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Weight Estimation of Nile Tilapia (Oreochromis niloticus Linn.)
Using Image Analysis with and without Fins and Tail

Wara Taparhudee and Roongparit Jongjaraunsuk*

ABSTRACT

Manual measurement of live fish is stressful and may cause injuries or post-release mortality.
Therefore, indirect measurement based on image analysis should be developed. In this study, 150 Nile
tilapia samples of three different size ranges (0.5-1 g, 20-30 g, and 40-60 g-fish™') were collected.
Each fish was photographed five times from above while freely swimming, and then weighed. Data
from 1,500 images (10 images of each fish were analyzed: 5 for whole body and 5 without fins and tail)
were manually segmented to extract the view area (V). Based on an 80-20 split test, the data were
divided into two sets: training data (120 fish; 1,200 images) and validation data (30 fish; 300 images).
The results showed that fish body weight (W) fitted with V without fins and tail achieved a higher
coefficient of determination (r?) than whole body. The linear regression model was chosen as the best
fit for W estimation based on r? (0.922-0.958) and several error analyses: root mean square error (RMSE;
1.02+0.86 g), mean absolute error (MAE; 0.90+0.82 g), mean absolute relative error (MARE; 4.57+
4.11%), maximum absolute error (MXAE; 1.76+1.36 g), and maximum relative error (MXRE; 0.12+
0.10%). Our results indicated that utilizing a linear model was ideal and easy to apply. Furthermore,
there is no suffering or weight loss associated with this procedure, since it is not necessary to harvest
the fish as with traditional methods. This suggests that the findings of this study can be utilized in
a subsequent phase to estimate the weight of freely moving fish, and we also favor incorporating our
results with unmanned aerial vehicles (UAVs). Furthermore, Artificial Intelligence (Al) will be employed
to identify models capable of autonomous operation.
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INTRODUCTION

Nile tilapia (Oreochromis niloticus Linn.)
is a freshwater fish and the third largest aquaculture
product in the world. It is easy to culture and has
the advantages of fast growth, physiological strength,
and resistance to disease. Nile tilapia farming is
carried out in fresh and brackish water environments
(Ansari et al., 2020; Sgnaulin ef al., 2020). Efficient
Nile tilapia husbandry requires regular measurement
of fish weight and length to optimize feed ration.
Estimating the weight of fish in ponds, cages or
tanks is commonly done by manual measurement.

This method results in post-release mortality,
physiological stress, potential harm, and other
negative effects (Halttunen ef al., 2010; Stalhammar
etal.,2012; Gagne et al., 2017; Bower et al., 2019;
McLean et al., 2019). Additionally, the amount
of feed intake may decrease for several days after
weighing, resulting in reduced growth rates
(Pickering and Christie, 1981; Maule et al., 1989).
These effects have been reported for Nile tilapia
(Camargo-dos-Santos et al., 2021). In addition,
manual weighing is labor intensive and time-
consuming (Silva et al., 2015).
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To resolve these problems, image analysis
has been applied in aquaculture. Balaban ef al.
(2010a) predicted the weight of Alaskan salmon
of different species for sorting after harvest (using
a light box and motionless specimens), while
Torisawa et al. (2011) used image analysis with
the Move-tr/3DTM software for three-dimensional
weight estimation of free-swimming Pacific bluefin
tuna (Thunnus orientalis) cultured in a net cage.
Later, Viazzi et al. (2015) developed this technique
using computer vision to assess the weight of Jade
perch (Scortum barcoo) (using a light box and
motionless specimens), while Miranda and Romero
(2017) developed a prototype using computer
vision methods to determine the length of rainbow
trout (Oncorphynchus mykiss) (a specific measuring
prototype). Konovalov ef al. (2018) and Jongjaraunsuk
and Taparhudee (2021) applied image analysis with
area measurement to estimate the mass of Asian
sea bass (Lates calcarifer) (both using a bounding
box, but the former with motionless specimens
and the latter free-swimming), while Gimds et al.
(2021) used image analysis to evaluate the body
weight of cultured European catfish (Silurus glanis)
and African catfish (Clarias gariepinus) (light box,
motionless specimens). Considering Nile tilapia,
Fernandes et al. (2020) applied image segmentation
techniques using a deep-learning model to identify
body regions for weight estimation (using a table-
top stand mount and based on carcass traits), while
Jongjaraunsuk and Taparhudee (2022) used image
analysis for red tilapia (Oreochromis niloticus Linn.)
weight estimation.

Numerous studies have utilized image
analysis, but primarily with images of deceased
fish or fish caught under controlled laboratory
settings where they are not swimming freely in their
natural habitat (e.g., Balaban et al., 2010a; Viazzi
etal., 2015; Konovalov et al., 2018; Fernandes et al.,
2020; Gumis et al., 2021). The image analysis
technique developed by Jongjaraunsuk and
Taparhudee (2022) has a limited scope of operation.
The technique did not evaluate wide-angle images
or cover a large area of operation such as a cage
for processing.

The current study developed an image
analysis method for free-swimming fish to eliminate

fish stress from capture and reduce the amount of
time involved in manual weighing methods by
using the relationship between the top view area
and fish weight. The aim was to use this image
analysis model as a second step to assess the biomass
of fish swimming freely in aquaculture farms under
natural conditions.

MATERIALS AND METHODS

Research location and fish sample

One thousand Nile tilapia fry, weighing
0.5-1 g-fish! were purchased from the Kamphaeng
Saen Fisheries Research Station, Faculty of Fisheries,
Kasetsart University, Kamphaeng Saen campus,
Kamphaeng Saen District Nakhon Pathom Province,
Thailand, and transported in two large plastic bags
(500 fish-bag™!) to the Freshwater Aquaculture
Laboratory, Faculty of Fisheries, Kasetsart University,
Bangken, Bangkok, Thailand.

Before starting the experiment, the fish
were raised in two 1,000-L tanks (500 fish-tank™)
using a flow-through water system for one week as
an acclimatization period. Three air stones were
placed in each tank, and the water quality parameters
were controlled at appropriate levels for Nile tilapia.
Dissolved oxygen (DO), water temperature (Temp),
pH, total ammonia nitrogen (TAN), and nitrite-
nitrogen (NO,;N) were monitored continuously
and were maintained in the ranges of 4-7 mg-L"!,
25-32°C, 7.5-8.5,0.1-0.5 mg-L ! and 0.1-0.25
mg-L!, respectively (Azaza et al., 2008; Kolding
et al., 2008; Tran-Duy et al., 2012). Fish were fed
with 38% protein pelleted feed (Charoen Pokphand
Foods Public Co., Ltd.) until satiation twice a day
at 9:00 a.m. and 3:00 p.m.

Image acquisition

The experiments were conducted as three
consecutive events based on fish size. The first
experiment was performed on fish sized 0.5-1
g-fish! (size 1), whereby 50 healthy fish were taken
at random based on their normal swimming behavior
and with no visible bodily wounds, and placed in
a 50x80%20 cm fiberglass tank containing 80 L of
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water with air stones. Then, individual fish were
transferred to a white rectangular plastic box
(a bounding box) measuring 28%42.2x9.5 cm with
a water depth of 7 cm. A ruler was placed beside
the box as a calibration scale and all photographs
were taken with the ruler included. Photographs
were taken at a distance of 80 cm from the lens to
the water surface using an Olympus EM 10 Mark 11
(Olympus Corporation; Tokyo, Japan), at an image
size of 4,608%2,592 pixels, with 1/40" sec exposure
time and a focal length of 14 mm. Each fish was
photographed 10 times, and then weighed using a
CST-CDR-3 scale (CST Instruments (Thailand) Ltd.;
Bangkok, Thailand) before being returned to an
80—L recuperation tank fully aerated by a sandstone.
After recuperation, each fish was returned to the
acclimation tank and the fish were reared until they
reached the next size ranges (size 2: 20-30 g and
size 3: 40-60 g). Each culture period was around
three weeks to reach the required sizes. The same
procedure applied for size 1 was used for sizes 2 and 3.

Image analysis techniques

Each fish image was refined by using
Image J software, National Institute of Health (NIH),
USA. This software is an openly accessible (open-
source), sovereign platform that supports multiple
threads, and it can be used to create user-coded
plugins to meet the requirements of any created
operation (Stolze ef al., 2019). The computer used
was a Lenovo Legion (running the Windows 10

Home Single Language 64-bit operating system, with
an Intel (R) Core (TM) 17-9750H CPU @ 2.60 GHz,
16.0 GB memory (RAM) purchased from Advice
IT Infinite Public Co., Ltd. (Bangkok, Thailand).

The procedure for finding the image area
to estimate fish weight began by identifying the
image of the fish to be analyzed, then selecting the
‘segmented’ or ‘freehand lines’ option and marking
a straight line on a known object in the image.
We used the ruler to draw a 1-cm straight line as
mentioned before, then pressed the Analyze’ button
and then ‘Set scale’ to change the units of length
to centimeters and ticked the ‘Global’ box to apply
the scale ratio (Figure 1).

After calibration, ‘Polygon selection’ was
chosen and the mouse was moved around the desired
area (around the fish body), clicking to record each
segment. Each fish sample was recorded on five
photos, and each photo produced an image area of the
whole-fish body (selecting fish shape with fins and
tail); five images of the fish body were also recorded
excluding the fins and tail. Next, we extracted the
foreground object from the background and made
the fish body black and the background white. This
process used image binarizing and a thresholding
algorithm (Figure 2). The area of the fish image was
calculated by choosing the size option ‘O—infinity’
and circularity as ‘0—1’, and then selecting the
‘Analyze particles’ option (Figure 3). Pixel area
can be calculated from equation 1.

Calibrate.
Histogram
Plot Profile
Surface Plot
Gels 4
Tools

Ctri+H
Ctri+K

(b) (c)
¢ Image) = X d
File Edit Image Process [ENENE Plugins Window Help 4608x3456 pixels; 8-bit. 15MB
OO/ £[3%] Measwe  cvm W g|8[2| | |»| [@sersco
Wand (tracing) tool Analyze Particles
Distance in pixels: [74.0608
Summarize
Known distance: |1
Distribution.
Label Pixel aspectratio: |1.0
Clear Results Unitof length: [cm|
Click to Remove Scale

 Giobal

Scale: 74.0608 pixeis/cm

_ox | coc] ]

Figure 1. Calibration process: (a) Image acquisition, (b) Set scale, and (c) Set global calibration.
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Pixel area = number of pixelsxscale (1) the entire image and scale is the physical scale
associated with the image. In this study, a 1-cm
straight line from a ruler was used. In the case of
a processing overview, as shown in Figure 4.

Where number of pixels is the total
number of pixels within the selected region or

(al) (a2)

(b3)

Figure 2. Image extraction for whole fish body (al, a2, and a3), and fish body excluding fins and tail (b1, b2, and b3).
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Figure 3. Particle analysis: (a) Analyze options, (b) Analyze particles options; to calculate the size of the pixel area
of the fish in the two processing pattens (with and without fins and tail), it can be determined from the
total number of black area in the image, and (c) Summary of total area.
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Figure 4. Steps of image processing using Image J software.

Equations for fish weight estimation from images

The relationship between the view area
(V) and weight (W) of each fish was generated
using mathematical models. Balaban et al. (2010a),
Zion (2012), Viazzi et al. (2015) and Konovalov
et al. (2018) reported that the mathematical models
commonly tested for fish W assessment using real
V were linear, power, and polynomial regression
models (Equations 2, 3, and 4, respectively).

Linear: W=A+BYV 2
Power: W=A VB 3)
Polynomial: W = A+B V+C V? “4)

Where W is the body weight (g), V is the
viewable area of the fish (cm?), and A, B, and C
are coefficients.

Ten images of each fish were analyzed
(five images for whole body area and five images
without fins and tail). To reduce the over-fitting
problem, fish image data were divided into two sets
using an 80-20% split-test according to Konovalov
et al. (2018); 80% (40 fish; 400 images) were used
as training data and 20% (10 fish; 100 images) were
used as out-samples or validation data, as shown
in Figure 5.

Data analysis

The body image area per weight and the
percentages of fin and tail area to body area of
each fish were calculated. The training data set
was used to develop the relationship between view
area and fish weight to determine the coefficients
of determination (1*) of the linear, polynomial and
power models generated from the fish image area
of the whole body of the fish (with fins and tail)
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Figure 5. Testing procedure for fish sampling.

and from the fish image area without fins and tail.
Then, all the training models were validated for
all fish sizes, and average 1> values were used to
compare the models. First, all data were tested
for homogeneity using Levene’s test of variance.
In case of unequal variances, Welch’s t-test was
applied. If the data were homogeneous, statistical
differences were analyzed using an independent
sample t-test at a significance level of 0.05. The
image acquisition method with the higher r* was
selected for error analysis using the root mean
square error (RMSE), mean absolute error (MAE),
mean absolute relative error (MARE), maximum
absolute error (MXAE), and maximum relative
error (MXRE) statistics for all models, as shown
in Equations 5, 6, 7, 8, and 9, respectively.

Root mean square error (RMSE):

o Westimated.i ~ Wincasured.i >
RMSE:\l/zN[ ™

Mean absolute error (MAE):

25  Westimated i ~Wineasured i

= (©)

Mean absolute relative error (MARE):

MAE =

2 [Westimatedi ~Wineasured il / Wineasured

MARE = N

x100
@)

Maximum absolute error (MXAE):

MXAE = max®, (|Wesimatedi " Wincasuredil) ®)
Maximum relative error (MXRE):
W -W
MXRE — max]r;] (l estimated.i mcusurcd.l‘) (9)

measured.i

where Wesimated.i Tepresents the estimated
weight of each individual, while Weasuredi represents
the weight obtained from the traditional measuring
method.

Then, the average values of each error
analysis statistic (RMSE, MAE, MARE, MXAE
and MXRE) of each model for each fish size were
analyzed for variance differences based on one-way
analysis of variance (ANOVA). Mean differences
between treatments were compared using Duncan's
new multiple range test at the 95% confidence
level. All statistical analyses were performed using
the IBM SPSS Statistics 26.0 software. Results
were presented as the mean+tstandard deviation
(SD).
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RESULTS

Relationship between visible area and body weight

of fish

In total, 150 fish were examined (50 fish
for each size). The results indicated that the body
image area (cm?) per weight (g) increased in fish
images both with and without fins and tail. The
lowest body weight was 0.40 g and the highest was
63.30 g. When using fish images with fins and tail,

35.00 .
mmmmm Actual weight

—— With fins and tail
------- ‘Without fins and tail

30.00
25.00

20.00

Area (cm?)

15.00

10.00

5.00

0.00

the smallest average body image area was 0.98 cm?
and the largest was 28.49 cm?, while using images
without fins and tail, the smallest average body
image area was 0.87 cm? and the largest was 24.30
cm? (Figure 6).

The largest fish size (size 3) had the
highest percentage of fin and tail area to body area
(27.83+6.49%) followed by sizes 2 and 1 (21.08+
5.85 and 17.4846.51%, respectively), as shown in
Figure 7.
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Figure 6. Area of image for each fish weight.
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Figure 7. Percentage of fin and tail area to body area of each fish size group (0.5-1 g, 20-30 g, and 40-60 g).
Note: After completing the whole-fish body analysis, each photo was determined individually for the percentage
of fin and tail area to body area. Error bars indicate SD.
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Training data

The results in Table 1 show that fish
images with fins and tail for size 1 (0.55-1 g)
yielded 2 values for the linear, polynomial, and
power regression models of 0.902, 0.881, and
0.908, respectively. The same models had r* values
0f 0.930, 0.931, and 0.916 based on fish images
without fins and tail. For fish of size 2 (20-30 g),
r? values for the three models were 0.806, 0.806,
and 0.817, respectively, for images with fins and
tail, and 0.895, 0.898, and 0.901 for images without
fins and tail. For fish of size 3 (40-60 g), > values
were 0.802, 0.809, and 0.798 for images with fins
and tail, and 0.939, 0.905, and 0.900 for images
without fins and tail (Table 1).

Validation

The 12 values from mathematical models
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based on image area of the whole fish body and the
body without fins and tail were not significantly
different (p>0.05) for the smallest size group, but
were significantly different for the second and third
size groups (p<0.05). The average 1* values based
on whole fish area and body area without fins and
tail were 0.821+0.005 and 0.971+0.018, respectively,
for group 2, and 0.754+0.021 and 0.937+0.009 for
group 3 (Table 2 and Figure 8a—8c¢).

The results in Table 2 show that the
equations for the fish body image without fins
and tail had higher predictive coefficients (r?) than
using the whole-fish body image. Therefore, error
analyses were only determined on images without
fins and tail. The RMSE, MAE, MARE, MXAE
and MXRE values of linear, polynomial and power
regression models based on each fish size group
were not significantly different (p>0.05), as shown
in Table 3.

Table 1. Coefficients of area-weight models based on Nile tilapia images with and without fins and tail for three

fish size groups.

Model coefficients

Size Weight (g2) Equation With fins and tail Without fins and tail
A B C r’ A B C r
1 0.5-1 Linear -0.007 0.497 - 0.902 -0.189 0.761 - 0.930
Polynomial -0.304 0.891  -0.124  0.881 -0.051 0.531 0.093 0931
Power 0.483 1.043 - 0.908 0.571 1.267 - 0.916
2 20-30 Linear -0.668 1.609 - 0.806 -7.911 2.515 - 0.895
Polynomial 0.191 1.501 0.003  0.806 10.306 0271 0.010  0.898
Power 1.463 1.024 - 0.817 0.868 1.305 - 0.901
3 40-60 Linear -8.105 2.290 - 0.802 -23.030  3.740 - 0.939
Polynomial 45.491 -2.029  0.086  0.809 12.824 0593 0.064  0.905
Power 1.232 1.144 - 0.798 1.2774 1.226 - 0.900

Note: A, B, and C are model equation coefficients.
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Table 2. Comparison of whole-body fish images and body without fins and tail using three different mathematical
models and three size groups of Nile tilapia.

Fish size and model

Model coefficient (r?) Levine’s test

T-test for equality of means

Fish size: 1 (0.5-1 g) With fins and tail ~ Without fins and tail F Sig. Sig. (2-tailed)
Linear 0.929 0.922

Polynomial 0.941 0.909

Power 0.954 0.889

Mean+SD 0.941+0.013 0.907+0.017 0.00  1.00 0.07
Fish size: 2 (20-30 g)

Linear 0.822 0.958

Polynomial 0.825 0.963

Power 0.816 0.991

Mean+SD 0.821+0.005 0.971+0.018 0.64 047 0.04*
Fish size: 3 (40-60 g)

Linear 0.750 0.937

Polynomial 0.777 0.929

Power 0.736 0.946

Mean+SD 0.754+0.021 0.937+0.009 229  0.20 0.00*

Note: * in the row indicates
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statistical difference at p<0.05.
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Figure 8. Coefficients of determination (r?) obtained from three mathematical models of all fish sizes (100 images
-size!): (a) linear regression model, (b) polynomial regression model, and (c) power regression model.
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Figure 8. (Continued) Coefficients of determination (r?) obtained from three mathematical models of all fish
sizes (100 images-size™): (a) linear regression model, (b) polynomial regression model, and (¢) power
regression model.

Table 3. Error analysis (mean+SD) for mathematical models of images without fins and tail for each fish size group.

Model
Mathematical model p-Value
Linear Polynomial Power
RMSE (g) 1.02+0.86 1.30+1.23 1.2541.20 >0.05
MAE (g) 0.90+0.82 1.08+1.05 1.03+1.02 >0.05
MARE (%) 4.57+4.11 4.85+£3.93 4.20+3.11 >0.05
MXAE (g) 1.76£1.36 2.3542.04 2.28+1.95 >0.05

MXRE (%) 0.12+£0.10 0.13+0.09 0.13£0.10 >0.05
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DISCUSSION

The results showed that fish weight was
positively correlated with fish image area for both
the whole-fish image and the body without fins and
tail. As fish weight increased, the fish imaging area
increased accordingly, concurring with Viazzi et al.
(2015), Konovalov et al. (2018), and Fernandes
et al. (2020).

The models based on fish body images
without fins and tail gave better prediction results
than the models using whole-body images. Our
results concurred with several other authors who
used image processing techniques to assess the
weight of a variety of species, including Balaban
et al. (2010a; Alaskan salmon Oncorhynchus
gorbuscha, O. nerka, O. kisutch, O. keta), Viazzi
et al. (2015; Jade perch), Konovalov et al. (2018;
Asian seabass), Fernandes et al. (2020; Nile tilapia),
and Jongjaraunsuk and Taparhudee (2021; Asian
seabass). Konovalov et al. (2018) explained that
the fins and tail of the fish had an inconsistent mass
due to their high flexibility. They easily deformed
during swimming and were often damaged during
raising and harvesting. Balaban ef al. (2010a)
suggested that a program should be developed to
process the image by cropping the area of the fins
and tail. However, Balaban ef a/. (2010b) reported
that removing fins and tails did not improve the
prediction accuracy of whole Alaskan pollock
(Theragra chalcogramma) weight based on the view
area. The results of the present study indicated that
the average 1* values of all models for the smallest
fish with fins included were not significantly different
(p>0.05) from those without fins, whereas the
models did differ in accuracy for the two larger fish
groups (p<0.05). This might have occurred because
percentages of fin and tail area relative to the whole
body were smaller for the smallest fish (size 1) than
for the larger individuals (sizes 2 and 3).

Most other published mathematical models
for fish weight estimation from side-view images
used linear or power models. Linear models were
applied with grey mullet (Mugil cephalus), St.
Peter’s fish (Sarotherodon galiaeus), common carp
(Cyprinus carpio), Jade perch (Scortum barcoo)

and Nile tilapia (Zion et al., 2012; Viazzi et al.,
2015; Fernandes et al., 2020), whereas power models
were applied with Alaskan salmon, (Oncorhynchus
gorbuscha; nerka; kisutch;, keta), Alaskan pollock,
(Theragra chalcogramma), and Asian seabass
(Lates calcarifer) (Balaban et al., 2010a; 2010b;
Konovalov ef al., 2018). Konovalov ef al. (2018)
suggested that the power model was suitable for
large fish.

However, our results applied top-view
image analysis, with no apparent statistical differences
(p>0.05) among all mathematical models. This was
possibly because using the top view reduced any
problems associated with abnormalities in body or
belly shape, which may occur in large fish using
image analysis from a side view (Balaban et al.,
2010a). Therefore, our results suggest that using
a linear model is optimal and also simple and easy

to apply.

However, due to operational limitations,
the developed model application would be unable
to assess images from a broad angle or evaluate
the entire culture system, particularly in farm
ponds or cages in rivers. To resolve these problems,
unmanned aerial vehicles (UAVs) could be used
to obtain a large-view image. UAVs have been
applied in the agricultural sector (on plants) as well
as in fisheries for many purposes. Murugan ef al.
(2017) used aerial imagery to provide accurate data
for agricultural activities, while Hovhannisyan ez al.
(2018) used a UAV to create a model for appropriate
use of farmland. Fisheries applications have included
Casella et al. (2017), who used UAVs to analyze
and assess changes in the structure of shallow coral
reefs, Raoult and Gaston (2018), who applied aerial
techniques to evaluate the weight, size and number
of jellyfish populations to select capture areas and
Taparhudee ef al. (2023), generated a prototype for
using UAV with area image analysis for red tilapia
weight estimation in river-based cage culture. In
the future study, we propose to combine the image
processing techniques from this study with UAVs.
Additionally, Artificial intelligent (AI) will be
employed to identify models capable of running
automatically, thereby assisting in further reducing
processing time.



30 JOURNAL OF FISHERIES AND ENVIRONMENT 2023, VOLUME 47 (2)

CONCLUSION

We have proposed a method to estimate
accurately the weight of Nile tilapia by measuring
the area of the fish from the top view. Fish shapes
without the fins and tail produced better prediction
results than fish images with tail and fins. There
were no significant differences among the
mathematical models investigated. Therefore, our
results suggest that using a linear model is optimal
and also simple to apply. With our method, the
fish do not need to be harvested, and therefore
there is no weight loss due to the handling stress
incurred using manual weighing procedures.
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