

## Small Indigenous Fishes as a Potent Bioresource of Northeast India

Wanaz Nasreen Islam\*, Dhirendra Kumar Sharma and Arup Nama Das

### ABSTRACT

Fishes achieving an utmost length of 25–30 cm at maturity and are easily locally found are known as small indigenous fishes (SIF). Among eight hundred and seventy seven local freshwater fish species of India, about four hundred fifty are cataloged as small indigenous fish and Northeast India is home to 216 species of them. The peaking diversity of these is recorded in Northeast Indian area followed by Western Ghat and Central India. They possess a lofty nutritional content of micro and macronutrients. Since they are easily available, hence is first hand choice for the poor and middle-class people to fill up the protein craving. The present piece of work reviews the occurrence of the small indigenous fishes and their function in defending malnutrition and more explicitly the deficiency caused due to micronutrients, which directly influences both standard of nutrition and economic security of the rural populace. It also reviews the threats to its diversity loss and improvement of conservation strategies. It attempts to create sensitization of food benefits of the SIF and create mass awareness to protect this bioresource for nutritional and livelihood security for the poor rural people of Northeast India.

**Keywords:** Conservation, Fish, Livelihood, Nutrition

### AN OVERVIEW OF SMALL INDIGENOUS FISH

Fish as a whole is composed of almost half of the vertebrate group of animals and proved as the rich source of food (Begum *et al.*, 2012) even for poor man, enriched with simple proteins and free amino acids, beneficial lipids along with the striking amount of minerals and vitamins (Balami *et al.*, 2019; Bezbaruah and Deka, 2021) and is used against many of the ailments (Li *et al.*, 2019; Jan *et al.*, 2021). Small indigenous fish (SIFs) are frequently consumed whole (Mayanglambam and Tongbram, 2022; Pegu *et al.*, 2023), reaching an utmost size of 25 cm during the full-grown or mature phase of their life cycle and many are even less than 5 cm long (Felts *et al.*, 1996). Their short life cycle and proliferative breeding habit seldom require any form of management approaches. They used to survive in all possible types of inland water bodies (Duarah and Das, 2019).

India ranked third among the top fish producing countries of the world (Ngasotter *et al.*, 2020). Being one of the 17 global mega biodiversity hotspots harbor nearly 2,319 species of finfish species amongst which, 838 belongs to inland water bodies as reported by National Bureau of Fish Genetic Resources, NBFGR ICAR, Lucknow, India (Lakra *et al.*, 2010). India has contributed 27.85% of native fish fauna, followed by China, Indonesia and Myanmar. About 450 species of them are classified as SIFs. NorthEast India being an ideal habitat for various endemic small fish supports as many as 216 species which are abundant in all forms of inland water bodies (Mayanglambam and Tongbram, 2022). Culturing of small indigenous fishes is more challenging than culture of Indian Major Carps. Moreover, they get little or no attention either from the public or private stock holders due to their no export demand. However, limited information on the Aquaculture of Indigenous Mekong Species (AIMS) (Mayanglambam and

Tongbram, 2022) as well as culture of indigenous *Puntius* species in the polyculture (Kohinoor *et al.*, 2005) is available.

SIFs are prolific breeder (Mohan *et al.*, 2010), common in the rural areas and rich in micronutrients compared to the larger fish groups, earn the distinction of being nutritional resources. As many as 104 species out of 450 species of SIFs are highly important as food and 62 species are used for aquarium trade, provide local livelihood security (Baishya *et al.*, 2021). These small fishes have occupied enviable and inseparable relation in the life, livelihood, health and extend economical support especially to the poor people (Mayanglambam and Tongbram, 2022). Besides, SIFs are also rich sources of micronutrients essential elements or vitamins. Apart from these, SIF species serves a profound source of dietary calcium since they are consumed along with bones and also supply many important minerals and is Vit. A enriched (Larsen *et al.*, 2000). By composition the live weight of majority of fish consists of 70–80% water, 20–30% protein and 2–12% of lipid (Roos *et al.*, 2003). Its oil has the innate resource of important polyunsaturated fatty acids like Eicosapentanoic acid (EPA) and docosahexaenoic acid (DHA). It has been reported that certain group of SIFs add to valuable Ayurvedic and Unani medicines for the treatment of many ailments like night blindness, appetite loss, cold, cough, bronchitis, asthma, tuberculosis etc (Kotpal, 2006; Duarah and Das, 2019).

The consumption of fish has achieved recognition in latest years (Supartini *et al.*, 2018; Lee and Nam, 2019; Krešić *et al.*, 2022) and India occupied a pivotal position in terms of fish consumption. The apparent per capita fish consumption in India lies between a range of 5 to 10 kg per annum, while the monthly consumption stand at 0.266 kg (26%) and in urban India 0.252 kg (21%) during the survey period of 2011–2012 as per the NSSO report (FAO, 2018). Increasing income as well as the easy availability of fishes influences the fish consumption rate (Shyam *et al.*, 2015). Interestingly the 80–90% people of the Northeast India are the regular fish eaters (Table 1; Barman *et al.*, 2012). India showed an increasing curve during the period 1983–2000. The Northeastern people represent the ethnic diversity along with its enormous bioresources in the eight states namely Arunachal Pradesh, Assam, Manipur, Meghalaya, Mizoram, Nagaland, Tripura and Sikkim have been highlighted (Kaushik and Bordoloi, 2016). The rich biological diversity and favourable climate of the region is enough for fulfilling the basic needs of food, shelter and medical care of the people (Sarkar *et al.*, 2017). The SIFs have a good demand as ethnic food item of Northeast because of their food value, availability and easy accessibility. These fishes are easily caught by the traditional fishing gears made of bamboo or cane, also sold in local markets; or used by the ethnic people for their day to day consumption. Since they are consumed both in their fresh and dried or fermented form, it provides a continuous supply of nutrition throughout

Table 1. Fish consumption pattern in Northeastern States (Barman *et al.*, 2012; Singh *et al.*, 2017).

| States              | Regular fish eating population (%) | Occasional fish consumers (%) | Non fish eating population (%) | Total population |
|---------------------|------------------------------------|-------------------------------|--------------------------------|------------------|
| Assam               | 90                                 | 0                             | 10                             | 31,169,272       |
| Arunachal Pradesh   | 97                                 | 2                             | 1                              | 1,382,611        |
| Nagaland            | 99                                 | 0.5                           | 0.5                            | 1,980,602        |
| Mizoram             | 10                                 | 90                            | 0                              | 1,091,014        |
| Tripura             | 95                                 | 0                             | 5                              | 3,671,032        |
| Meghalaya           | 90                                 | 0                             | 10                             | 2,964,007        |
| Sikkim              | 10                                 | 70                            | 20                             | 607,688          |
| Manipur             | 80                                 | 10                            | 10                             | 2,721,756        |
| Northeast (average) | 87.6                               | 3.7                           | 8.8                            | 45,587,982       |

the year. The tribal communities of Northeast India have their own traditional ways of fish preservation which are basically done by sun drying, smoke drying or fermentation process. However, the process of fermentation varies among allied communities. There are many popular local delicacies which are made from either dried or fermented fishes, named as Shidol, Hukoti, Hentak, Ngari etc. (Jeyaram *et al.*, 2009; Muzaddadi and Basu, 2012; Muzaddadi *et al.*, 2013). In fact, the people of this region consume fishes without having awareness about its nutritional status, especially the SIF group. Therefore, it is enough relevant to evaluate the proximate composition (Hantoush *et al.*, 2015) in order for their preservation in various forms. The proximate composition of any organism including fish decodes the quality and quantity of nutrition and their health status, which also signifies the expression of calorific value of food (Qasim, 1972), and the fish physiology is indicated by the proximate composition analysis (Cui and Wootton, 1988).

However, food and feeding habits, age, size, sex, habitats, genetic features and season/migration directly influences the proximate composition (Daniel, 2015; Begum *et al.*, 2016). In addition to protein the SIFs are rich source of omega  $\omega$ -3 polyunsaturated fatty acid (PUFA) and the micronutrients (Mohanty *et al.*, 2019). Therefore, their production must be boosted up, so that the society can get an ease to fight with malnutrition. The SIFs are micronutrient dense and play a pivotal role in the eradication of their deficiency related diseases as prevalent among the rural populace (Roos *et al.*, 2003). Meanwhile many of the original works on the nutritional status of SIFs have well been recorded in the country including the northeast region (Mohanty *et al.*, 2010; 2013; 2019; Goswami *et al.*, 2012; Duarah and Das, 2019; Mayanglambam and Tongbram, 2022; Pegu *et al.*, 2023). Based on these works an attempt has been made to highlight the rich nutritional rank of SIFs, which could be a comprehensive benchmark point for their culture and preservation, in turn may attribute in the process of livelihood and rural economy. Moreover, their diversity and conservation are also to be understood. Further, this will enhance the prospect of augmentation in the economic status in the form of basic needs like health and education of the poor fisherman as a community.

## ABUNDANCE OF SIF IN NORTHEAST INDIA AND ITS POTENTIAL THREATS

As recorded, India has 2,319 species of finfish, out of which 838 are found in various types of tiny inland water bodies and also in paddy fields (Lakra *et al.*, 2010). SIFs are diverse group that stands at 450 species in India, out of which 216 species have been distributed in the Northeast Indian region (Goswami *et al.*, 2012; Duarah and Das, 2019; Mohanty *et al.*, 2022; Pegu *et al.*, 2023). Earlier Felts *et al.* (1996) segregated 45 SIFs species into carps and minnows, catfish group and perches as 18, 9, and 9 species respectively. Further they were categorized with three main groups, based on their maximum length as 7.5 cm, 10 cm and 25 cm respectively. However, these groups could not get gain in national statistics score because of their enumeration which occurs only on catches in the landing sites only, which are either sold or consumed locally (Roos *et al.*, 2007; Halwart, 2008).

The high demand of SIF species and their rich diversity has already been mentioned by various workers in the NE region (Duarah and Das, 2019; Mayanglambam and Tongbram, 2022; Mohanty *et al.*, 2022; Pegu *et al.*, 2023). Duarah and Das (2019) classified that SIFs belongs to 5 orders with 33 genera of 15 families, with 55 species collected from the River Brahmaputra and its tributaries in its upper stretch. Cyprinidae family was the most plentiful with 22 SIF species followed by Bagridae 9 species and Cobitidae family with 4 species. Some of the important SIF of India has been produced in (Table 2) as ready reference. Records of SIF diversity, especially the Cyprinid group presented 25 number of total strengths of 39 species, which were obtained from an Oxbow Lake, Dhir Beel from the lower part of the Brahmaputra basin (Das *et al.*, 2021; Das and Sharma, 2022).

Despite of such rich diversity, the present status of the SIFs existence appears dark. Because the most undesirable effect, mostly the anthropogenic pressure in various forms like habitat shrinkage, fragmentation, over exploitation, pollution, introduction of exotic species etc. have eventually altered the SIFs habitat (Tewari and Bisht, 2010). Fishing of the SIFs at their premature stage is another major

Table 2. List of some common SIF of North East India. (Goswami *et al.*, 2012; Duarah and Das, 2019; Mohanty *et al.*, 2022).

| Scientific name                | Local name      | Fishbase name           |
|--------------------------------|-----------------|-------------------------|
| <i>Ailia coila</i>             | Kajuli, Baspata | Gangetic ailia          |
| <i>Amblypharyngodon mola</i>   | Mola, Moa       | Mola carplet            |
| <i>Anabas testudineus</i>      | Koi             | Climbing perch          |
| <i>Badis badis</i>             | Napit koi       | Badis                   |
| <i>Badis assamensis</i>        | Randolnee       | Assamese Chameleon fish |
| <i>Batasio batasio</i>         | Batasimas       | Tista batasio           |
| <i>Botia dario</i>             | Bou, Rani       | Bengal loach            |
| <i>Botia lohachata</i>         | Bou, Rani       | Reticulate loach        |
| <i>Chanda nama</i>             | chanda          | Elongate glass-perchlet |
| <i>Chanda ranga</i>            | Chanda          | Indian glassy fish      |
| <i>Channa orientalis</i>       | Gachua          | Walking snakehead       |
| <i>Channa punctuates</i>       | Taki            | Spotted snakehead       |
| <i>Clarias batrachus</i>       | Magur           | Walking catfish         |
| <i>Colisa fasciata</i>         | Khalisa         | Banded gourami          |
| <i>Colisa lalia</i>            | Lal khalisha    | Dwarf gourami           |
| <i>Corica soborna</i>          | Kachki          | Ganges river sprat      |
| <i>Ctenops nobilis</i>         | Kholihona       | Indian paradise fish    |
| <i>Danio devario</i>           | Chap chela      | Dind danio              |
| <i>Esomus danricus</i>         | Darkina         | Flying barb             |
| <i>Glossogobius giuris</i>     | Bele            | Tank goby               |
| <i>Glosogobius gutum</i>       | Patimutura      | Bar eyed gobi           |
| <i>Gudusia chapra</i>          | Chapila         | Indian rivershad        |
| <i>Heteropneustes fossilis</i> | Shingi          | Stinging catfish        |
| <i>Labeo bata</i>              | Bata            | Bata                    |
| <i>Lepidocephalus guntea</i>   | Gutum           | Guntea loach            |
| <i>Macrognathus aculeatus</i>  | Tara Baim       | Lesser spiny eel        |
| <i>Mastacembelus pancalus</i>  | Guchi           | Barred spiny eel        |
| <i>Mystus tengara</i>          | Tengra          | —                       |
| <i>Mystus vittatus</i>         | Tengra          | Striped dwarf catfish   |
| <i>Nandus nandus</i>           | Meni            | Gangetic leaffish       |
| <i>Notopterus notopterus</i>   | Pholi           | Bronze featherback      |
| <i>Ompok pabda</i>             | Pabda           | Pabdah catfish          |
| <i>Ompok pabo</i>              | Pabo            | Pabo catfish            |
| <i>Parambassis lala</i>        | Lal chanda      | Highfin glassy perchlet |
| <i>Puntius conchonius</i>      | Kanchan punti   | Rosy barb               |
| <i>Puntius phutunio</i>        | Phutani punti   | Spotted sail barb       |
| <i>Puntius sarana</i>          | Sarpunti        | Olive barb              |
| <i>Puntius sophore</i>         | Jat punti       | Pool barb               |
| <i>Puntius ticto</i>           | Tit Punti       | Ticto barb              |
| <i>Rohtee cotio</i>            | Dhela           | —                       |
| <i>Salmostoma bacaila</i>      | Chela           | Large razorbelly minnow |
| <i>Xenentodon canila</i>       | Kakila          | Freshwater garfish      |

cause in loss of SIFs (Suresh and Manna, 2010). To prevent this loss, it has to be counterbalanced with increased production by innovative techniques of aquaculture. One such easy and low cost method is composite culture of economically important small native fishes with major carps. Successful trials have been carried out with *Amblypharyngodon mola* and *Ompok bimaculatus* by Wastewater Aquaculture Centre of Central Institute of freshwater Aquaculture, Rahara, Kolkata (India). Observations also revealed that since these species are auto breeders, they increased their production by 50–60% more than the initial stock (Datta, 2010). It is also observed that mola-carp-prawn polyculture too gives lucrative yields in successful trials in Bangladesh (Kunda *et al.*, 2010).

## NUTRITIONAL PACKAGE IN SIF

### *Micronutrients*

Indispensable dietetic elements as micronutrients are required in trace amount, serve as cofactor or coenzymes in many of the biochemical reactions that govern the growth and survival. SIFs are a huge repository of many important micronutrients (Mahanty *et al.*, 2014; Mayanglambam and Tongbram, 2022), which mostly consist of lipophilic vitamins namely Vitamin A, D, E, and K. In addition the hydrophilic vitamins like B1, B2, B3 and provitamin A1, A2 etc. in their isomeric form of retinol and 3,4-dehydroretinol are found in high amount in four commonly consumed SIFs, namely *Amblypharyngodon mola*, *Parambassis ranga*, *Osteobrama cotio* and *Esomus danicus* (Roos *et al.*, 2002; Mohanty *et al.*, 2013). Interestingly the vitamin A richness could be established in *A. mola*, since the eye of this group contain 62,200 RE·100 g<sup>-1</sup>. Detailed analysis showed that >50% (approx) of Vit. A present in the eye of *A. mola* consists of 2% of its weight (Roos *et al.*, 2002). The viscera and the eye contain 90% of Vit A. Again less than 2% of *A. mola*'s total vitamin A content is found in 100 g of raw *Labeo rohita* (Roos *et al.*, 2002). The undeniable role of vitamins in human health subject, specifically in growing

children and young women is well understood (West, 2002).

Moreover, many of the microelements like Zn, Se, I, Fe, Co, Na, K, Mg and many more are detected in SIFs and due to this, their whole body consumption appeared as profound nutriresource (Mahanty *et al.*, 2014). For example, SIF like *Mystus tengra* (17.0), *Mystus vittatus* (11.0), *Osteobrama cotio* (13.6), *Chanda ranga* (14.6), *Chela bacalia* (12.8) are very rich in Zn per 100 g raw edible parts (Table 3, Figure 1). Further the mentioned groups of SIF were also found to be enriched with trace elements like Fe, K, Mn, Mg and Cu (Table 3, Figure 1) (Gopakumar, 1997; Roos *et al.*, 2003). Even other SIFs like *Gudusia chapra*, *Channa punctatus*, *Chela cachius*, *Osteobrama cotio*, *P. ranga*, *Esomus danicus*, *Parambassis baculis*, *Botia dario*, *Chanda nama* and *M. vittatus* (Bogard *et al.*, 2015; Islam *et al.*, 2023) were identified with the richness of Vit. A quantum validated the presence of nutriresources. Data obtained from the dietary analysis in rural Bangladesh established that 90% of Ca and Vit. A intake in human are contributed by the SIFs (Roos *et al.*, 2003; Kongsbak *et al.*, 2008; Mohanty *et al.*, 2013). The amount of Calcium obtained from small fish is alike to that of skimmed milk (Hansen *et al.*, 1998). Among the commonly edible SIF *Puntius sophore* holds a very good score of Calcium, i.e. 1,170 mg·100 g<sup>-1</sup> (Table 3). SIF can supplement as natural nutrients to put off nutrient insufficiency (Mahanty *et al.*, 2014). However, the difference in composition of nutrient quantum of SIFs was estimated at variance due to species variation, habitat, age, feeding habit and seasons (Jacquot, 1961; Piska and Waghray 1989; Salam *et al.*, 1995).

### *Macronutrients*

Such nutrients that our body needs in large amounts are called macro nutrients. It includes fats, carbohydrates and proteins. Freshwater fish are rich in high-quality protein and polyunsaturated fatty acids (PUFA) (Memon *et al.*, 2010; Volpe *et al.*, 2015; Acharya *et al.*, 2018). However, they are poor suppliers of carbohydrate.

Table 3. Mineral content of some small indigenous fishes (Gopakumar, 1997; Roos *et al.*, 2003; Mohanty *et al.*, 2010).

| Sl.No | SIF                            | Ca     | Fe   | Zn   | Na     | K      | P      | Mu   | Cu   | Mg  |
|-------|--------------------------------|--------|------|------|--------|--------|--------|------|------|-----|
| 1.    | <i>Chanda nama</i>             | 955    | 1.8  | 2.3  | -      | 750    | -      | 4.24 | 1.82 | 110 |
| 2.    | <i>Gudusia chapra</i>          | 1,063  | 7.6  | 2.1  | -      | 860    | -      | 4.76 | 1.97 | 120 |
| 3.    | <i>Esomus suratensis</i>       | 315.30 | 1.80 | -    | 126.90 | 296.70 | 251    | -    | -    | -   |
| 4.    | <i>Esomus danricus</i>         | 891    | 12.0 | 2.1  | -      | -      | -      | -    | -    | -   |
| 5.    | <i>Amblypharyngodon mola</i>   | 853    | 5.7  | 3.2  | -      | 630    | -      | 4.21 | 2.67 | 120 |
| 6.    | <i>Puntius sophore</i>         | 1,171  | 3.0  | 3.1  | -      | 860    | -      | 7.39 | 1.16 | 100 |
| 7.    | <i>Channa punctatus</i>        | 766    | 1.8  | 1.5  | -      | -      | 535    | -    | -    | -   |
| 8.    | <i>Mystus vittatus</i>         | 1,093  | 4.0  | 3.1  | -      | -      | -      | -    | -    | -   |
| 9.    | <i>Puntius sarana</i>          | 30.32  | 2.55 | -    | 34.36  | 121.28 | 268.20 | -    | -    | -   |
| 10.   | <i>Heteropneustes fossilis</i> | 42.61  | 4.86 | -    | 57.58  | 247.29 | 135.94 | -    | -    | -   |
| 11.   | <i>Barbus spp</i>              | 47.96  | 0.84 | -    | 76.98  | 244.93 | 118.48 | -    | -    | -   |
| 12.   | <i>Clarias batrachus</i>       | 76.52  | 2.21 | -    | 76.52  | 280.44 | 122.29 | -    | -    | -   |
| 13.   | <i>Osteobrama cotio</i>        | 140    | 39.7 | 13.6 | -      | 920    | -      | 4.42 | 2.82 | 110 |
| 14.   | <i>Mystus vittatus</i>         | 120    | 33.0 | 11.9 | -      | 830    | -      | 6.02 | 5.83 | 100 |
| 15.   | <i>Mystus tengra</i>           | 190    | 14.5 | 17.0 | -      | 840    | -      | 5.31 | 3.20 | 110 |
| 16.   | <i>Chela bacalia</i>           | 160    | 33.2 | 12.8 | -      | 880    | -      | 4.32 | 1.20 | 110 |
| 17.   | <i>Chanda ranga</i>            | 150    | 24.7 | 14.6 | -      | 610    | -      | 6.34 | 1.25 | 200 |

Note: All values are mg-100 g<sup>-1</sup> of tissues.

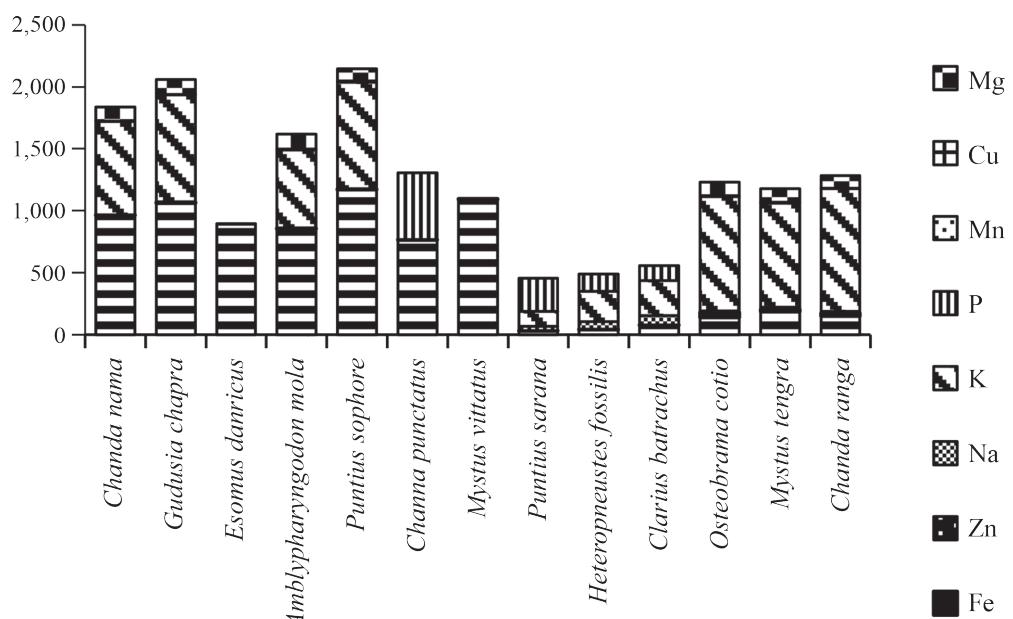



Figure 1. Bar chart showing the abundance of different micronutrients in small indigenous fishes (Mazumder *et al.*, 2008; Mohanty *et al.*, 2010; 2013).

### *Lipids in SIF*

Relying on the amount of fat content, fishes are divided into four groups a) lean fish, with minimal fat <2%, b) low-fat fish (2–4%), c) medium fat (4–8%) and d) high fat (6–8%) (Ackman, 1989). The SIFs usually have low–medium fat (Table 4). The metabolism of fat reserves during spawning period and the poor storage mechanism of fat in the bodies are regarded as the cause of their low lipid content (Osibona *et al.*, 2009). Polyunsaturated fatty acids (PUFAs), especially  $\omega 3$  and  $\omega 6$  fatty acids have an admirable contribution in health and prevention of disease (Calder and Yaqoob, 2009). Researchers have supported that  $\omega 3$  fatty acids reduce the threat of heart attacks (Golanski *et al.*, 2021). At least two servings of fish per week are recommended by American Heart Association (AHA) Dietary Guidelines for sustaining good health (Kris-Etherton *et al.*, 2002). It might be helpful treatment and improvements in extensive array of ailments and disorders, including rheumatoid arthritis, allergies, Alzheimer's disease, gout, endometriosis and other recurring inflammatory disorders. It has already been evidenced that the fish is very rich in EPA (Eicosapentanoic acid and DHA Docosahexaenoic acid) essentially needed to reduce eicosanoid and proinflammatory cytokines. They are very important for fetal growth and development, as they impact on the neuronal, immune and retinal function. It was found in research that the synthesis of interleukin 1b declined by 20 percent after the consumption of a diet high in omega-3 fatty acids for two weeks and was decreased further at the end of one month (Mantzioris *et al.*, 2000). Omega-3 fatty acids even augment insulin secretion and bind into the plasma membrane that compete with amino acid production and thus lessens sugar in blood (Ajiro *et al.*, 2000).

Since these essential components are not synthesized in human body, they need to be obviously dependent on dietary source and the SIFs appear as one of them. However, the 20-carbon EPA and 22 carbon DHA, both of which are n-3 fatty acids can be derived from 18 carbon alpha linolenic acid. This DHA and EPA now fight for the enzyme cyclooxygenase with arachidonic acid. Platelet

Cyclooxygenase then converts EPA to thromboxane A3, which is a milder form of vasoconstrictor as compared to thromboxane A2, which is generated by the action of cyclooxygenase on arachidonic acid (Choo *et al.*, 2018). Hence, an elevated dietary ratio of Eicosapentanoic acid: arachidonic acid ratio contributes to relative vasodilation and inhibits aggregation of platelets (Nelson and Raskin, 2019).

Fatty acid profile of SIFs especially *Amblypharyngodon mola*, *Puntius sophore* and *Systemus sarana* were estimated by Mustafa *et al.* (2015). The fish oil extracted from these fishes contained twenty-one types of fatty acids (Table 4). The principal saturated fatty acids (SFA) were C16:0 and C18:0 the main monounsaturated fatty acids (MUFA), C16:1  $\omega 7$  and C18:1  $\omega 9$ , while the main PUFAs were found as C22:6:4  $\omega 3$  (DHA), C20:5  $\omega 3$  (EPA). The range of total  $\omega 3$  is 4.28%–17.86% and the total  $\omega 6$  was between 4.08% and 23.12%. The  $\omega 3/\omega 6$  ratio was between 0.35% and 1.50%. Thus, it is apparent from research that these three fishes- *A. mola*, *P. sophore* and *P. sarana* are efficient resource of good fats, i.e.  $\omega 3$  and  $\omega 6$  and their inclusion in normal diet can ascertain sound health.

Attempts have been made to project the presence of saturated, monosaturated and polysaturated fatty acids (Figure 2–4) of different SIFs as one of the major good lipids (Gopakumar, 1997; Mohanty *et al.*, 2010).

### *Protein in SIF*

Like the big fishes, SIF are ample sources of protein. The protein percent in SIF is generally 14–22% of live body weight (Table 4). A humble dose of only 0.8 g·kg<sup>-1</sup> of body weight is regarded as the recommended dietary allowance (RDA), which can easily be met by intake of SIF in daily diet plan. Comparative evaluation of the protein quantum of SIFs was at its maximum of 22.50% in *Etroplus suratensis* (Mohanty *et al.*, 2010) against its minimal level at 14.08% in *Puntius chola* (Chakraborty and Goyal, 2015). The protein quality is expected to be better possibly due to higher amount of sulphur containing amino acids like methionine

Table 4. Fatty acids composition of the lipids of some small indigenous fishes (Gopakumar, 1997; Mohanty *et al.*, 2010).

| Fatty acid              | <i>Amblypharyngodon mola</i> | <i>Channa punctatus</i> | <i>Etroplus maculatus</i> | <i>Heteropneustes fossilis</i> | <i>Etroplus suratensis</i> | <i>Macrognathus armatus</i> | <i>Puntius sophore</i> |
|-------------------------|------------------------------|-------------------------|---------------------------|--------------------------------|----------------------------|-----------------------------|------------------------|
| <b>Saturated</b>        |                              |                         |                           |                                |                            |                             |                        |
| C11:0                   | 0.01                         | 0.0                     | 0.0                       | 0.0                            | -                          | -                           | -                      |
| C12:0                   | 0.32                         | 0.0                     | 0.0                       | 1.2                            | 0.0                        | 2.1                         | -                      |
| C13:0                   | 0.15                         | 0.3                     | 0.2                       | 1.4                            | 1.0                        | 0.7                         | -                      |
| C14:0                   | 6.91                         | 0.7                     | 3.4                       | 3.3                            | 3.8                        | 3.6                         | 7.56                   |
| C15:0                   | 1.95                         | 2.1                     | 1.1                       | 2.2                            | 2.8                        | -                           | 3.35                   |
| C16:0                   | 36.75                        | 24.0                    | 24.7                      | 17.6                           | 19.9                       | -                           | 1.04                   |
| C17:0                   | 1.56                         | 3.0                     | 2.8                       | 2.5                            | 0.4                        | -                           | 4.24                   |
| C18:0                   | 7.77                         | 13.7                    | 12.0                      | 9.4                            | 15.7                       | -                           | -                      |
| C19:0                   | 0.00                         | 1.3                     | 0.9                       | 1.6                            | 0.0                        | -                           | -                      |
| C20:0                   | 0.22                         | 0.0                     | 0.0                       | 0.0                            | -                          | -                           | -                      |
| C22:0                   | 0.14                         | 0.0                     | 0.0                       | 0.0                            | -                          | -                           | -                      |
| Total                   | 55.86                        | 45.1                    | 45.1                      | 39.2                           | 43.6                       | 41.3                        | -                      |
| <b>Mono unsaturated</b> |                              |                         |                           |                                |                            |                             |                        |
| C16:1 n7                | 0.61                         | 5.8                     | 6.3                       | 16.5                           | 11.1                       | 7.5                         | 4.43                   |
| C17:1 n7                | 0.37                         | 2.0                     | 1.2                       | 0.0                            | 0.4                        | 1.1                         | 1.55                   |
| C18:1 n9 (OA)           | 18.1                         | 14.0                    | 13.7                      | 15.3                           | 20.3                       | 20.4                        | 28.64                  |
| C20:1 n9                | 0.81                         | 0.7                     | 0.9                       | 0.0                            | 1.6                        | 1.0                         | 1.45                   |
| C22:1 n9                | 0.04                         | 0.3                     | 0.7                       | 0.9                            | 1.0                        | 0.5                         | -                      |
| Total                   | 20.19                        | 24.6                    | 23.0                      | 35.2                           | 34.5                       | 33.5                        | -                      |
| <b>Poly unsaturated</b> |                              |                         |                           |                                |                            |                             |                        |
| C18:2n6                 | 4.86                         | 3.8                     | 2.1                       | 4.1                            | 7.6                        | 8.2                         | 1.14                   |
| C18:3n3                 | 9.36                         | 0.5                     | 0.6                       | 0.9                            | 5.5                        | 1.9                         | 16.39                  |
| C18:3n6                 | 1.00                         | -                       | -                         | -                              | -                          | -                           | 0.17                   |
| C18:4n3                 | 0.00                         | 1.8                     | 3.6                       | 1.7                            | 2.4                        | 1.6                         | -                      |
| C20:2n6                 | 0.36                         | 0.2                     | 1.0                       | 1.0                            | 0.0                        | 0.0                         | -                      |
| C20:3n6                 | 1.30                         | 0.2                     | 0.7                       | 2.1                            | 0.0                        | 1.5                         | -                      |
| C20:3n9                 | 0.64                         | -                       | -                         | -                              | -                          | -                           | 2.07                   |
| C20:4n6                 | 3.5                          | 6.1                     | 3.0                       | 6.3                            | 3.5                        | 7.1                         | 9.80                   |
| C20:5n3                 | 4.50                         | 6.0                     | 2.2                       | 3.8                            | 0.5                        | 1.2                         | 6.19                   |
| C21:n6                  | 0.35                         | -                       | -                         | -                              | -                          | -                           | 1.18                   |
| C22:4n6                 | 0.00                         | 2.4                     | 5.9                       | 0.9                            | 0.0                        | 1.3                         | -                      |
| C22:5n3                 | 0.00                         | 2.2                     | 5.1                       | 0.5                            | 1.0                        | 0.3                         | -                      |
| C22:6n3                 | 0.00                         | 6.7                     | 8.0                       | 0.3                            | 1.0                        | 2.2                         | 3.27                   |
| Others                  | 0.021                        | 0.0                     | 0.0                       | 1.3                            | 0.5                        | 0.0                         | -                      |
| Total                   | 23.94                        | 29.9                    | 32.2                      | 22.9                           | 22.0                       | 25.3                        | -                      |

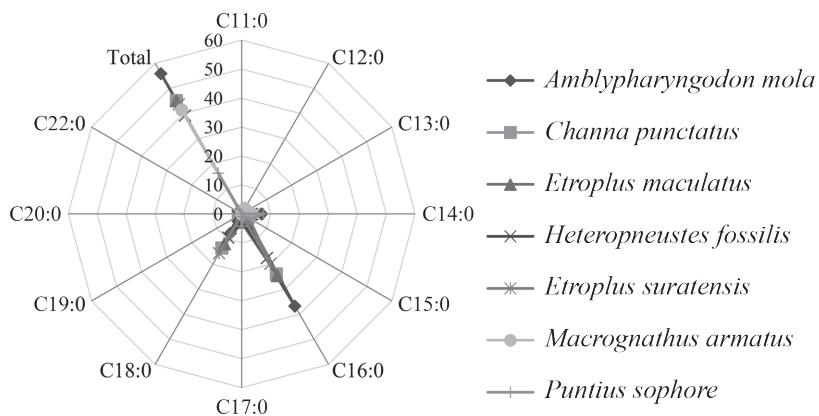



Figure 2. Data base analysis of saturated fatty acids among certain common small indigenous fishes of Northeast India.

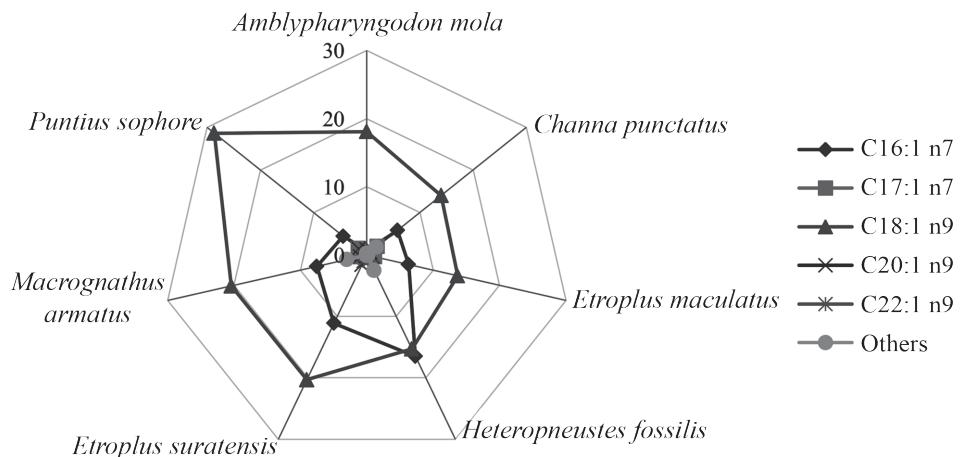



Figure 3. Data base analysis of mono unsaturated fatty acids among certain common small indigenous fishes of Northeast India.

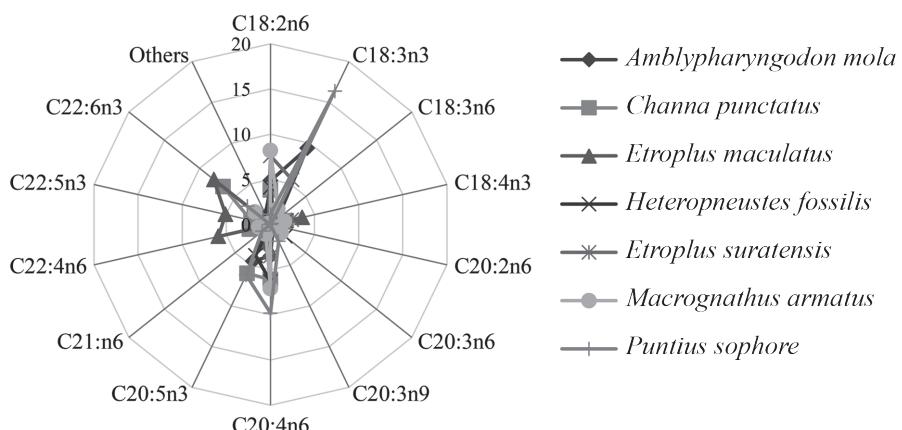



Figure 4. Data base analysis of poly unsaturated fatty acids among certain common small indigenous fishes of Northeast India.

and cysteine (Gopakumar, 1997). Protein in SIF (98–96%) being the major constituent of proximate composition (Ahmed *et al.*, 2022) has been able to be major source of nutrient supplementation to human diet, particularly to the rural populace of this region. The proximate composition including the moisture (highest quantity 81.03% *Heteropneustes fossilis*), crude fats (6.27% in *P. stigma*). Crude protein (22.50% in *E. suratensis*) and ash (3.29% in *Pseudoeutropius atherinoides*) have already been evaluated in SIFs (Mohanty *et al.*, 2010; Mahanty *et al.*, 2014; Chakraborty and Goyal, 2015) and thus validated the view of higher quality of animal protein. Twenty number of SIF of the region are presented with their proximate composition in Table 5. Furthermore, the review of the proximate composition are being highlighted from time to time and as such, the species like *P. nama*, *P. sophore*, *P. ranga*, *T. fasciata*, *A. mola*, *B. dario*,

*E. danricus*, *Mastacembelus pancalus*, *M. vittatus* and *Lepidocephalus guntea* were subjected to analysis (Chalamaiah *et al.*, 2012; Jena *et al.*, 2018; Manoharan *et al.*, 2019; Ahmed *et al.*, 2022; Pegu *et al.*, 2023). These researchers have highlighted the range variation of protein (12–23%), lipids (0%–6.5%) and moisture (60–82%) in different SIF species depending upon the seasonality and breeding period. Other nutrients like ash have consistently been presenting the discrepancy with range variation of 0.9% to 3.5% in different fishes. Interestingly all fishes, especially the SIFs are very poor in carbohydrate quantum (Islam *et al.*, 2023), although Pegu *et al.* (2023) have reviewed the presence of carbohydrate quantity at a range variation of 20.68% (*P. ranga*) to 7.13% (*Chanda nama*). Therefore, it is ample clear that the SIF group being rich in protein and omega 3 fatty acids and low in carbohydrate content might well be used by the diabetic patients.

Table 5. Proximate composition of small indigenous fishes (Mohanty *et al.*, 2010; Chakraborty and Goyal, 2015).

| Name of SIF                         | Crude protein (%) | Crude Fat (%) | Ash (%) | Moisture (%) |
|-------------------------------------|-------------------|---------------|---------|--------------|
| <i>Amblypharyngodon mola</i>        | 18.46             | 4.10          | 1.64    | 76.38        |
| <i>Gudusia chapra</i>               | 15.23             | 5.41          | 1.55    | 75.07        |
| <i>Chanda nama</i>                  | 18.26             | 1.53          | 3.92    | 65.88        |
| <i>Pseudoeutropius atherinoides</i> | 15.84             | 2.24          | 3.29    | 73.32        |
| <i>Ailia coila</i>                  | 16.99             | 3.53          | 1.98    | 78.62        |
| <i>Puntius chola</i>                | 14.08             | 3.05          | 1.19    | 74.43        |
| <i>Channa punctatus</i>             | 19.84             | 3.15          | 1.00    | 75.80        |
| <i>Puntius sarana</i>               | 20.84             | 3.15          | 1.17    | 74.84        |
| <i>Heteropneustes fossilis</i>      | 16.43             | 0.40          | 1.30    | 81.03        |
| <i>Barbus</i> spp.                  | 18.81             | 0.19          | 1.12    | 79.67        |
| <i>Mystus vittatus</i>              | 18.90             | 1.63          | 1.19    | 77.50        |
| <i>Clarias batrachus</i>            | 18.20             | 1.42          | 0.97    | 78.70        |
| <i>Ambassis</i> sp.                 | 18.63             | 21.70         | 1.12    | 79.72        |
| <i>Glossogobius giuris</i>          | 16.35             | 0.25          | 1.25    | 79.10        |
| <i>Osteobrama cotto</i>             | 16.90             | 5.96          | 3.06    | 74.58        |
| <i>Puntius stigma</i>               | 18.95             | 6.27          | 0.98    | 72.97        |
| <i>Mystus tengara</i>               | 16.81             | 6.28          | 2.82    | 73.67        |
| <i>Xenontodon cancila</i>           | 21.70             | 2.82          | 1.11    | 73.90        |
| <i>Puntius sophore</i>              | 16.20             | 3.55          | 5.36    | 72.02        |

## THERAPEUTIC DOMAIN OF SIFs

Since the fishes are nutritionally rich, they are believed to have medicinal values (Neog and Konwor, 2023). The people of Northeast India also use the fishes in traditional medicines (ethnozoology), especially the small indigenous fishes. The biochemical study of these fish species by different workers provides affirms on the traditional acceptance of the application of these

fish species (Duarah and Das, 2014). Some of the important SIFs used as medicines are cited in Table 6.

Besides, the rich content of omega 3 fatty acids in all the SIFs makes it an incredible means to fight with conditions like fatigue, poor memory, dry skin, heart issues, mood swings or sadness, and poor circulation manifested in human body, due to its insufficiency.

Table 6. Some common small indigenous fishes used in different ailments with their justification to indigenous technical knowledge (ITK) (Adopted from Duarah and Das, 2019).

| Scientific name                | Ailments                                                    | Validation                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>Channa punctatus</i>        | Inflammatory problems, wound healing, postpartum conditions | The quantity of moisture, ash, protein and lipid in <i>C. punctatus</i> is 81.93%, 1.25%, 15.22%, and 1.60% respectively (Ahmed <i>et al.</i> , 2012). It has good wound healing properties owing to excellent combination of amino acid and fatty acid content (Zuraini <i>et al.</i> , 2006).<br>It has high arachidonic acid level, which is a precursor of prostaglandin (Jais <i>et al.</i> , 1994). |
| <i>Clarias batrachus</i>       | For healing the infected of measles and chicken pox.        | Easily digestible high-grade protein, high concentration of iron and beneficial lipid content indicates its high acceptance as medicinal fish (Debnath, 2011).<br>Polyunsaturated fatty acid (PUFA) was estimated to be 25.56% in magur (Jakhar <i>et al.</i> , 2012).                                                                                                                                    |
| <i>Ambylopharyngodon mola</i>  | Night blindness and vitamin A deficiency diseases.          | Contains a very rich profile of vitamins, specially Vit. A (Roos <i>et al.</i> , 2003; Mohanty <i>et al.</i> , 2013).                                                                                                                                                                                                                                                                                     |
| <i>Heteropneustes fossilis</i> | Anemia and weakness                                         | Highest antioxidant activity and has very rich content of Fe and other nutritional elements (Mazumder <i>et al.</i> , 2008; Ray <i>et al.</i> , 2014).                                                                                                                                                                                                                                                    |
| <i>Channa gachua</i>           | Weakness and joint pains.                                   | Non-essential amino acids that appear to be in abundance in <i>Channa</i> sp. extracts are glutamic acids and aspartic acid (Saiga <i>et al.</i> , 2003; Ahmad <i>et al.</i> , 2005; Zakaria <i>et al.</i> , 2007).                                                                                                                                                                                       |

## CONSERVATION

The SIFs are a biodiversity rich group in the NE region of India and elsewhere. But even then, the biodiversity of these fishes is at risk due to various anthropogenic activities which is still expanding enormously (Lakra *et al.*, 2010). SIF has the potential to bring fortune to the poor fisherman community and reach up to their basic needs (Roy *et al.*, 2015; 2020). *Amblypharyngodon microlepis*, *A. mola*, *Notopterus notopterus*, *Puntius sarana*, *Labeo bata*, *P. ticto*, *Cirrhinus reba*, *Salmostoma bacaila*, *Nandus nandus*, *Anabas testudineus*, *Esomus danricus*, *P. chola*, *P. sarana*, *Glossogobius giuris*, *Danio devario*, and *Chanda nama* are species for aquaculture diversification (Roy *et al.*, 2003; Wahab *et al.*, 2011). A polyculture of such species along with Indian major carps is highly demandable (Nandi *et al.*, 2012; Mondal *et al.*, 2020). Besides, *in situ* conservation and ecorestoration can be carried out by maintaining them within natural or man-made ecosystems. Hence people's awareness must be boosted up through various agencies at different levels. It is necessary to understand the feeding ecology of SIFs, so as to know food partitioning and habitat preference within and between the fish species, for better culture and so that the ecological semblances could well be maintained and sustained (Nandi *et al.*, 2012). Laws and regulations to protect SIFs chiefly in breeding season are entailed. Use of small webbed nets, up gradation of water bodies to sanctuaries, an intensive aquaculture and outlawing of introduction of exotic fishes, educating the general people about nutritional advantage of SIF and the initiative role of institutions to popularize SIF for nutritional safety as well as alternative livelihood must be focused (Sinha and Santra, 2016; Sinha *et al.*, 2017; Sinha, 2020)

## CONCLUSIONS

Thus, the study wind ups that SIF are a potent source of nutrition and revenue generation. Among the designated SIF's, certain species like *Amblypharyngodon mola*, Dhela (*Osteobrama cotio*), Darikina (*Esomus danricus*) and Kaski (*Corica soborna*) are of special demand due to

their high nutrient quality. Species like *O. cotio*, *E. danricus* and *C. soborna* are very rich in Vit. A. Besides, few other small fishes are also reported to have rich iron content such as *O. cotio* (39.7 mg·100 g<sup>-1</sup>), *Mystus vittatus* (33.0 mg·100 g<sup>-1</sup>) and *C. bacalia* (33.2 mg·100 g<sup>-1</sup>). Therefore, a polyculture of such species along with Indian major carps is highly demandable. Moreover, the fish farmers should be acquainted with mass awareness and capacity building programmes related to SIF. So, as to restore their population in the ecosystem and as a step towards their conservation all illegal fishing and catching of juveniles and brooders must be lawfully banned. The ethnic knowledge and farmers' innovation to protect SIF resources must be accurately documented. Although researchers could successfully highlight the nutritional value of SIFs, but the technical gaps are yet need to be filled. Moreover, more prominence should be given in developing the breeding capacity, diversification and innovative cultural practices to save and propagate this excellent bioresource.

## ACKNOWLEDGEMENT

Authors are thankful to the staff of Department of Zoology, USTM in helping and gathering information to produce the review article.

## LITERATURE CITED

Acharya, K.V., A. Shandage and P. Dadhaniya. 2018. Medicinal, nutritional and biochemical values of fishes. *Journal of Emerging Technologies and Innovative Research* 5(7): 343–347.

Ackman, R.G. 1989. Nutritional composition of fats in seafood. *Progress In Food and Nutrition Science* 13(3–4): 161–289.

Ahmad, Z., M.N. Somchit, S. Mohamad Hasan, Y.M. Goh, A. Abdul Kadir, M.S. Zakaria, A.M. Mat Jais, M.A. Rajion, Z.A. Zakaria and N. Somchit. 2005. Fatty acid and amino acid composition of three local Malaysian *Channa* spp. Fish. *Food Chemistry* 97(4): 674–678.

Ahmed, I., K. Jan, S. Fatma and M.A.O. Dawood. 2022. Muscle proximate composition of various food fish species and their nutritional significance: A review. **Journal of Animal Physiology and Animal Nutrition** 106(3): 690–719. DOI: 10.1111/jpn.13711.

Ahmed, S., A.F.M. Rahman, G. Mustafa, M.B. Hossain and N. Nahar. 2012. Nutrient composition of indigenous and exotic fishes of rainfed waterlogged paddy fields in Lakshmipur, Bangladesh. **World Journal of Zoology** 7(2): 135–140.

Ajiro, K., M. Sawamura and K. Ikeda. 2000. Beneficial effects of fish oil on glucose metabolism in spontaneously hypertensive rats. **Clinical And Experimental Pharmacology and Physiology** 27: 412–415. DOI: 10.1046/j.1440-1681.2000.03244.x.

Baishya, R.A., S. Basumatary, H.K. Kalita, B. Talukdar, A. Dutta and D. Sarma. 2021. Status and diversity of indigenous ornamental fishes of the upper reaches of River Brahmaputra, Assam. **Journal of the Inland Fisheries Society of India** 47(2): 70–77.

Balami, S., A. Sharma and R. Karn. 2019. Significance of nutritional value of fish for human health. **Malaysian Journal of Halal Research** 2(2): 32–34. DOI: 10.2478/mjhr-2019-0012.

Barman, D., V. Kumar and S. Mandal. 2012. Aquaculture status and potential in the northeastern region of India. **World Aquaculture** 43(1): 26–31.

Begum, M., T. Akhter and M.H. Minar. 2012. Analysis of the proximate composition of domesticated pangus (*Pangasius hypophthalmus*) in laboratory condition. **Journal of environmental Science and Natural Resources** 5(1): 69–74.

Begum, M., S. Bhowmik, F.M. Juliana and M.S. Hossain. 2016. Nutritional profile of hilsa fish (*Tenualosa ilisha* [Hamilton, 1822]) in six selected regions of Bangladesh. **Journal of Nutrition and Food Sciences** 6: 1–4. DOI: 10.4172/2155-9600.1000567.

Bezbarua, G. and D.D. Deka. 2021. Variation of moisture and protein content in the muscle of three catfishes: A comparative study. **International Journal of Fisheries and Aquatic Studies** 9(1): 223–226. DOI: 10.22271/fish.2021.v9.i1c.2406.

Bogard, J.R., S.H. Thilsted, G.C. Marks, M.A. Wahab, M.A.R. Hossain, J. Jakobsen and J. Stangoulis. 2015. Nutrient composition of important fish species in Bangladesh and potential contribution to recommended nutrient intakes. **Journal of Food Composition and Analysis** 42: 120–133. DOI: 10.1016/j.jfca.2015.03.002.

Calder, P.C. and P. Yaqoob. 2009. Omega-3 polyunsaturated fatty acids and human health outcomes. **Biofactors** 35(3): 266–272. DOI: 10.1002/biof.42.

Chakraborty, S. and A.K. Goyal. 2015. Proximate composition of three small indigenous fish species encountered in the local fish market of Kokrajhar, BTAD, Assam. **Indian Journal of Applied Research** 5(10): 712–714.

Chalamaiyah, M., B.D. Kumar, R. Hemalatha and T. Jyothirmayi. 2012. Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A Review. **Food Chemistry** 135(4): 3020–3038. DOI: 10.1016/j.foodchem.2012.06.100.

Choo, P.Y., A. Azlan and H.E. Khoo. 2018. Cooking methods affect total fatty acid composition and retention of DHA and EPA in selected fish fillets. **Science Asia** 44: 92–101.

Cui, Y. and R.J. Wootton. 1988. Bioenergetics of growth of a cyprinid, *Phoxinus phoxinus*: The effect of ration, temperature and body size on food consumption, faecal production and nitrogenous excretion. **Journal of Fish Biology** 33(3): 431–443. DOI: 10.1111/j.1095-8649.1988.tb05484.x.

Daniel, I.E. 2015. Proximate composition of three commercial fishes commonly consumed in Akwa Ibom state, Nigeria. **International Journal of Multidisciplinary Academic Research** 3(2): 1–5.

Das, A.N., D.K. Sharma and R. Ahmed. 2021. An assessment of physico-chemical parameters of water in association with the ichthyofauna diversity of Dhir Beel in Dhubri District of Assam, India. **International Journal of Ecology and Environmental Sciences** 47(3): 227–241.

Das, A.N. and D.K. Sharma. 2022. Analysis of planktonic abundance and its correlation to fish diversity in Dhir Beel (Oxbow Lake), Assam, India. **Egyptian Journal of Aquatic Biology and Fisheries** 26(3): 725–743. DOI: 10.21608/ejabf.2022.246433.

Datta, A.K. 2010. **Culture of some economically important small fish—A prospective approach.** Proceedings of Workshop Wastewater Aquaculture Centre, Central Institute of Freshwater Aquaculture, Rahara 2010: 27–34.

Debnath, S. 2011. **Clarias batrachus, the medicinal fish: An excellent candidate for aquaculture and employment generation.** Proceedings of the International Conference on Asia Agriculture and Animal IPCBEE Singapore 2008: 32–37.

Duarah, P. and K. Das. 2014. Diversity of small indigenous freshwater fish species in Jorhat Assam: with special reference to ITK about health benefit from such species. **Journal of Applied Research** 1(1): 151–156.

Duarah, P. and K. Das. 2019. Diversity of small indigenous freshwater fish species (SIFs) in Assam; Nutritional contents and medicinal importance: A review. **International Journal on Emerging Technologies** 10(2): 357–361.

Felts, R.A., F. Fajts and M. Akteruzzaman. 1996. **Small Indigenous Fish Species Culture in Bangladesh.** IFADEP Sub Project 2, Development of Inland Fisheries, Dhaka, Bangladesh. 41 pp.

Food and Agriculture Organization (FAO). 2018. **The State of World Fisheries and Aquaculture—Meeting the Sustainable Developmental Goals.** Food and Agricultural Organisation, Rome, Italy. 227 pp.

Golanski, J., P. Szymanska and M. Rozalski. 2021. Effects of omega-3 polyunsaturated fatty acids and their metabolites on haemostasis—current perspectives in cardiovascular disease. **International Journal of Molecular Sciences** 22(5): 2394. DOI:10.3390/ijms2205239.

Gopakumar, K. 1997. **Biochemical Composition of Indian Food Fish.** Central Institute of Fisheries Technology (ICAR), Cochin, India. 44 pp.

Goswami, U.C., S.K. Basistha, D. Bora, K. Shyamkumar, B. Saikia and K. Changsan. 2012. Himalayan and Indo Burma biodiversity hotspots zones: A checklist on their taxonomic status, economic importance, geographical distribution, present status and prevailing threats. **International Journal of Biodiversity and Conservation** 4(15): 592–613.

Halwart, M. 2008. Biodiversity, nutrition and livelihoods in aquatic rice-based systems. **Biodiversity: Journal of Life on Earth** 9 (1&2): 36–40. DOI: 10.1080/14888386.2008.9712879.

Hansen, M., S.H. Thilsted, B. Sandstrom, K. Kongsback, T. Larsen, M. Jensen and S.S. Sorensen. 1998. Calcium absorption from small soft-boned fish. **Journal of Trace Elements in Medicine and Biology** 12: 148–154. DOI: 10.1016/S0946-672X(98)80003-5.

Hantoush, A.A., Q.H. Al-Hamadany, A.S. Al-Hassoon and H.J. Al-Ibadi. 2015. Nutritional value of important commercial fish from Iraqi waters. **International Journal of Marine Science** 5(11): 1–5. DOI: 10.5376/ijms.2015.05.0011.

Islam, M.R., M. Yeasmin, S. Sadia, M.S. Ali, A.R. Haque and V.C. Roy. 2023. Small indigenous fish: A potential source of valuable nutrients in the context of Bangladesh. **Hydrobiolgy** 2: 212–234. DOI: 10.3390/hydrobiolgy2010014.

Jacquot, R. 1961. **Organic constituent of fish and other aquatic animals.** In: Fish as Food (ed. G. Borgstrom), pp. 145–209. Academic Press, New York and London, USA and UK.

Jais, A.M., R. McCulloch and K. Croft. 1994. Fatty acid and amino acid composition in Haruan has a potential role in wound healing. **General Pharmacology** 25: 947–950.

Jakhar, J.K., A.K. Pal, A.D. Reddy, N.P.G. Sahu, G. Venkateshwarlu and H.K. Vardia. 2012. Fatty Acids Composition of Some selected Indian Fishes. **African Journal of Basic and Applied Sciences** 4(5): 155–160.

Jan, K., I. Ahmed and N.A. Dar. 2021. Haematological and serum biochemical reference values of snow trout, *Schizothorax labiatus* habiting in river Sindh of Indian Himalayan region. **Journal of Fish Biology** 98(5): 1289–1302. DOI: 10.1111/jfb.14661.

Jena, D., A.K. Jena, A. Panda, J. Parhi, P. Biswas and S.S. Pattanaik. 2018. Proximate analysis of some small indigenous fish species (SIS) of Tripura, India. **Journal of Entomology and Zoology Studies** 6(4): 470–474.

Jeyaram, K., T.A. Singh, W. Romi and A.R. Devi. 2009. Traditional fermented foods of Manipur. **Indian Journal of Traditional Knowledge** 8(1): 115–121.

Kaushik, G. and S. Bordoloi. 2016. Ichthyofauna of Ranganadi River in Lakhimpur, Assam, India. **Check List** 12(2): 1–6. DOI: DOI: 10.15560/12.2.1871.

Kohinoor, M., M.A. Hasan, S.H. Thilsted and M.A. Wahab. 2005. Culture of small indigenous fish species (SIS) with Indian major carps under semi intensive culture system. **Indian Journal of Fisheries** 52(1): 23–31.

Kongsbak, K., S.H. Thilsted and M.A. Wahed. 2008. Effect of consumption of the nutrient-dense, freshwater small fish *Amblypharyngodon mola* on biochemical indicators of vitamin A status in Bangladeshi children: a randomized, controlled study of efficacy. **British Journal of Nutrition** 99: 581–597. DOI: 10.1017/S000711450781912X.

Kotpal, R.L. 2006. **Modern Textbook of Zoology: Vertebrates**, 5<sup>th</sup> ed. Rastogi Publication, New Delhi, India. 864 pp.

Krešić, G., E. Dujmić, D. Lončarić, S. Zrnčić, N. Liović and J. Pleadin. 2022. Fish consumption: Influence of knowledge, product information, and satisfaction with product attributes. **Nutrients** 14: 2691. DOI: 10.3390/nu14132691.

Kris-Etherton, P.M., W.S. Harris and L.J. Appel. 2002. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. **Circulation** 106: 2747–2757.

Kunda, M., B. Mahakur, G. Sengupta, M.A. Wahab, N. Roos and S.H. Thilsted. 2010. **Introduction of carps, mola and prawn polyculture in the Sunderbans Region, India to reduce poverty and improve household nutrition**. Proceedings of the Workshop Central Institute of Freshwater Aquaculture Rahara, Kolkata 2008: 45–47.

Lakra, W.S., U.K. Sarkar, A. Gopalakrishnan and A. Kathirvelpandian. 2010. **Threatened Freshwater Fishes of India**. National Bureau of Fish Genetic Resources (ICAR), Lucknow, India. 20 pp.

Larsen, T., S.H. Thilsted, K. Kongsbak and M. Hansen. 2000. Whole small fish as a rich calcium source. **British Journal of Nutrition** 83: 191–196.

Lee, M.K. and J. Nam. 2019. The determinants of live fish consumption frequency in South Korea. **Food Research International** 120: 382–388.

Li, X., X. Bi, S. Wang, Z. Zhang, F. Li and A.Z. Zhao. 2019. Therapeutic potential of ω-3 polyunsaturated fatty acids in human autoimmune diseases. **Frontiers in Immunology** 10: 2241. DOI: 10.3389/fimmu.2019.02241.

Mahanty, A., S. Ganguly, A. Verma, S. Sahoo, P. Mitra, P. Paria, A.P. Sharma, B.K. Singh and B.P. Mohanty. 2014. Nutrient profile of small indigenous fish *Puntius sophore*: Proximate composition, amino acid, fatty acid and micronutrient profiles. **National Academy Science Letters** 37(1): 39–44. DOI: 10.1007/s40009-013-0186-3.

Manoharan, S., R. Kuppu and R. Uthandakalaipandian. 2019. **Comparative assessment of nutritional composition in raw and cooked Indian freshwater fish *Lepidocephalus thermalis* (V).** Proceedings of the Zoological Society 72(2): 154–161.

Mantzioris, E., L.G. Cleland and R.A. Gibson. 2000. Biochemical effects of a diet containing foods enriched with n-3 fatty acids. **American Journal of Clinical Nutrition** 72: 42–48. DOI: 10.1093/ajcn/72.1.42.

Mayanglambam, S. and S. Tongbram. 2022. **Small indigenous fish species (SIFFS): Significance nutrient sources as amino acids, fatty acids and oil soluble vitamins in human health.** In: Innovative Research in Modern Trends of Biology (ed. D.J. Laishram), pp. 110–148. Akansha Publishing House, New Delhi, India.

Mazumder, M.S., M.M. Rahman, A.T.I Ahmed, M. Begum and M.A. Hossain. 2008. Proximate composition of some small indigenous fish species (SIS) in Bangladesh. **International Journal of Sustainable Crop Production** 3(4): 18–23.

Memon, N.N., F.N. Talpur and M.I. Bhanger. 2010. A comparison of proximate composition and fatty acid profile of Indus river fish species. **International Journal of Food Properties** 13(2): 328–337. DOI: 10.1080/10942910802398479.

Mohan, K.M., V.V. Sugunan, D.P. Sen, S. Chandrika and W. Vishwanath. 2010. **Management of small fish resources need for paradigm shift in attention to enhance production and multiple benefits to people.** Workshop on Small Indigenous Freshwater Fish Species: Their Role in Poverty Alleviation, Food Security and Conservation of Biodiversity CIFRI (ICAR), Barrackpore, India 2010: 15–18.

Mohanty, B.P., B.K. Behera and A.P. Sharma. 2010. **Nutritional Significance of Small Indigenous Fishes in Human Health.** Central Inland Fisheries Research Institute (ICAR), Barrackpore, India. 63 pp.

Mohanty, B.P., M.K. Pati, S. Bhattacharjee, A. Hajara and A.P. Sharma 2013. Small indigenous fishes and their importance in human health. **Advances in Fish Research** 5: 257–278.

Mohanty, B.P., A. Mahanty, S. Ganguly, T. Mitra, D. Karunakaran and R. Anandan. 2019. Nutritional composition of food fishes and their importance in providing food and nutritional security. **Food Chemistry** 293: 561–570. DOI: 10.1016/j.foodchem. 2017.11.039

Mohanty B.P., S. Yengkokpam and D. Debnath. 2022. **Small Indigenous Fishes of North-Eastern India: Nutrition and Livelihoods.** Narendra Publishing House, Delhi, India. 20 pp.

Mondal, S., A. Wahab, B.K. Barman and A.A. Asif. 2020. Enhance the contribution of small indigenous fish production: Emphasis Mola (*Amblypharyngodon mola*) with Carps in North-West of Bangladesh. **Singapore Journal of Scientific Research** 10: 308–316. DOI: 10.3923/sjsres.2020.308.316.

Mustafa, T., M.N. Naser, S. Murshed, Z. Farhana, M. Akter and L. Ali. 2015. Fatty acid composition of three small indigenous fishes of Bangladesh. **Bangladesh Journal of Zoology** 43(1): 85–93. DOI: 10.3329/bjz.v43i1.26141.

Muzaddadi, A.U. and S. Basu. 2012. SHIDAL-A traditional fermented fishery product of North East India. **Indian Journal of Traditional Knowledge** 11(2): 323–328.

Muzaddadi, A.U., R.K. Taye and B.K. Bhattacharya. 2013. Traditional knowledge associated with Numsing, an ethnic fish product prepared by Missing Tribes of Upper Assam, India. **Indian Journal of Traditional Knowledge** 12(1): 91–96.

Nandi, S., S. Majumder and S.K. Saikia. 2012. Small freshwater fish species (SFFs) culture: Issues from nutrient security, carp-SFF integration and feeding ecology. **Reviews in Fish Biology and Fisheries** 23: 283–291.

Nelson, J.R. and S. Raskin. 2019. The eicosapentaenoic acid:arachidonic acid ratio and its clinical utility in cardiovascular disease. **Postgraduate Medicine** 131(4): 268–277. DOI: 10.1080/00325481.2019.1607414.

Neog, P.R. and B.K. Konwar. 2023. The distribution, economic aspects, nutritional, and therapeutic potential of swamp eel *Monopterus cuchia*: A Review **Fisheries Research** 261: 106635. DOI: 10.1016/j.fishres.2023.106635.

Ngasotter, S., S.P. Panda, U. Mohanty, S. Akter, S. Mukherjee, D. Waikhom and L.S. Devi. 2020. Current scenario of fisheries and aquaculture in India with special reference to Odisha: A review on its status, issues and prospects for sustainable development. **International Journal of Bio-resource and Stress Management** 11(4): 370–380. DOI: 10.23910/1.2020.2126a.

Osibona, A.O., K. Kusembemju and G.R. Akande. 2009. Proximate composition and fatty acids profile of the African catfish *Clarias gariepinus*. **Journal Acta SATECH** 3(1): 85–89.

Pegu, A., R. Kalita, P. Das and C. Baruah. 2023. Nutritional composition of small indigenous species of fishes of Northeast India: A systematic review. **Journal of Applied and Natural Science** 15(2): 649–662. DOI: 10.31018/jans.v15i2.4490.

Piska, R.S. and S. Waghray. 1989. Biochemical variations of reproductive tissues of *Amblypharyngodon mola* (Ham.) with reference to spawning cycle. **Indian Journal of Fisheries** 36(4): 335–336.

Qasim, S.Z. 1972. The dynamics of food and feeding habits of some marine fishes. **Indian Journal of Fisheries** 19(1–2): 11–28.

Ray, S.M., I.M. Ahmed, M.M. Khatun, A.B. Ashkar Sayeed, M.S. Shah and M. Golam. 2014. Antioxidant potential and nutrient content of selected small indigenous species of fish. **Pharmacology** 2: 48–53.

Roos, N., T. Leth, J. Jakobsen and S.H. Thilsted. 2002. High vitamin A content in some small indigenous fish species in Bangladesh: Perspectives for food-based strategies to reduce vitamin A deficiency. **International Journal of Food Sciences and Nutrition** 53(5): 425–437. DOI: 10.1080/0963748021000044778.

Roos, N., M.M. Islam and S.H. Thilsted. 2003. Small indigenous fish species in Bangladesh: contribution to vitamin A, calcium and iron intakes. **American Society for Nutritional Sciences** 113(11): 4021–4026.

Roos, N., M.A. Wahab, C. Chamnan and S.H. Thilsted. 2007. The role of fish in food based strategies to combat vitamin A and mineral deficiencies in developing countries. **The Journal of Nutrition** 137: 1106–1109. DOI: 10.1093/jn/137.4.1106.

Roy, A., A. Pandit, A.P. Sharma, U. Bhaumik, S. Majunder and D.K. Biswas. 2015. Socioeconomic status and livelihood of fisher women of Hooghly estuary. **Journal of Inland Fisheries Society of India** 47(1): 49–56.

Roy, A., M. Aftabuddin, P.K. Parida, A. Sinha, B.K. Das and P. Adhiguru. 2020. **Small indigenous fishes to boost nutritional security: A roadmap for nutri-smart village in deltaic Sunderbans**. In: Book Agricultural Extension: Socio-economic Imperatives (eds. A.K. Singh, R. Singh, P. Adhiguru, R.N. Padaria, R.R. Burman and A. Arora), pp. 63–67. Indian Council of Agricultural Research, New Delhi, India.

Roy, N.C., M.A. Wahab, H. Khatoon and S.H. Thilsted. 2003. Economics of carp-SIS polyculture in rural farmer's pond. **Pakistan Journal of Biological Science** 6(1): 61–64. DOI: 10.3923/pjbs.2003.61.64.

Saiga, A., S. Tanabe and T. Nishimura. 2003. Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. **Journal of Agricultural and Food Chemistry** 51(12): 3661–3667. DOI: 10.1021/jf021156g.

Salam, M.A., N. Alam, M. Nasiruddin, R. Nabi and M.Z.H. Howlader. 1995. Biochemical composition of body muscles and its caloric contents of tawes (*Puntius gonionotus*, Bleeker). **Bangladesh Journal of Scientific Research** 13(2): 205–211.

Sarkar, A.P., S. Basumatary and S. Das. 2017. Determination of nutritional composition of some selected fishes from Hel River of North-East India. **Asian Journal of Chemistry** 29(11): 2493–2496. DOI: 10.14233/ajchem.2017.20790.

Shyam, S., P.K. Safeena and N.R. Athira. 2015. Does India really need to export fish: Reflections and upshots. **Agricultural Economics Research Review** 28: 117–125.

Singh, D.N., M. Krishnan, V.R. Kiresur, V. Ramasubramanian and P. Swadesh. 2017. Fish production in North East India address food and nutritional security of the region? **Journal of Fisheries and Life Sciences** 2(2): 23–29.

Sinha, A. and S. Santra. 2016. Integration of high priced small indigenous fish with conventional carp culture for nutritional security and rural livelihood. **International Journal of Agriculture Innovations and Research** 4: 960–963.

Sinha, A., A. Roy, B.K. Das and B.P. Mohanty. 2017. **Small indigenous fish (SIF) for livelihood and nutritional security awareness and sensitization initiative by ICAR-CIFRI**. Central Inland Fisheries Research Institute, Barrackpore, India. 67 pp.

Sinha, A. 2020. **Culture of small indigenous fishes (SIF) in India**. In: Indian Aquaculture (eds. V.V. Sugunan, V.R. Suresh and C.K. Murthy), pp. 108–115. The Society for Indian Fisheries and Aquaculture, Hyderabad, India.

Supartini, A., T. Oishi and N. Yagi. 2018. Changes in fish consumption desire and its factors: A comparison between the United Kingdom and Singapore. **Foods** 7(7): 97. DOI: 10.3390/foods7070097.

Suresh, V.R. and R.K. Manna. 2010. **Fishery of wetlands in West Bengal and contribution of wild fish stocks to production and fisher's income**. Workshop on Small Indigenous Freshwater Fish Species: Their Role in Poverty Alleviation, Food Security and Conservation of Biodiversity. Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal 2010: 42–46.

Tewari, G. and A. Bisht. 2010. Aquatic biodiversity: Threats and conservation. **Aquafind** 20: 241–246.

Volpe, R., P. Stefano, M. Massimiliano, M. Francesca, S. Gianluca and R. Federica. 2015. Healthy fats for health nutrition. An educational approach in the workplace to regulate food choices and improve prevention of non-communicable diseases. **High Blood Pressure and Cardiovascular Prevention** 22(4): 395–401. DOI: 10.1007/s40292-015-0097-0.

Wahab, M.A., A. Kadir, A. Milstein and M. Kunda. 2011. Manipulation of species combination for enhancing fish production in polyculture systems involving major carp and small indigenous fish species. **Aquaculture** 321: 289–297. DOI: 10.1016/j.aquaculture.2011.09.020.

West, K.P. 2002. Extent of vitamin A deficiency among preschool children and women of reproductive age. **The Journal of Nutrition** 132(9): 2857–2866. DOI: 10.1093/jn/132.9.2857s.

Zakaria, Z.A., A.M. Mat Jais, Y.M. Goh, M.R. Sulaiman and M.N. Somchit. 2007. Amino acid and fatty acid composition of an aqueous extract of *Channa striatus* (Haruan) that exhibits antinociceptive activity. **Clinical and Experimental Pharmacology and Physiology** 34(3): 198–204. DOI: 10.1111/j.1440-1681.2007.04572.

Zuraini, A., M.N. Somchit, M.H. Solihah, Y.M. Goh, A.K. Arifah, M.S. Zakaria, N. Somchit, M.A. Rajion, Z.A. Zakaria and A.M. Mat Jais. 2006. Fatty acid and amino acid composition of three local Malaysian *Channa* spp. fish, **Food Chemistry** 97(4): 674–678.