nakamuro et al., 1982; Komori
et al.,2012; Huang et al., 2019). The basin can be
considered as two parts-upper and lower-which
are geographically divided by a narrow section in
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Nakhon Sawan Province (Komori ef al., 2012). The
upper river basin is mountainous with a floodplain
along the river, and contains the Ping River (33,900
km? of watershed area), the Wang River (10,800
km?2), the Yom River (24,047 km?), and the Nan
River (34,300 km?) (Komori et al., 2012; Wichakul
et al.,2014). The Chao Phraya River (and the lower
basin) originates from the union of these four rivers
(i.e., Ping, Wang, Yom, and Nan) in Nakhon Sawan
Province. Downstream, the Chao Phraya joins with
the Sakae Krang River at Chai Nat Province, then
flows through floodplain in the country’s central
region, which covers 55,290 km?2 (35 % of the total
basin area) (Office of Natural Water Resources
Committee of Thailand, 2003; Komori et al., 2012).

The river supports many activities such as
agriculture, fisheries, recreation, industry, and
municipal uses (Huang et al., 2019; Singkran et al.,
2019). People living in the riparian area depend
on the water resources; for example, in Nakhon
Sawan Province, it is estimated that 31 % of GPP is
from agriculture and livestock, which rely on water
supplies from the Chao Phraya (Nakhon Sawan
Statistical Office, 2018). Recently, the area along
the river has shown a rapid change due to vast
urbanization, economic growth, industry expansion,
intensive agriculture development, and other
human activities (Molle, 2007). The anthropogenic
stressors along the river have inevitably led to a
deterioration of water quality. Besides these direct
stressors, climate change has also been recognized
as a tremendous cause of changes in the timing
and intensity of precipitation, and of hydrological
characteristics of the river (e.g., flooding and
flow) (Naik and Jay, 2011; Singkran et al., 2019).
Moreover, nutrient transport and eutrophication
are affected by the change in river flow, and
consequently impact the river’s aquatic flora and
fauna (Prathumratana et al., 2008).

Flood and drought periods, as well as
changes in stream flow, can lead to eutrophication
and nutrient transport, which affect water quality
factors such as DO, BOD, NH," and turbidity
(Senhorst and Zwolsman, 2005; Prathumratana
et al., 2008). DO represents available oxygen for
aquatic animals, while BOD is the collective

compounds. The level of pH is critical for the
toxicity of heavy metals and their metabolism by
aquatic organisms (Sidabutar et al., 2017). Nitrogen
compounds (ammonia and nitrate) are toxic to
aquatic life at high pH, while nitrite is a main cause
of eutrophication (MPCA 2008; Sidabutar et al.,
2017). Furthermore, total coliform bacteria and
fecal coliform bacteria are commonly used
indicators of water contaminated by the feces of
humans and other warm-blooded animals (Huang
et al., 2019). Turbidity, total solids, and suspended
solids, meanwhile, affect the penetration of light
into water, which influences both photosynthesis
and water temperature (Bidorn et al., 2016).
Population pressure and environmental phenomena
are increasing sediment loads and suspended solids
through deforestation for agriculture, water resource
development, and heavy floods (Bidorn et al., 2016;
Sidabutar et al., 2017).

Water quality data encompass a large
and complex set of parameters, often with
multidimensional, non-linear, and non-normal
distribution (Ye et al., 2015; An et al., 2016).
Meanwhile, many statistical methods have the
weakness of requiring normal distribution of data.
The assessment of water quality, especially variation
in space and time, is performed by multivariate
analysis techniques such as principal component
analysis (PCA) and self-organizing maps (SOM),
which are powerful tools when applied to these
types of data. Both techniques have been widely
applied in water quality, aquatic ecology, hydrology
and the environment (Kalteh et al., 2008; Mishra,
2010; Ye et al., 2015; An et al., 2016; Chea et al.,
2016; Sowmiya and Raj, 2016; Orak ef al., 2020).
Although PCA is limited to classification, it is an
effective technique to identify important parameters
and explain the variance of a large dataset of
correlated variables with a smaller set of independent
variables (Mishra, 2010; An et al., 2016).
Meanwhile, SOM can be used for monitoring and
determining spatio-temporal variation by clustering
and classification (Ye et al., 2015). SOM is an
unsupervised artificial neural network, which is
a powerful method for the analysis of large data
sets by reducing high dimensional input data to
a low dimensional map in an output layer (Chea
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The surface water quality in Thailand is
monitored by the Pollution Control Department
(PCD). A general water quality assessment is
conducted based on the surface water quality
standards and water quality index, and is reported
every year (Simachaya, 2000; Wongaree, 2019).
Most previous studies of water quality in the Chao
Phraya River Basin were focused on only one effect
on water quality, such as season, flood or drought,
climate change, and anthropogenic effects that do
not relate to spatio-temporal variation (Komori
et al., 2012; Wichakul et al., 2014; Singkran et al.,
2019). However, recognizing long-term changes
(i.e., over decades) of some important water quality
parameters and their patterns of change in space
and time is also important for resource managers
to better maintain or improve water quality. This
paper, therefore, aims to assess the spatio-temporal
variation of 12 selected water quality parameters
among representative stations over 11 years of
sampling in the upper part of Chao Phraya (i.e.,
Nakhon Sawan Province).

MATERIALS AND METHODS

Water quality parameters considered for this

99,500

79

study included physical, chemical, and biological
properties that are affected by anthropogenic stress,
eutrophication, or climate change. The selected
water quality parameters comprised pH, dissolved
oxygen (DO, mg-L"), biochemical oxygen demand
(BOD, mg-L™"), water temperature (WT, °C), turbidity
(Tur, NTU), total solids (TS, mg-L™"), suspended
solids (SS, mg-L™"), total coliform bacteria (TCB,
MPN-100 mL"), fecal coliform bacteria (FCB,
MPN-100 mL!), ammonia nitrogen (NH;-N, mg-L™!),
nitrate (NO'5-N, mg-L™"), and nitrite (NO-,-N, mg-L™).
Water quality parameters were obtained from
monitoring data used in surface water quality
standards and a water quality index (WQI) developed
by the Thailand Pollution Control Department,
which describes methods for water quality analysis
(Simachaya, 2000; Pitakwinai et al., 2018). All
parameters were obtained from six stations (PI101,
P102, NAOI, NA1.1, CH30, and CH32) during
2008-2018 (Figure 1). The abbreviations PI, NA,
and CH stand for Ping, Nan, and Chao Phraya
rivers, respectively. The PI and CH stations are in
community zones, while NA is representative of
a rural zone (Table 1). The raw data were supplied
by Regional Environmental Office 4, in which the
monitoring of surface water quality parameters is
conducted four times per year.
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Figure 1. Location of surface water sampling stations in Nakhon Sawan Province (marked yellow in inset).
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Table 1. Location and characteristics of surface water stations used for water quality study of the Upper Chao
Phraya River.

Station Name Geographical co-ordinates Characteristics

PIO1 100.1208° N This reach of Ping River receives water from agricultural
15.7257° E areas and riparian communities. The topography of the
river is shallow and narrow.
P102 99.9790° N This reach of Ping River receives water from agricultural
15.9294° E areas and community areas in Banphot Phisai District,
Nakhon Sawan Province. The topography of the river is
shallow and narrow.
NAO1 100.1897° N This reach of Nan River receives water from agricultural
15.7270° E areas and riparian communities. The topography of the
river is narrow and deep.
NAL.1 100.3102° N This reach of Nan River receives water from agricultural
15.8979° E areas and community areas in Chum Saeng District,
Nakhon Sawan Province. The topography of the river is
narrow and deep.
CH30 100.1385° N This reach of Chao Phraya River receives water from
15.4226° E agricultural areas, community and market areas in Phayuha
Khiri District, Nakhon Sawan Province. The topography
of the river is wide and deep.
CH32 100.1260° N This reach of Chao Phraya River receives water from the
15.6857° E community and market area in Muang District, Nakhon

Sawan Province. The topography of the river is narrow

and deep.

The data were then prepared as a matrix
of samples in columns (i.e., observation at surface

high dimensional input data into a low dimensional
map in an output layer (Kalteh et al., 2008; Orak

water station x year, for example CH32 08 is the
observation from station CH32 in year 2008) and
annual average values for water quality parameters
(12 variables) in rows.

A self-organizing map (SOM) was used to
investigate spatio-temporal variation by clustering
the samples according to differences in water quality
data. The SOM is an unsupervised algorithm of
an artificial neural network (ANN) (Kohonen, 1982).
It has been applied to studies of water resources
and ecology, and is capable of clustering and
classification. SOM is a powerful method for
the analysis of complex data with non-linear
relationships; it classifies similar elements from

et al., 2020). The SOM consists of two layers
(input and output) that are connected by weight
vectors (An et al., 2016). The input layer in our
case contained 12 neurons (water quality parameters),
which connected 66 input vectors (i.e., samples)
to the output layer. The output layer comprised 42
neurons, which was represented by a lattice map
with six rows and seven columns. The number
of neurons on the map was calculated from the
equation C = 5x\n, as proposed by the laboratory
of Computer and Information Science (CIS), Helsinki
University, where C is the number of cells and n is
the number of observations, and which guarantees
a minimum of quantization and topographic errors.
The hierarchical cluster analysis (Ward’s method)
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was used to help in decisions on cluster classification.

Significant differences among clusters were
determined by the analysis of similarity (ANOSIM),
which uses occurrence probability from the
connection intensity during the learning process
in SOM at a = 0.05.

The interrelationship among samples and
the 12 water quality parameters was determined by
principal component analysis (PCA). All parameters
have different units of measurement, which creates
substantial variance. The data were standardized by
a covariant matrix with a mean of 0 and a standard
deviation of 1 (Souza et al., 2020). The Monte Carlo
method was used to test significance of results with
1,000 random permutations. Differences among
clusters of each water quality parameter was also
tested by Kruskal-Wallis, and Wilcoxon’s post-test
was applied if a significant difference was found
at o =0.05. All statistical methods were performed
by Program R (R Core team, 2020) with kohonen
(Wickham, 2016), factoextra (Wehrens and Kruisselbrink,
2018) and ggplot2 packages (Kassambara and Fabian,
2020).

81

RESULTS AND DISCUSSION
Self-organizing map (SOM)

The SOM categorized the samples into
42 cells, with each cell representing a different
suite of water quality parameter values (i.e.,
samples within a cell have similar values for all
parameters). As similar samples are mapped close
together and dissimilar ones farther apart, SOM
cells were grouped into three clusters, based on
the hierarchical dendrogram results (Figure 2
and Figure 3). ANOSIM indicated significant
dissimilarity among the three clusters (p<0.05).
Cluster A samples were mostly from the Ping
(PIO1 and PI02) and Nan (NAOI and NAI.1) rivers
between 2013 and 2016. Cluster Bincluded only
Chao Phraya River samples (CH30 and CH32),
which clearly separated it from the other clusters.
Samples in this cluster were exclusively taken
between 2013 and 2015, a notably dry period.
Cluster C contained the remaining samples and
could be divided into two sub-clusters.
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Figure 2. Output layer of 42 neurons as clustered by self-organizing map (SOM).
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Figure 3. Hierarchical dendrogram produced by SOM.

Principal component analysis (PCA)

The PCA represents the relationship and
direction of water quality parameters among stations
(Figure 4). The PCA explains as much variation as
possible in two dimensions (i.e., along two axes).
The eigenvalues of principal component axis 1 (PC1)
and axis 2 (PC2) show that they explain 28.57 %
and 16.51 % of variance, respectively (together they
explain 45.08 %). DO, Tur, and TS had the highest
loading scores in PC1, and reflect contamination
by study area and season. The second axis (PC2)
had strong loading scores from BOD, TCB, and
FCB, which indicate contamination by human or
animal feces. The diagrams clearly show correlation
and direction among water parameters and samples
(Figure 4), and the Monte Carlo test was significant
(1,000 permutations, p-value<0.001). Meanwhile,
the variable loadings >|0.25| were considered
important in structuring samples, implying high
influence during the study period (Table 2) (Fischer
and Paukert, 2008). The graphical PCA shows
that only observations belonging to cluster B are
completely separated, while the observations for
clusters A and C overlap. This indicates that the
water quality in cluster B was explicitly different
from the two remaining clusters.

Cluster characteristics

By combining the SOM and PCA results,
the characteristics of each cluster can be further
explored.

Cluster A includes samples from the Ping,
Nan and Chao Phraya rivers between 2009 and 2018,
and is further divided into two periods, i.e., dry
years (2013 to 2016) and flood years (2009, 2010
and 2018). DO was highest in this cluster, whereas
TCB, FCB, Tur, NH3-N, and NO™,-N were lower
than in clusters B and C (Figure 5). This cluster
was also characterized by slightly higher BOD,
TCB, and FCB in dry periods. DO concentration
is related to flow conditions, for which there is
a seasonal effect (Voutsa et al., 2001). The high
water in the rainy season causes dilution and general
improvement of water quality along with increasing
the DO level (Qadir et al., 2008; Huang et al., 2019).
This phenomenon of water fluctuation, which is
created by alternate dry and flood periods, dilutes
water pollution and moves it downstream (Simachaya
et al., 2000). This process is a form of natural self-
purification, and is reflected by the seasonal effect on
water quality (Zubaidah et al., 2019). Water quality
in cluster A was thus better than in clusters B and C.
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Table 2. Principal component (PC) loading scores for water quality parameters at six sites in the Upper Chao Phraya

River Basin during 2008-2018.

Water quality parameter PC1 pPC2
pH 0.16 -0.16
Dissolved Oxygen (DO, mg~L'1) 0.36 -0.06
Biochemical Oxygen Demand (BOD, mg~L'l) 0.19 -0.48
Water Temperature (WT, °C) 0.23 -0.22
Turbidity (Tur, NTU) -0.46 -0.09
Total solids (TS, mg-L'l) -0.46 0.05
Total Coliform Bacteria (TCB, MPN-100 mL'l) -0.10 -0.51
Fecal Coliform Bacteria (FCB, MPN-100 mL'l) -0.09 -0.56
Ammonia nitrogen (NH;3-N, mg~L'1) -0.13 -0.28
Nitrate (NO3-N, mg-L™") -0.23 -0.13
Nitrite (NO,-N, mg~L'1) -0.14 -0.01
Note: Bold text indicates variable loadings <|0.25].
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Figure 5. Boxplot showing distribution of values for each parameter in three clusters of water quality monitoring
samples from the Upper Chao Phraya River Basin.

Cluster B is limited to only samples from
CH30 and CH32 (Chao Phraya River), and only
during a period of low water volume between 2013
and 2015 (drought period). Significantly high
loadings of TCB and FCB were found in this cluster
(Figure 4 and 5), which implied effects from human
activities, domestic wastewater, and livestock waste
(Campos and Cachola, 2007). In addition, TCB
and FCB are used as indicators of the sanitary
quality of water and to detect contamination by
feces of humans and other warm-blooded animals
(Huang et al., 2019). The Thai surface water quality
standards prescribe TCB and FCB levels of not more
than 20,000 and 4,000 MPN-100 mL!, respectively;

higher values imply that water quality is poor
(Simachaya, 2000). Meanwhile, average BOD,
NH;-N, and NO™,-N were higher than in clusters
A and C (Figure 5). Stations CH30 and CH32 are
located in municipal and central plain areas with
high densities of population, industry, and livestock.
Wastewater from these land uses is the main cause
of decreased DO and increased BOD (Kunacheva
et al.,2011). Moreover, NH;-N and NO™,-N are
harmful to humans and animals, especially aquatic
animals. These pollutants are discharged into the
river via animal feed lots, agricultural fertilizers,
manure, industrial waste, and garbage dumps
(MPCA , 2008; Thongdonphum et al., 2011).
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Cluster C includes samples from the Ping,
Nan, and Chao Phraya rivers, but only in high flood
periods. It was divided into two sub-clusters (C1
and C2). Sub-cluster C1 was represented by only
the Nan and Chao Phraya rivers in high flood years
(2008, 2011 and 2012). Notably, Nan River samples
had high Tur, SS, and TS, whereas Chao Phraya
samples had high FCB and TCB. Sub-cluster C2
included samples from all three rivers during high
flood years (2008-2012). The parameters Tur, SS,
and TS were high for this sub-cluster, but FCB
and TCB showed fluctuation. The differences in
average TS and SS compared to clusters A and B
were highly significant (Figure 5). Heavy rainfall
increases surface runoff, which carries and deposits
both sediment and warm-blooded animal feces into
the river (An et al., 2016; Bidorn et al., 2016; Huang
et al., 2019; Singkran et al., 2019). Furthermore, the
transported soil particles can bring pollutants such as
fertilizers, pesticides, and heavy metals into the river,
which may lead to algal blooms, oxygen decline,
and impaired health of aquatic life (Khatri and Tyagi,
2015). In addition, seasonal variation and long-
term anthropogenic factors impact turbidity (Zhou
et al., 2021). Turbidity blocks light penetration,
and thus reduces photosynthesis and transparency
(Sidabutar et al., 2017; Shen et al., 2019).

CONCLUSION

A self-organizing map (SOM) was applied
to analyze a large array of data on the water quality
of the Ping, Nan, and Chao Phraya rivers from sites
in Nakhon Sawan Province. The results showed
three main clusters based on the similarity of water
quality parameters among samples taken from 2008-
2018. In cluster B, water quality was poorer than
in the other clusters, and this corresponded with
low water levels at the sites. This study indicates
that water quality is affected by anthropogenic
sources, especially domestic wastewater (Cluster B).
Meanwhile, the natural effects of heavy rainfall
and drought on water quality are also evident
(Clusters A and C). These results can illustrate
basic information about water quality to authorities
responsible for water management. In addition,
sufficient sewage systems and other forms of
treatment are necessary for domestic, agricultural,

and commercial sources of wastewater, as they
have the greatest effect on water quality in the Chao
Phraya River.
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