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 Tilapia is one of the most valuable global 
inland aquaculture commodities with a production 
contribution of 4.4 million tonnes in 2020, 
accounting for approximately 9 percent of the 
world's production of major aquaculture species 
(FAO, 2022).  One of the most popular species of 
tilapia is the red tilapia (Oreochromis niloticus 
Linn.).  This fish has gained popularity in freshwater 
aquaculture throughout the world, especially in 
Thailand (Jongjaraunsuk and Taparhudee, 2022; 
Taparhudee et al., 2023). 

 The increase global consumption of tilapia 
highlights a growing trend in fish consumption 
within communities, necessitating a corresponding 
boost in production to meet rising demand.  
However, there are several factors that limit the 
expansion of tilapia production to satisfy consumer 
needs.  One such factor is the deterioration of water 
quality due to nitrogen (N) waste originated from 
feces, uneaten feed residues, and gill excretions, 
resulting in decreased fish productivity (Putra 
et al., 2019; Hasibuan et al., 2023).  On the other 
hand, red tilapia during the nursing period is very 
vulnerable to environmental factors.  Therefore,
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 Aquaculture has witnessed a gradual transformation owing to advancement in automatic and 
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12 attributes were used in this study.  The outcomes of this investigation revealed that the performance 
of the individual predictive models was eclipsed by the proposed EL–V(DT–DL–NB) model, boasting an 
impressive accuracy rate of 90.85%, precision of 84.00%, recall of 77.50%, and area under curve of 
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optimization of aquaculture practices. 
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determining the optimal environmental conditions to 
achieve adequate fingerling growth performance is 
important in optimizing production and maintaining 
cultivation profitability (Azaza et al., 2008; Ekasari 
et al., 2015; García-Ríos et al., 2019).  Furthermore, 
water quality management has emerged as a critical 
component of aquaculture practices.  It is crucial 
to comprehend the parameters of water quality and 
their interrelationships, which can affect fish health 
and growth and also can determine the failure or 
success of aquaculture practices as a whole (Putra 
et al., 2019; El-Sayed, 2020).

 Automation and intelligent technological 
advancements are rapidly reshaping the landscape 
of aquaculture.  Combined with high-performance 
computing, machine learning technologies can 
sift through vas datasets, unravel cause-and-effect 
associations, anticipate issues, and provide intelligent 
solutions in aquaculture (Liakos et al., 2018; 
Sharma and Gupta, 2021; Zhao et al., 2021; Gladju 
et al., 2022).  Numerous studies have investigated 
creation of prediction models utilizing traditional 
learning algorithms, such as naïve bayes (NB), 
deep learning (DL), and decision trees (DT) (LeCun 
et al., 2015; Schmidhuber, 2015; Huan et al., 2020).  
Traditionally, a single predictive model has been 
crafted to forecast the class level of each classification 
problem.  Specifically, in predictive modeling and 
data analysis in general, a single predictive algorithm 
is used for a given sample of data.  However, the 
applied single predictive model sometimes faces 
problems, such as low predictive performance on 
a limited dataset.  This occurs because each of the 
several algorithms can contribute more effectively 
using its own strength.  Hence, this study proposed 
an ensemble learning (EL) technique that combines 
the predicted results of several algorithms to improve 
predictive performance.

 The EL technique is a type of learning 
model in which instead of a single learning algorithm, 
multiple learning schemes are used to solve the 
same problem; therefore, it can be called a multilevel 
predictive classification model (Sagi and Rokach, 
2018; Marcello et al., 2020).

 Compared to single predictive algorithms, 
EL techniques can yield more accurate and reliable

predictions with improved generalization performance 
and wider applications (Knudby et al., 2010; Raza, 
2019; Lin et al., 2022; Mienye and Sun, 2022).  In 
this study, a voting-based ensemble learning technique 
(EL–VDT–DL–NB) was proposed, combining three 
algorithms: DT (Quinlan, 1986), DL, and NB (Lewis, 
1998).  These algorithms are widely recognized in 
supervised machine learning for aquaculture (Zhao 
et al., 2021).
 
 By implementing an EL-V technique using 
water quality parameters data, we aimed to enhance 
predictive performance by integrating multiple 
machine learning algorithms in a unified process.  
A successful outcome is expected to provide the 
aquaculture management system with improved 
recommendations and insights, enabling fish farmers 
to make informed decisions and actions to prevent 
mortality, produce higher quality fingerlings, and 
increase the productivity of red tilapia for sustainable 
aquaculture.

Study area

 The study area for this research was the 
Patthamarach Farm, situated in the Lam Plai Mat 
district of Buriram province, Thailand.  The farm, 
located at coordinates (15°04'01.9" N 102°47'20.3" E), 
comprises various components, including a reservoir 
pond spanning 9,200 m2, 2 treatment ponds with sizes 
of 1,600 m2 and 4,600 m2, respectively, 4 nursing 
ponds each covering an area of 1,600 m2, 18 grow-out 
ponds, each with a size of 1,600 m2, 1 sedimentation 
pond spanning 2,000 m2, 2 biological treatment pond 
over an area of 8,200 m2 and 7,200 m2, 1 ready-to-use 
pond covering 3,600 m2, and 1 treatment pond for 
water outlet 800 m2.

Data sources

 The fish were cultivated in earthen ponds 
lined with polyethylene, employing a recirculating 
aquaculture system featuring mono-sex fish in 
4 ponds, each spanning an area of 1,600 m2.  The 
stocking density was set at 25 fish∙m-2, with an 
average initial weight of the fish was 50 g∙fish-1.

MATERIALS AND METHODS
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Each pond was equipped with four paddle wheel, 
operated 24 h a day.  The fish were fed floating 
pellets comprising 35% crude protein three times 
a day (8:00 a.m., 11:30 a.m., and 4:30 p.m.) until 
satiation, using an automatic feeder.

 The water quality parameters measured 
daily during maintenance included water temperature 
(Temp) dissolved oxygen (DO), pH, total ammonia 
nitrogen (TAN), nitrite-nitrogen (NO2–N), 
transparency (Trans), and alkalinity (ALK).  Temp, 
DO, and pH were measured twice daily (morning 
and evening) using a YSI Professional Plus 
instrument (Yellow Springs, OH, USA).  These 
values were divided into two parts: average and 
difference.  Temp average, DO average, and pH 
average represented the central or typical value 
from both morning and evening measurements.  
On the other hand, Temp difference, DO difference, 
and pH difference indicated the changes between 
morning and evening measurements.  TAN, NO2–N, 
and ALK were measured once a day following the 
procedures outlined in APHA (2005).   In addition, 
Trans was measured daily using a Secchi disk.

 Fish were reared until they reached an 
average weight of 200 g∙fish-1.  The assessment of 
red tilapia mortality during the rearing process 
involved daily counting of the dead.  Fish were 
categorized as low mortality if the death rate was 
less than 10 fish∙day-1 and as high mortality if the 
death rate was more than 10 fish∙day-1.

Data processing
 
 RapidMiner version 9.10 software was 
applied for all data processing in this study.

Data cleaning 

 The dataset obtained during a study 
typically contains incomplete entries, such as 
missing or unfilled data.  In the present study, 
missing or unfilled data were replaced with values 
derived from the dataset (minimum, maximum, 
or average, depending on the characteristics of the 
attribute).  Irrelevant data are discarded because

its existence can reduce the quality or accuracy of 
data mining later (Kotu and Deshpande, 2019).

Data normalization
 
 After the cleaning process, all data were 
standardized in RapidMiner using the 'Normalize' 
operator, utilizing z-transformation method.  This 
helps to normalize the scale of numeric features 
(Figure 1).  Because the applied parameters were 
in difference scales, a normalization technique 
was used to scale and transform features within a 
dataset to a similar scale, preventing certain features 
from dominating the learning process due to their 
larger values.  The equation for z-transformation, 
represented as Equation 1, is as follows.

  z = χ - μ / σ                  (1)

 Where: z is the resulting value from the 
z-transformation, χ is the individual data value, μ is 
the mean (average) of the data, and σ is the standard 
deviation of the data.

Data modelling

 Once the dataset had been cleaned and 
normalized, it was imported into the RapidMiner. 
The ‘date’ attribute was changed from ‘regular’ 
to ‘id’, indicating that this column was used solely 
for identification purposes and not for classification 
or prediction.  Furthermore, the ‘mortality rate’ 
attribute was used as a ‘label’ for analysis.  The 
dataset was stored in a local or temporary repository 
in the RapidMiner.

 To apply the EL model for predicting the 
mortality rate of red tilapia, a voting method was 
used.  Initially, the ‘retrieve dataset’ and ‘optimize 
parameters (Grid)’ operators were introduced into 
the process.  The Grid operator is a nested operator 
designed to execute the subprocess on all combinations 
of selected parameter values, providing the optimal 
parameter values that yield the best predictive 
performance.  The optimization parameters chosen 
for this study align with the specifications detailed 
in Table 1.
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 Within the ‘optimize parameters (Grid)’ 
operator, the 'cross validation' operator is employed 
to gauge the pract ical  accuracy of  model  
performance.  This technique was selected toidentify 
overfitting or underfitting and to provide a more 
reliable estimation of a model's performance, as 
opposed to relying solely on a single train-test split.  
This operator has two subprocesses namely training 
(learning) and testing (validation), employing 
a 10-fold configuration.  The processing and 
optimizing parameters structures can be seen in 
Figure 1.

 Figure 2(a) illustrates the validation 
structure.  In the training subprocess, the ‘Vote’ 
operator is used to build a classification model.
The advantage of the voting operator lies in the 
freedom to choose more single algorithms and 
thus combine them to prove their effectiveness in 
predicting the mortality rate of the red tilapia.  
The maximum vote or average received for a 
certain class is then predicted.  The ‘Vote’ operator 
is a nested operator with a subprocess that requires 
a minimum of two base learners.  In this study, 
we introduced three predictive models as base
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  Table 1. Optimization parameters. 

Operator

DT

DL 
NB

Parameter

Criterion
Minimal leaf size
Maximal depth

Activation
Laplace correction

Range

Gain ratio, Gini index, Information gain, Accuracy
2–6

1–10
Tanh, Rectifier, Maxout, ExpRectifier

False, True

Figure 1. Structures for processing (a) and under optimizing parameters (grid) (b).
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Figure 2. Validation structure under optimize parameter (Grid) with (a) EL–V(DT–DL–NB), (b) DT, (c) DL, and (d) NB.
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learners: DT, DL, and NB (Figure 2b-2d).  Together, 
they constituted the EL–V(DT–DL–NB) model.  In 
the testing subprocess, the ‘apply model’ and
‘performance’ operators are used.  The ‘apply 
model’ operator is used to obtain predictions on 
unseen data or to transform data by applying a 
preprocessing model.  The ‘performance’ operator 
determines the learning task type, which also 
generates the most typical criterion for that type.  
The main page allows processing and editing of the 
parameter settings in the 'optimize parameters (Grid)' 
operator (Table 2).  Finally, the EL–V(DT–DL–NB) 

model is formed and loaded to view the result.  
Moreover, the DT, DL, and NB individual models 
are evaluated against the EL–V model, employing 
a comparable procedure for execution.  Nevertheless, 
the "vote" operator was replaced with the models 
under examination.

Description of the single algorithms

 Decision tree 

 The DT algorithm, proposed by Quinlan 
(1986), is a method that partitions the input space 
into multiple regions, each having its distinct 
parameters.  It operates by extracting a tree-based 
classification model from a random training sample.
This process involves segmenting the feature space 
and constructing decision trees.  Within the decision 
tree, each non-leaf node encapsulates a category 
rating characteristic, while each leaf node signifies 
a final scoring category (Liakos et al., 2018; Zhao 
et al., 2021).  Mathematically, the entropy and 
information gain of DT can be expressed as shown 
in equations (2) and (3).

 H(S) = -∑i=1 pi log2(pi)                        (2)

 Where H(S) = is the entropy of set S 
before the split, n is the number of classes, and p(i) 
is the proportion of examples in set S that belong 
to class i.

 IG(S,A) = H(S) - ∑t∈T p(t)H(t) 
               = H(S) - H(S|A)     (3)

 Where IG(S,A) is the information gain 
of attribute A on the set S, t iterates over each
individual value in the set T, T is the set of possible 
values of attribute A, p(t) is the probability of 
occurrence of value t of attribute A in set S, H(t) 
is the entropy of the subset of S for which attribute
A has the value t, and H(S|A) is the conditional 
entropy of set S given attribute A.

 Deep learning 

 DL is a particular kind of algorithm that 
learns the fundamental principles and layers of 
sample data representation.  By using functions to 
integrate lower-level features, DL creates more 
abstract high-level features that reflect attribute 
categories.  Finding the data's distributed feature 
representation makes nonlinear relationship modeling 
a great deal simpler.  It is an artificial network 
that is utilized to address more challenging and 
complicated data mining tasks. (Zhao et al., 2021; 
Bilal et al., 2022).

 Naïve bayes

 NB (Lewis, 1998) is a type of algorithm 
that is based on the Bayesian principle, which 
states that sample data sets can be classified using 
statistical knowledge of probability.  This method 
is known to perform better than even extremely 
advanced methods in a number of practical issues.  It 
is simple to construct, extremely scalable, adaptable 
to large datasets, and needs a number of parameters 
(features) (Raza, 2019).  Mathematically, the NB 
algorithm can be expressed as shown in equation 
(4).

 Q(c|x) = Q(x|c) × Q(c) / Q(x)    (4)

 Where Q(c) and Q(x) are the prior 
probabilities of class c and feature x, respectively 
and Q(x|c) is the probability of feature x, given 
class c, which is called the probability. 

 All the experimental models utilized the 
default configuration provided by the RapidMiner 
Studio program, as outlined in the Table 2.
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Performance indicators

 Accuracy, precision, and recall

 During the classification process, 
performance indicators are very important in 
differentiating and obtaining the optimal classifier. 
Therefore, 3 important classification metrics were 
considered in this study: accuracy, precision, and 
recall.  In the following equations, TP is the true 
positive, TN is the true negative, FP is a false 
positive, and FN is a false negative.  Accuracy is 
the number of correct predictions (positive and 
negative) of all observed data generated by the 
model.  Accuracy can be mathematically expressed 
using Equation (5):

 Accuracy = (TP + TN / TP + TN + FP 
       + FN) × 100%    (5)

 Precision is the number of correct positive 
data categories divided by the total data classified 
as positive.  Precision can be written as equation 
(6): 

 Precision = (TP / TP + FP) × 100%   (6)

 Recall is the ratio of correctly positive 
predictions compared to the overall actual positive 
data.  Recall is calculated with the formula shown 
in Equation (7):

 Recall = (TP / TP + FN) × 100%    (7)

 Confusion matrix
 
 The confusion matrix in a classification task 
is typically utilized to investigate the performance of 
a suggested model, where the value of the confusion 
matrix is usually shown as a percentage. Figure 3 
shows the confusion matrix to predict the mortality 
rate of red tilapia.

 Additionally, the calculation of the area 
under curve (AUC) was conducted.  This metric 
serves to evaluate the performance of a binary 
classification model, with higher AUC values 
signifying improved ability in distinguishing between 
classes.

  Table 2. Model architectures of DT, DL and NB models.

Parameter

Criterion = gain ratio, Maximum depth = 10, Apply pruning,

Confidence level = 0.1, Minimal gain = 0.01, Minimal leaf size = 2

Activation = rectifier, Hidden layer = 2 layers with 50 neurons of

each layer, Epochs = 10, Loss function = automatic

Laplace correction

Model

DT

DL

NB

Figure 3. Confusion matrix structure.
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 The dataset used in this study consisted 
of 173 examples and 12 attributes.  The attributes 
used were Temp average, Temp difference, DO 
average, DO difference, pH average, pH difference, 
TAN, NO2–N, ALK, Trans, date, and month.  The 
mortality rate of red tilapia fingerlings was used 
as a label, with 134 cases of low mortality and 
39 cases of high mortality.  A detailed description 
of the water quality parameters is provided in 
Table 3.  Table 4 displays the optimal parameters 
generated for the EL–V(DT–DL–NB), DT, DL and NB 
models.

 The result for the performance indicators

of EL–V(DT–DL–NB) in predicting the mortality rate 
of red tilapia fingerlings had accuracy of 90.85%, 
precision of 84.00%, and recall of 77.50%.  
Therefore, the proposed model produced better 
results compared to the single predictive models 
based on 10-fold cross-validation on the same dataset, 
as shown in Figure 4.  The second-best predictive 
model was DT with accuracy of 89.58%, precision 
of 80.38%, and recall of 79.17%.  However, both DL 
and NB exhibited comparatively lower performance 
levels.
 
 Meanwhile, the AUC for the EL–V(DT–DL–NB) 
reached 0.896, whereas individual models like DT, 
DL, and NB achieved AUC values of 0.874, 0.916, 
and 0.887, respectively, as depicted in Figure 5–8.

RESULTS AND DISCUSSION
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  Table 3. Description of water quality parameters.

Water quality parameter

Temp average

Temp difference

DO average

DO difference

pH average

pH difference

TAN

NO2–N

ALK

Trans

Unit

ºC

ºC

mg∙L-1

mg∙L-1

-

-

mg∙L-1

mg∙L-1

mg∙L-1

cm

Min

18.50

0.00

3.60

0.00

5.15

0.00

0.00

0.00

60.00

15.00

Standard deviation

1.92

0.84

0.87

0.94

0.23

0.19

0.73

0.43

9.41

8.22

Max

27.00

4.00

7.85

3.90

7.60

0.90

3.00

1.40

110.00

45.00

Mean

22.67

1.79

5.77

1.54

7.29

0.19

1.11

0.71

79.11

33.78

Operator

EL–V(DT–DL–NB)

DT

DL 

NB

Sub-operator

DT

DT

DT

DL

NB

-

-

-

Optimal value

Gini_index

2

10

Rectifier

True

Information_gain

8

4

Rectifier

False

Parameter

Criterion

Minimal leaf size

Maximal depth

Activation

Laplace correction

Criterion

Minimal leaf size

Maximal depth

Activation

Laplace correction

  Table 4. Optimal values for EL–V(DT–DL–NB), DT, DL and NB models.
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Figure 4. Performance comparison of EL–V(DT–DL–NB) and three single predictive models.

Figure 5. AUC of EL–V(DT–DL–NB).

Figure 6. AUC of DT.
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 The research revealed that ensemble 
methods (EL–V(DT–DL–NB)) outperformed individual 
models such as DT, DL, and NB, in terms of 
overall performance.  Each model has its strengths 
and weaknesses.  For instance, DT excel in easy 
interpretation of results, handling missing data well, 
being less impacted by outliers compared to other 
models, and handling both linear and non-linear 
relationships between features and target variables. 
However, they tend to overfit complex or high-
dimensional data and struggle with imbalanced 
data compared to other methods (Quinlan, 1986; 
Podgorelec et al., 2002; Zhao et al., 2021).

 DL, on the other hand, handles large-scale 
data efficiently, learns complex and deep patterns 
well, and offers a flexible, customizable structure. 
However, it demands significant computational 
resources, a substantial amount of high-quality 
data for effective model training, and sometimes 
operates as a 'black box', making it challenging to 
interpret (LeCun et al., 2015; Schmidhuber, 2015; 
Goodfellow et al., 2016).

 NB demonstrates speed in training and good 
prediction capabilities, has an easily understandable 
algorithm with simple code suitable for basic use,

46

Figure 7. AUC of DL.

Figure 8. AUC of NB.
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CONCLUSION
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and performs well in predicting and grouping large 
datasets.  However, it often struggles when data is 
incomplete or when crucial variables have missing 
values, and it might not handle diverse feature values 
effectively, leading to lower accuracy (Rish, 2001; 
Zhang, 2004). 

 EL–V(DT–DL–NB) leverages the strengths of 
individual models while mitigating their weaknesses. 
They enhance overall model accuracy, reduce errors 
from individual models, mitigate overfitting, and 
effectively handle complex data (Kuncheva, 2004; 
Zhou, 2012).  Although ensembles aim to reduce 
overfitting, in some cases, they can still overfit if 
individual models within the ensemble are highly 
correlated or if the ensemble is too complex relative 
to the dataset size (Breiman, 2001; Kuncheva, 2004; 
Caruana et al., 2006).

 Additionally, from the data in this study, 
it was observed that the data used for prediction 
(low-high mortality rates) was not equal.  Dealing 
with imbalanced data can be approached through 
various methods, such as employing resampling 
techniques to balance the dataset, using bagging 
and boosting to create accurate models adept at 
handling imbalanced data, importing models from 
different algorithms into an ensemble, and adjusting 
class importance values (He and Garcia, 2009; Sun 
et al., 2009; Lemaitre et al., 2017).

 For this study, we opted for ensemble 
methods utilizing DT, DL, and NB models to 
enhance learning from imbalanced data.  This study's 
conclusions were supported by various research 
works, such as Jardim et al. (2021) advising on 
fisheries management; Alfatinah et al. (2023) 
predicting skipjack area for each time slice; Chen 
et al. (2023) projecting fish distribution in response to 
climate changes; and Khiem et al. (2023) predicting 
the growth of abalone.

 However, to increase accuracy, there 
should be additional data collection with comparable 
quantities.  The next study step should involve 
integrating real-time internet of things sensory 
systems for future predictive applications. 

 Machine learning provides technical support 
in data mining and has been widely applied in 
aquaculture.  The use of single predictive algorithms 
sometimes encounters challenges in mining, 
particularly with a limited dataset.  Here, we 
proposed a voting-based ensemble learning technique, 
combining three algorithms (EL–V(DT–DL–NB)), to 
enhance the predictive performance of the mortality 
rate of red tilapia fingerlings based on a water 
quality dataset.  The performance indicators of the 
proposed model outperform the compared models 
in all aspects, achieving an accuracy of 90.85%, 
precision of 84.00%, and recall of 77.50%.  Overall, 
the results of this study demonstrate that the 
reliability and implementation of the proposed 
technique could be useful in predicting the mortality 
rate of red tilapia fingerlings raised in outdoor 
earthen ponds using a recirculating aquaculture 
system.  Therefore, the EL–V(DT–DL–NB) model may 
serve as a valuable component for developing 
future decision support systems for the aquaculture 
industry.

 In the future, this study could be expanded 
by utilizing a larger dataset to predict the mortality 
rate of red tilapia during their grow-out period.  
In addition, for classification purposes, other 
classification algorithms could be tested to obtain 
the best performance results.
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