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 Nile tilapia (Oreochromis niloticus Linn.) 
is a freshwater fish and the third largest aquaculture 
product in the world.  It is easy to culture and has 
the advantages of fast growth, physiological strength, 
and resistance to disease. Nile tilapia farming is 
carried out in fresh and brackish water environments 
(Ansari et al., 2020; Sgnaulin et al., 2020).  Efficient 
Nile tilapia husbandry requires regular measurement 
of fish weight and length to optimize feed ration. 
Estimating the weight of fish in ponds, cages or 
tanks is commonly done by manual measurement.

This method results in post-release mortality, 
physiological stress, potential harm, and other 
negative effects (Halttunen et al., 2010; Stålhammar 
et al., 2012; Gagne et al., 2017; Bower et al., 2019; 
McLean et al., 2019).  Additionally, the amount 
of feed intake may decrease for several days after 
weighing, resulting in reduced growth rates 
(Pickering and Christie, 1981; Maule et al., 1989). 
These effects have been reported for Nile tilapia 
(Camargo-dos-Santos et al., 2021).  In addition, 
manual weighing is labor intensive and time-
consuming (Silva et al., 2015).
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ABSTRACT

 Manual measurement of live fish is stressful and may cause injuries or post-release mortality. 
Therefore, indirect measurement based on image analysis should be developed.  In this study, 150 Nile 
tilapia samples of three different size ranges (0.5–1 g, 20–30 g, and 40–60 gfish-1) were collected. 
Each fish was photographed five times from above while freely swimming, and then weighed.  Data 
from 1,500 images (10 images of each fish were analyzed: 5 for whole body and 5 without fins and tail) 
were manually segmented to extract the view area (V).  Based on an 80–20 split test, the data were 
divided into two sets: training data (120 fish; 1,200 images) and validation data (30 fish; 300 images). 
The results showed that fish body weight (W) fitted with V without fins and tail achieved a higher 
coefficient of determination (r2) than whole body. The linear regression model was chosen as the best 
fit for W estimation based on r2 (0.922–0.958) and several error analyses: root mean square error (RMSE; 
1.02±0.86 g), mean absolute error (MAE; 0.90±0.82 g), mean absolute relative error (MARE; 4.57±
4.11%), maximum absolute error (MXAE; 1.76±1.36 g), and maximum relative error (MXRE; 0.12±
0.10%).  Our results indicated that utilizing a linear model was ideal and easy to apply.  Furthermore, 
there is no suffering or weight loss associated with this procedure, since it is not necessary to harvest 
the fish as with traditional methods.  This suggests that the findings of this study can be utilized in 
a subsequent phase to estimate the weight of freely moving fish, and we also favor incorporating our 
results with unmanned aerial vehicles (UAVs).  Furthermore, Artificial Intelligence (AI) will be employed 
to identify models capable of autonomous operation.      
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 To resolve these problems, image analysis 
has been applied in aquaculture.  Balaban et al. 
(2010a) predicted the weight of Alaskan salmon 
of different species for sorting after harvest (using 
a light box and motionless specimens), while 
Torisawa et al. (2011) used image analysis with 
the Move-tr/3DTM software for three-dimensional 
weight estimation of free-swimming Pacific bluefin 
tuna (Thunnus orientalis) cultured in a net cage. 
Later, Viazzi et al. (2015) developed this technique 
using computer vision to assess the weight of Jade 
perch (Scortum barcoo) (using a light box and 
motionless specimens), while Miranda and Romero 
(2017) developed a prototype using computer 
vision methods to determine the length of rainbow 
trout (Oncorphynchus mykiss) (a specific measuring 
prototype).  Konovalov et al. (2018) and Jongjaraunsuk 
and Taparhudee (2021) applied image analysis with 
area measurement to estimate the mass of Asian 
sea bass (Lates calcarifer) (both using a bounding 
box, but the former with motionless specimens 
and the latter free-swimming), while Gümüş et al. 
(2021) used image analysis to evaluate the body 
weight of cultured European catfish (Silurus glanis) 
and African catfish (Clarias gariepinus) (light box, 
motionless specimens).  Considering Nile tilapia, 
Fernandes et al. (2020) applied image segmentation 
techniques using a deep-learning model to identify 
body regions for weight estimation (using a table-
top stand mount and based on carcass traits), while 
Jongjaraunsuk and Taparhudee (2022) used image 
analysis for red tilapia (Oreochromis niloticus Linn.) 
weight estimation.

 Numerous studies have utilized image 
analysis, but primarily with images of deceased 
fish or fish caught under controlled laboratory 
settings where they are not swimming freely in their 
natural habitat (e.g., Balaban et al., 2010a; Viazzi 
et al., 2015; Konovalov et al., 2018; Fernandes et al., 
2020; Gümüş et al., 2021).  The image analysis 
technique developed by Jongjaraunsuk and 
Taparhudee (2022) has a limited scope of operation. 
The technique did not evaluate wide-angle images 
or cover a large area of operation such as a cage 
for processing.

 The current study developed an image 
analysis method for free-swimming fish to eliminate

fish stress from capture and reduce the amount of 
time involved in manual weighing methods by 
using the relationship between the top view area 
and fish weight.  The aim was to use this image 
analysis model as a second step to assess the biomass 
of fish swimming freely in aquaculture farms under 
natural conditions.

Research location and fish sample 
 
 One thousand Nile tilapia fry, weighing 
0.5–1 g∙fish-1 were purchased from the Kamphaeng 
Saen Fisheries Research Station, Faculty of Fisheries, 
Kasetsart University, Kamphaeng Saen campus, 
Kamphaeng Saen District Nakhon Pathom Province, 
Thailand, and transported in two large plastic bags 
(500 fish∙bag-1) to the Freshwater Aquaculture 
Laboratory, Faculty of Fisheries, Kasetsart University, 
Bangken, Bangkok, Thailand.

 Before starting the experiment, the fish 
were raised in two 1,000-L tanks (500 fish∙tank-1) 
using a flow-through water system for one week as 
an acclimatization period.  Three air stones were 
placed in each tank, and the water quality parameters 
were controlled at appropriate levels for Nile tilapia. 
Dissolved oxygen (DO), water temperature (Temp), 
pH, total ammonia nitrogen (TAN), and nitrite-
nitrogen (NO2

- N) were monitored continuously 
and were maintained in the ranges of 4–7 mg∙L-1, 
25–32 °C, 7.5–8.5, 0.1–0.5 mg∙L-1 and 0.1–0.25 
mg∙L-1, respectively (Azaza et al., 2008; Kolding 
et al., 2008; Tran-Duy et al., 2012).  Fish were fed 
with 38% protein pelleted feed (Charoen Pokphand 
Foods Public Co., Ltd.) until satiation twice a day 
at 9:00 a.m. and 3:00 p.m.

Image acquisition
 
 The experiments were conducted as three 
consecutive events based on fish size.  The first 
experiment was performed on fish sized 0.5–1 
g∙fish-1 (size 1), whereby 50 healthy fish were taken 
at random based on their normal swimming behavior 
and with no visible bodily wounds, and placed in 
a 50×80×20 cm fiberglass tank containing 80 L of 
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water with air stones.  Then, individual fish were 
transferred to a white rectangular plastic box
(a bounding box) measuring 28×42.2×9.5 cm with 
a water depth of 7 cm.  A ruler was placed beside 
the box as a calibration scale and all photographs 
were taken with the ruler included.  Photographs 
were taken at a distance of 80 cm from the lens to 
the water surface using an Olympus EM 10 Mark II 
(Olympus Corporation; Tokyo, Japan), at an image 
size of 4,608×2,592 pixels, with 1/40th sec exposure 
time and a focal length of 14 mm.  Each fish was 
photographed 10 times, and then weighed using a 
CST-CDR-3 scale (CST Instruments (Thailand) Ltd.; 
Bangkok, Thailand) before being returned to an 
80–L recuperation tank fully aerated by a sandstone.  
After recuperation, each fish was returned to the 
acclimation tank and the fish were reared until they 
reached the next size ranges (size 2: 20–30 g and 
size 3: 40–60 g).  Each culture period was around 
three weeks to reach the required sizes.  The same 
procedure applied for size 1 was used for sizes 2 and 3.

Image analysis techniques 

 Each fish image was refined by using 
Image J software, National Institute of Health (NIH), 
USA.  This software is an openly accessible (open-
source), sovereign platform that supports multiple 
threads, and it can be used to create user-coded 
plugins to meet the requirements of any created 
operation (Stolze et al., 2019).  The computer used 
was a Lenovo Legion (running the Windows 10

Home Single Language 64–bit operating system, with 
an Intel (R) Core (TM) i7-9750H CPU @ 2.60 GHz, 
16.0 GB memory (RAM) purchased from Advice 
IT Infinite Public Co., Ltd. (Bangkok, Thailand).

 The procedure for finding the image area 
to estimate fish weight began by identifying the 
image of the fish to be analyzed, then selecting the 
‘segmented’ or ‘freehand lines’ option and marking 
a straight line on a known object in the image. 
We used the ruler to draw a 1-cm straight line as 
mentioned before, then pressed the ‘Analyze’ button 
and then ‘Set scale’ to change the units of length 
to centimeters and ticked the ‘Global’ box to apply 
the scale ratio (Figure 1).

 After calibration, ‘Polygon selection’ was 
chosen and the mouse was moved around the desired 
area (around the fish body), clicking to record each 
segment.  Each fish sample was recorded on five 
photos, and each photo produced an image area of the 
whole-fish body (selecting fish shape with fins and 
tail); five images of the fish body were also recorded 
excluding the fins and tail.  Next, we extracted the 
foreground object from the background and made 
the fish body black and the background white.  This 
process used image binarizing and a thresholding 
algorithm (Figure 2).  The area of the fish image was 
calculated by choosing the size option ‘0–infinity’ 
and circularity as ‘0–1’, and then selecting the 
‘Analyze particles’ option (Figure 3).  Pixel area 
can be calculated from equation 1. 

Figure 1. Calibration process: (a) Image acquisition, (b) Set scale, and (c) Set global calibration.



JOURNAL OF FISHERIES AND ENVIRONMENT 2023, VOLUME 47 (2)

         Pixel area = number of pixels×scale         (1)

 Where number of pixels is the total 
number of pixels within the selected region or

the entire image and scale is the physical scale 
associated with the image.  In this study, a 1-cm 
straight line from a ruler was used.  In the case of 
a processing overview, as shown in Figure 4.
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Figure 2. Image extraction for whole fish body (a1, a2, and a3), and fish body excluding fins and tail (b1, b2, and b3).

Figure 3. Particle analysis: (a) Analyze options, (b) Analyze particles options; to calculate the size of the pixel area 
 of the fish in the two processing pattens (with and without fins and tail), it can be determined from the 
 total number of black area in the image, and (c) Summary of total area.
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Equations for fish weight estimation from images

 The relationship between the view area 
(V) and weight (W) of each fish was generated 
using mathematical models. Balaban et al. (2010a), 
Zion (2012), Viazzi et al. (2015) and Konovalov 
et al. (2018) reported that the mathematical models 
commonly tested for fish W assessment using real 
V were linear, power, and polynomial regression 
models (Equations 2, 3, and 4, respectively).

 Linear: W = A+B V                  (2)

 Power: W = A VB                      (3)

 Polynomial: W = A+B V+C V2           (4)

 Where W is the body weight (g), V is the 
viewable area of the fish (cm2), and A, B, and C 
are coefficients.

 Ten images of each fish were analyzed 
(five images for whole body area and five images 
without fins and tail).  To reduce the over-fitting 
problem, fish image data were divided into two sets 
using an 80–20% split-test according to Konovalov 
et al. (2018); 80% (40 fish; 400 images) were used 
as training data and 20% (10 fish; 100 images) were 
used as out-samples or validation data, as shown 
in Figure 5.

Data analysis

 The body image area per weight and the 
percentages of fin and tail area to body area of 
each fish were calculated.  The training data set 
was used to develop the relationship between view 
area and fish weight to determine the coefficients 
of determination (r2) of the linear, polynomial and 
power models generated from the fish image area 
of the whole body of the fish (with fins and tail)

Figure 4. Steps of image processing using Image J software.
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and from the fish image area without fins and tail. 
Then, all the training models were validated for 
all fish sizes, and average r2 values were used to 
compare the models.  First, all data were tested 
for homogeneity using Levene’s test of variance.  
In case of unequal variances, Welch’s t-test was 
applied.  If the data were homogeneous, statistical 
differences were analyzed using an independent 
sample t-test at a significance level of 0.05.  The 
image acquisition method with the higher r2 was 
selected for error analysis using the root mean 
square error (RMSE), mean absolute error (MAE), 
mean absolute relative error (MARE), maximum 
absolute error (MXAE), and maximum relative 
error (MXRE) statistics for all models, as shown 
in Equations 5, 6, 7, 8, and 9, respectively.

Root mean square error (RMSE):

 RMSE =       (5)

Mean absolute error (MAE):
  
 MAE =                                                 (6)

Mean absolute relative error (MARE):
  
 MARE =                                           ×100  
        (7)

Maximum absolute error (MXAE):
  
 MXAE =                                             (8)

Maximum relative error (MXRE):
  
 
 MXRE =                                             (9)

 
 where Westimated.i represents the estimated 
weight of each individual, while Wmeasured.i represents 
the weight obtained from the traditional measuring 
method.

 Then, the average values of each error 
analysis statistic (RMSE, MAE, MARE, MXAE 
and MXRE) of each model for each fish size were 
analyzed for variance differences based on one-way 
analysis of variance (ANOVA).  Mean differences 
between treatments were compared using Duncan's 
new multiple range test at the 95% confidence 
level.  All statistical analyses were performed using 
the IBM SPSS Statistics 26.0 software.  Results 
were presented as the mean±standard deviation 
(SD).
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Figure 5. Testing procedure for fish sampling.
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RESULTS
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Relationship between visible area and body weight 
of fish

 In total, 150 fish were examined (50 fish 
for each size).  The results indicated that the body 
image area (cm2) per weight (g) increased in fish 
images both with and without fins and tail.  The 
lowest body weight was 0.40 g and the highest was 
63.30 g.  When using fish images with fins and tail,

the smallest average body image area was 0.98 cm2 
and the largest was 28.49 cm2, while using images 
without fins and tail, the smallest average body 
image area was 0.87 cm2 and the largest was 24.30 
cm2 (Figure 6).

 The largest fish size (size 3) had the 
highest percentage of fin and tail area to body area 
(27.83±6.49%) followed by sizes 2 and 1 (21.08±
5.85 and 17.48±6.51%, respectively), as shown in 
Figure 7.

Figure 7. Percentage of fin and tail area to body area of each fish size group (0.5–1 g, 20–30 g, and 40–60 g). 
Note:  After completing the whole-fish body analysis, each photo was determined individually for the percentage 
           of fin and tail area to body area. Error bars indicate SD.

Figure 6. Area of image for each fish weight.



JOURNAL OF FISHERIES AND ENVIRONMENT 2023, VOLUME 47 (2)

Training data

 The results in Table 1 show that fish 
images with fins and tail for size 1 (0.55–1 g) 
yielded r2 values for the linear, polynomial, and 
power regression models of 0.902, 0.881, and 
0.908, respectively.  The same models had r2 values 
of 0.930, 0.931, and 0.916 based on fish images 
without fins and tail.  For fish of size 2 (20–30 g), 
r2 values for the three models were 0.806, 0.806, 
and 0.817, respectively, for images with fins and 
tail, and 0.895, 0.898, and 0.901 for images without 
fins and tail.  For fish of size 3 (40–60 g), r2 values 
were 0.802, 0.809, and 0.798 for images with fins
and tail, and 0.939, 0.905, and 0.900 for images 
without fins and tail (Table 1).

Validation
 
 The r2 values from mathematical models

based on image area of the whole fish body and the 
body without fins and tail were not significantly 
different (p>0.05) for the smallest size group, but 
were significantly different for the second and third 
size groups (p<0.05).  The average r2 values based 
on whole fish area and body area without fins and 
tail were 0.821±0.005 and 0.971±0.018, respectively, 
for group 2, and 0.754±0.021 and 0.937±0.009 for 
group 3 (Table 2 and Figure 8a–8c). 

 The results in Table 2 show that the 
equations for the fish body image without fins 
and tail had higher predictive coefficients (r2) than 
using the whole-fish body image.  Therefore, error 
analyses were only determined on images without 
fins and tail.  The RMSE, MAE, MARE, MXAE 
and MXRE values of linear, polynomial and power 
regression models based on each fish size group 
were not significantly different (p>0.05), as shown 
in Table 3.
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  Table 1. Coefficients of area-weight models based on Nile tilapia images with and without fins and tail for three 
 fish size groups.

Note: A, B, and C are model equation coefficients.

Size

1

2

3

Weight (g)

0.5–1

20–30

40–60

Equation

Linear

Polynomial

Power

Linear

Polynomial

Power

Linear

Polynomial

Power

Model coefficients

A

-0.007

-0.304

0.483

-0.668

0.191

1.463

-8.105

45.491

1.232

B

0.497

0.891

1.043

1.609

1.501

1.024

2.290

-2.029

1.144

C

-

-0.124

-

-

0.003

-

-

0.086

-

With fins and tail

r2

0.902

0.881

0.908

0.806

0.806

0.817

0.802

0.809

0.798

C

-

0.093

-

-

0.010

-

-

0.064

-

r2

0.930

0.931

0.916

0.895

0.898

0.901

0.939

0.905

0.900

A

-0.189

-0.051

0.571

-7.911

10.306

0.868

-23.030

12.824

1.2774

B

0.761

0.531

1.267

2.515

0.271

1.305

3.740

0.593

1.226

Without fins and tail
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Figure 8. Coefficients of determination (r2) obtained from three mathematical models of all fish sizes (100 images
 ∙size-1): (a) linear regression model, (b) polynomial regression model, and (c) power regression model.

  Table 2. Comparison of whole-body fish images and body without fins and tail using three different mathematical 
 models and three size groups of Nile tilapia.

Note: * in the row indicates statistical difference at p<0.05.

Model coefficient (r2) Levine’s test T-test for equality of means

With fins and tail

0.929

0.941

0.954

0.941±0.013

0.822

0.825

0.816

0.821±0.005

0.750

0.777

0.736

0.754±0.021

Without fins and tail

0.922

0.909

0.889

0.907±0.017

0.958

0.963

0.991

0.971±0.018

0.937

0.929

0.946

0.937±0.009

F

0.00

0.64

2.29

Sig.

1.00

0.47

0.20

Sig. (2-tailed)

0.07

0.04*

0.00*

Fish size and model

Fish size: 1 (0.5–1 g)

Linear

Polynomial

Power 

Mean±SD

Fish size: 2 (20–30 g)

Linear

Polynomial

Power

Mean±SD

Fish size: 3 (40–60 g)

Linear

Polynomial

Power

Mean±SD
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Figure 8. (Continued) Coefficients of determination (r2) obtained from three mathematical models of all fish 
 sizes (100 images∙size-1): (a) linear regression model, (b) polynomial regression model, and (c) power 
 regression model.

  Table 3. Error analysis (mean±SD) for mathematical models of images without fins and tail for each fish size group.

p-Value

>0.05

>0.05

>0.05

>0.05

>0.05

Mathematical model

        RMSE (g)

        MAE (g)

        MARE (%)

        MXAE (g)

        MXRE (%)

Model

Linear

1.02±0.86

0.90±0.82

4.57±4.11

1.76±1.36

0.12±0.10

Polynomial

1.30±1.23

1.08±1.05

4.85±3.93

2.35±2.04

0.13±0.09

Power

1.25±1.20

1.03±1.02

4.20±3.11

2.28±1.95

0.13±0.10
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DISCUSSION
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 The results showed that fish weight was 
positively correlated with fish image area for both 
the whole-fish image and the body without fins and 
tail.  As fish weight increased, the fish imaging area 
increased accordingly, concurring with Viazzi et al. 
(2015), Konovalov et al. (2018), and Fernandes 
et al. (2020).

 The models based on fish body images 
without fins and tail gave better prediction results 
than the models using whole-body images.  Our 
results concurred with several other authors who 
used image processing techniques to assess the 
weight of a variety of species, including Balaban 
et al. (2010a; Alaskan salmon Oncorhynchus 
gorbuscha, O. nerka, O. kisutch, O. keta), Viazzi 
et al. (2015; Jade perch), Konovalov et al. (2018; 
Asian seabass), Fernandes et al. (2020; Nile tilapia), 
and Jongjaraunsuk and Taparhudee (2021; Asian 
seabass).  Konovalov et al. (2018) explained that 
the fins and tail of the fish had an inconsistent mass 
due to their high flexibility.  They easily deformed 
during swimming and were often damaged during 
raising and harvesting.  Balaban et al. (2010a) 
suggested that a program should be developed to 
process the image by cropping the area of the fins 
and tail.  However, Balaban et al. (2010b) reported 
that removing fins and tails did not improve the 
prediction accuracy of whole Alaskan pollock 
(Theragra chalcogramma) weight based on the view 
area.  The results of the present study indicated that 
the average r2 values of all models for the smallest 
fish with fins included were not significantly different 
(p>0.05) from those without fins, whereas the 
models did differ in accuracy for the two larger fish 
groups (p<0.05).  This might have occurred because 
percentages of fin and tail area relative to the whole 
body were smaller for the smallest fish (size 1) than 
for the larger individuals (sizes 2 and 3).

 Most other published mathematical models 
for fish weight estimation from side-view images 
used linear or power models.  Linear models were 
applied with grey mullet (Mugil cephalus), St. 
Peter’s fish (Sarotherodon galiaeus), common carp 
(Cyprinus carpio), Jade perch (Scortum barcoo)

and Nile tilapia (Zion et al., 2012; Viazzi et al.,
2015; Fernandes et al., 2020), whereas power models 
were applied with Alaskan salmon, (Oncorhynchus 
gorbuscha; nerka; kisutch; keta), Alaskan pollock, 
(Theragra chalcogramma), and Asian seabass 
(Lates calcarifer) (Balaban et al., 2010a; 2010b; 
Konovalov et al., 2018). Konovalov et al. (2018) 
suggested that the power model was suitable for 
large fish.

 However, our results applied top-view 
image analysis, with no apparent statistical differences 
(p>0.05) among all mathematical models.  This was 
possibly because using the top view reduced any 
problems associated with abnormalities in body or 
belly shape, which may occur in large fish using 
image analysis from a side view (Balaban et al., 
2010a).  Therefore, our results suggest that using 
a linear model is optimal and also simple and easy 
to apply.

 However, due to operational limitations, 
the developed model application would be unable 
to assess images from a broad angle or evaluate 
the entire culture system, particularly in farm 
ponds or cages in rivers. To resolve these problems, 
unmanned aerial vehicles (UAVs) could be used 
to obtain a large-view image.  UAVs have been 
applied in the agricultural sector (on plants) as well 
as in fisheries for many purposes.  Murugan et al. 
(2017) used aerial imagery to provide accurate data 
for agricultural activities, while Hovhannisyan et al. 
(2018) used a UAV to create a model for appropriate 
use of farmland.  Fisheries applications have included 
Casella et al. (2017), who used UAVs to analyze 
and assess changes in the structure of shallow coral 
reefs, Raoult and Gaston (2018), who applied aerial 
techniques to evaluate the weight, size and number 
of jellyfish populations to select capture areas and 
Taparhudee et al. (2023), generated a prototype for 
using UAV with area image analysis for red tilapia 
weight estimation in river-based cage culture.  In 
the future study, we propose to combine the image 
processing techniques from this study with UAVs. 
Additionally, Artificial intelligent (AI) will be 
employed to identify models capable of running 
automatically, thereby assisting in further reducing 
processing time.
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 We have proposed a method to estimate 
accurately the weight of Nile tilapia by measuring 
the area of the fish from the top view.  Fish shapes 
without the fins and tail produced better prediction 
results than fish images with tail and fins.  There 
were no significant differences among the 
mathematical models investigated.  Therefore, our 
results suggest that using a linear model is optimal 
and also simple to apply.  With our method, the 
fish do not need to be harvested, and therefore 
there is no weight loss due to the handling stress 
incurred using manual weighing procedures.
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