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An Ensemble Learning Technique for Predicting Mortality Rate in
Red Tilapia (Oreochromis niloticus Linn.) Fingerlings

Roongparit Jongjaraunsuk', Wara Taparhudee'” and Putra Ali Syahbana Matondang?

ABSTRACT

Aquaculture has witnessed a gradual transformation owing to advancement in automatic and
intelligent technology. Coupled with the power of high-performance computers, these innovations
have given rise to machine learning technologies capable of extracting valuable insights from data.
Consequently, these technologies are poised to usher smart aquaculture into a new era of efficiency and
productivity. This particular study focused on enhancing the predictive accuracy of mortality rates in
red tilapia (Oreochromis niloticus Linn.) fingerlings raised in outdoor earthen ponds with a recirculating
aquaculture system. To achieve this, the study leveraged a voting-based ensemble learning technique
based on the combination of three single predictive algorithms: decision tree, deep learning, and naive
bayes (EL-V 1 . ng)- The initial phase of the research involved the compilation of a comprehensive
dataset encompassing parameters were water temperature (°C), dissolved oxygen (mg-L"), pH, total
ammonia nitrogen (mg-L"), nitrite—nitrogen (mg-L"'), transparency (cm), alkalinity (mg-L"), date, month
and mortality rate (fish-day'). Following the collection and cleaning of the dataset, 173 samples with
12 attributes were used in this study. The outcomes of this investigation revealed that the performance
of the individual predictive models was eclipsed by the proposed EL-V ;. ,; g, model, boasting an
impressive accuracy rate of 90.85%, precision of 84.00%, recall of 77.50%, and area under curve of
0.896. These results affirm the potential utility of the proposed model for accurately forecasting the
mortality rate of red tilapia fingerling in aquaculture settings, thereby contributing significantly to the
optimization of aquaculture practices.
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INTRODUCTION

Tilapia is one of the most valuable global
inland aquaculture commodities with a production
contribution of 4.4 million tonnes in 2020,
accounting for approximately 9 percent of the
world's production of major aquaculture species
(FAO, 2022). One of the most popular species of
tilapia is the red tilapia (Oreochromis niloticus
Linn.). This fish has gained popularity in freshwater
aquaculture throughout the world, especially in
Thailand (Jongjaraunsuk and Taparhudee, 2022;
Taparhudee et al., 2023).

The increase global consumption of tilapia
highlights a growing trend in fish consumption
within communities, necessitating a corresponding
boost in production to meet rising demand.
However, there are several factors that limit the
expansion of tilapia production to satisfy consumer
needs. One such factor is the deterioration of water
quality due to nitrogen (N) waste originated from
feces, uneaten feed residues, and gill excretions,
resulting in decreased fish productivity (Putra
et al., 2019; Hasibuan et al., 2023). On the other
hand, red tilapia during the nursing period is very
vulnerable to environmental factors. Therefore,
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determining the optimal environmental conditions to
achieve adequate fingerling growth performance is
important in optimizing production and maintaining
cultivation profitability (Azaza et al., 2008; Ekasari
et al., 2015; Garcia-Rios et al., 2019). Furthermore,
water quality management has emerged as a critical
component of aquaculture practices. It is crucial
to comprehend the parameters of water quality and
their interrelationships, which can affect fish health
and growth and also can determine the failure or
success of aquaculture practices as a whole (Putra
et al., 2019; El-Sayed, 2020).

Automation and intelligent technological
advancements are rapidly reshaping the landscape
of aquaculture. Combined with high-performance
computing, machine learning technologies can
sift through vas datasets, unravel cause-and-effect
associations, anticipate issues, and provide intelligent
solutions in aquaculture (Liakos ef al., 2018,;
Sharma and Gupta, 2021; Zhao et al., 2021; Gladju
et al., 2022). Numerous studies have investigated
creation of prediction models utilizing traditional
learning algorithms, such as naive bayes (NB),
deep learning (DL), and decision trees (DT) (LeCun
et al., 2015; Schmidhuber, 2015; Huan et al., 2020).
Traditionally, a single predictive model has been
crafted to forecast the class level of each classification
problem. Specifically, in predictive modeling and
data analysis in general, a single predictive algorithm
is used for a given sample of data. However, the
applied single predictive model sometimes faces
problems, such as low predictive performance on
a limited dataset. This occurs because each of the
several algorithms can contribute more effectively
using its own strength. Hence, this study proposed
an ensemble learning (EL) technique that combines
the predicted results of several algorithms to improve
predictive performance.

The EL technique is a type of learning
model in which instead of a single learning algorithm,
multiple learning schemes are used to solve the
same problem; therefore, it can be called a multilevel
predictive classification model (Sagi and Rokach,
2018; Marcello et al., 2020).

Compared to single predictive algorithms,
EL techniques can yield more accurate and reliable

predictions with improved generalization performance
and wider applications (Knudby et al., 2010; Raza,
2019; Lin et al., 2022; Mienye and Sun, 2022). In
this study, a voting-based ensemble learning technique
(EL-Vy1 b ng) Was proposed, combining three
algorithms: DT (Quinlan, 1986), DL, and NB (Lewis,
1998). These algorithms are widely recognized in
supervised machine learning for aquaculture (Zhao
etal., 2021).

By implementing an EL-V technique using
water quality parameters data, we aimed to enhance
predictive performance by integrating multiple
machine learning algorithms in a unified process.
A successful outcome is expected to provide the
aquaculture management system with improved
recommendations and insights, enabling fish farmers
to make informed decisions and actions to prevent
mortality, produce higher quality fingerlings, and
increase the productivity of red tilapia for sustainable
aquaculture.

MATERIALS AND METHODS

Study area

The study area for this research was the
Patthamarach Farm, situated in the Lam Plai Mat
district of Buriram province, Thailand. The farm,
located at coordinates (15°04'01.9" N 102°4720.3" E),
comprises various components, including a reservoir
pond spanning 9,200 m?, 2 treatment ponds with sizes
of 1,600 m? and 4,600 m?, respectively, 4 nursing
ponds each covering an area of 1,600 m?, 18 grow-out
ponds, each with a size of 1,600 m?, 1 sedimentation
pond spanning 2,000 m?, 2 biological treatment pond
over an area of 8,200 m? and 7,200 m?, 1 ready-to-use
pond covering 3,600 m?, and 1 treatment pond for
water outlet 800 m?.

Data sources

The fish were cultivated in earthen ponds
lined with polyethylene, employing a recirculating
aquaculture system featuring mono-sex fish in
4 ponds, each spanning an area of 1,600 m>. The
stocking density was set at 25 fish-m?, with an
average initial weight of the fish was 50 g-fish.



JOURNAL OF FISHERIES AND ENVIRONMENT 2024, VOLUME 48 (1) 39

Each pond was equipped with four paddle wheel,
operated 24 h a day. The fish were fed floating
pellets comprising 35% crude protein three times
a day (8:00 a.m., 11:30 a.m., and 4:30 p.m.) until
satiation, using an automatic feeder.

The water quality parameters measured
daily during maintenance included water temperature
(Temp) dissolved oxygen (DO), pH, total ammonia
nitrogen (TAN), nitrite-nitrogen (NO,—N),
transparency (Trans), and alkalinity (ALK). Temp,
DO, and pH were measured twice daily (morning
and evening) using a YSI Professional Plus
instrument (Yellow Springs, OH, USA). These
values were divided into two parts: average and
difference. Temp average, DO average, and pH
average represented the central or typical value
from both morning and evening measurements.
On the other hand, Temp difference, DO difference,
and pH difference indicated the changes between
morning and evening measurements. TAN, NO,—N,
and ALK were measured once a day following the
procedures outlined in APHA (2005). In addition,
Trans was measured daily using a Secchi disk.

Fish were reared until they reached an
average weight of 200 g-fish"!. The assessment of
red tilapia mortality during the rearing process
involved daily counting of the dead. Fish were
categorized as low mortality if the death rate was
less than 10 fish-day! and as high mortality if the
death rate was more than 10 fish-day.

Data processing

RapidMiner version 9.10 software was
applied for all data processing in this study.

Data cleaning

The dataset obtained during a study
typically contains incomplete entries, such as
missing or unfilled data. In the present study,
missing or unfilled data were replaced with values
derived from the dataset (minimum, maximum,
or average, depending on the characteristics of the
attribute). Irrelevant data are discarded because

its existence can reduce the quality or accuracy of
data mining later (Kotu and Deshpande, 2019).

Data normalization

After the cleaning process, all data were
standardized in RapidMiner using the 'Normalize'
operator, utilizing z-transformation method. This
helps to normalize the scale of numeric features
(Figure 1). Because the applied parameters were
in difference scales, a normalization technique
was used to scale and transform features within a
dataset to a similar scale, preventing certain features
from dominating the learning process due to their
larger values. The equation for z-transformation,
represented as Equation 1, is as follows.

z=y-pnl/o (1)

Where: z is the resulting value from the
z-transformation, y is the individual data value, p is
the mean (average) of the data, and o is the standard
deviation of the data.

Data modelling

Once the dataset had been cleaned and
normalized, it was imported into the RapidMiner.
The ‘date’ attribute was changed from ‘regular’
to ‘id’, indicating that this column was used solely
for identification purposes and not for classification
or prediction. Furthermore, the ‘mortality rate’
attribute was used as a ‘label’ for analysis. The
dataset was stored in a local or temporary repository
in the RapidMiner.

To apply the EL model for predicting the
mortality rate of red tilapia, a voting method was
used. Initially, the ‘retrieve dataset’ and ‘optimize
parameters (Grid)’ operators were introduced into
the process. The Grid operator is a nested operator
designed to execute the subprocess on all combinations
of selected parameter values, providing the optimal
parameter values that yield the best predictive
performance. The optimization parameters chosen
for this study align with the specifications detailed
in Table 1.
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Within the ‘optimize parameters (Grid)’
operator, the 'cross validation' operator is employed
to gauge the practical accuracy of model
performance. This technique was selected toidentify
overfitting or underfitting and to provide a more
reliable estimation of a model's performance, as
opposed to relying solely on a single train-test split.
This operator has two subprocesses namely training
(learning) and testing (validation), employing
a 10-fold configuration. The processing and
optimizing parameters structures can be seen in
Figure 1.

Table 1. Optimization parameters.
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Figure 2(a) illustrates the validation
structure. In the training subprocess, the ‘Vote’
operator is used to build a classification model.
The advantage of the voting operator lies in the
freedom to choose more single algorithms and
thus combine them to prove their effectiveness in
predicting the mortality rate of the red tilapia.
The maximum vote or average received for a
certain class is then predicted. The “Vote’ operator
is a nested operator with a subprocess that requires
a minimum of two base learners. In this study,
we introduced three predictive models as base

Operator Parameter Range
DT Criterion Gain ratio, Gini index, Information gain, Accuracy
Minimal leaf size 2-6
Maximal depth 1-10
DL Activation Tanh, Rectifier, Maxout, ExpRectifier
NB Laplace correction False, True
(a) Process
@ Process) PPL BE HadH
Process
Dinp _—tes .
Read CSV Normalize Optimize Parameter...
fil % out
< =]
v

(b)| Process

o Process » Optimize Parameters (Grid) p }9 }3 Lé ra g a_- ' EB
Optimize Parameters (Grid)
Validation (2)
inp - _pe_r‘
inp 1 mod
J out C

Figure 1. Structures for processing (a) and under optimizing parameters (grid) (b).
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Figure 2. Validation structure under optimize parameter (Grid) with (a) EL-V 1 yp)» (b) DT, (¢) DL, and (d) NB.
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learners: DT, DL, and NB (Figure 2b-2d). Together,
they constituted the EL-V 1 ;g model. In
the testing subprocess, the ‘apply model’ and
‘performance’ operators are used. The ‘apply
model’ operator is used to obtain predictions on
unseen data or to transform data by applying a
preprocessing model. The ‘performance’ operator
determines the learning task type, which also
generates the most typical criterion for that type.
The main page allows processing and editing of the
parameter settings in the 'optimize parameters (Grid)'
operator (Table 2). Finally, the EL-V ;1 ;g
model is formed and loaded to view the result.
Moreover, the DT, DL, and NB individual models
are evaluated against the EL—V model, employing
a comparable procedure for execution. Nevertheless,
the "vote" operator was replaced with the models
under examination.

Description of the single algorithms
Decision tree

The DT algorithm, proposed by Quinlan
(1986), is a method that partitions the input space
into multiple regions, each having its distinct
parameters. It operates by extracting a tree-based
classification model from a random training sample.
This process involves segmenting the feature space
and constructing decision trees. Within the decision
tree, each non-leaf node encapsulates a category
rating characteristic, while each leaf node signifies
a final scoring category (Liakos et al., 2018; Zhao
et al., 2021). Mathematically, the entropy and
information gain of DT can be expressed as shown
in equations (2) and (3).

H(S) = 'Z?:l p; log,(pi) (2)

Where H(S) = is the entropy of set S
before the split, n is the number of classes, and p(i)
is the proportion of examples in set S that belong
to class i.

IG(S,A) = H(S) - X ier P(OH(1)
=H(S) - H(S|A) €)

Where IG(S,A) is the information gain
of attribute A on the set S, t iterates over each
individual value in the set T, T is the set of possible
values of attribute A, p(t) is the probability of
occurrence of value t of attribute A in set S, H(t)
is the entropy of the subset of S for which attribute
A has the value t, and H(S|A) is the conditional
entropy of set S given attribute A.

Deep learning

DL is a particular kind of algorithm that
learns the fundamental principles and layers of
sample data representation. By using functions to
integrate lower-level features, DL creates more
abstract high-level features that reflect attribute
categories. Finding the data's distributed feature
representation makes nonlinear relationship modeling
a great deal simpler. It is an artificial network
that is utilized to address more challenging and
complicated data mining tasks. (Zhao et al., 2021;
Bilal et al., 2022).

Naive bayes

NB (Lewis, 1998) is a type of algorithm
that is based on the Bayesian principle, which
states that sample data sets can be classified using
statistical knowledge of probability. This method
is known to perform better than even extremely
advanced methods in a number of practical issues. It
is simple to construct, extremely scalable, adaptable
to large datasets, and needs a number of parameters
(features) (Raza, 2019). Mathematically, the NB
algorithm can be expressed as shown in equation

(4).

Q(cfx) = Q(xle) x Q(c) / Q(x) “)

Where Q(c) and Q(x) are the prior
probabilities of class ¢ and feature x, respectively
and Q(x|c) is the probability of feature x, given
class ¢, which is called the probability.

All the experimental models utilized the
default configuration provided by the RapidMiner
Studio program, as outlined in the Table 2.
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Table 2. Model architectures of DT, DL and NB models.
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Model Parameter
DT Criterion = gain ratio, Maximum depth = 10, Apply pruning,
Confidence level = 0.1, Minimal gain = 0.01, Minimal leaf size = 2
DL Activation = rectifier, Hidden layer = 2 layers with 50 neurons of
each layer, Epochs = 10, Loss function = automatic
NB Laplace correction

Performance indicators
Accuracy, precision, and recall

During the classification process,
performance indicators are very important in
differentiating and obtaining the optimal classifier.
Therefore, 3 important classification metrics were
considered in this study: accuracy, precision, and
recall. In the following equations, TP is the true
positive, TN is the true negative, FP is a false
positive, and FN is a false negative. Accuracy is
the number of correct predictions (positive and
negative) of all observed data generated by the
model. Accuracy can be mathematically expressed
using Equation (5):

Accuracy =(TP+ TN /TP + TN + FP
+ FN) x 100% (5)

Precision is the number of correct positive
data categories divided by the total data classified
as positive. Precision can be written as equation

(6):

Precision = (TP / TP + FP) x 100% (6)

Recall is the ratio of correctly positive
predictions compared to the overall actual positive
data. Recall is calculated with the formula shown
in Equation (7):

Recall = (TP/ TP+ FN) x 100%  (7)

Confusion matrix

The confusion matrix in a classification task
is typically utilized to investigate the performance of
a suggested model, where the value of the confusion
matrix is usually shown as a percentage. Figure 3
shows the confusion matrix to predict the mortality
rate of red tilapia.

Additionally, the calculation of the area
under curve (AUC) was conducted. This metric
serves to evaluate the performance of a binary
classification model, with higher AUC values
signifying improved ability in distinguishing between
classes.

Actual

Positive

Negative

Positive

True Positive

False Positive

Negative

False Negative

True Negative

<« Predicted —»

Figure 3. Confusion matrix structure.
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RESULTS AND DISCUSSION

The dataset used in this study consisted
of 173 examples and 12 attributes. The attributes
used were Temp average, Temp difference, DO
average, DO difference, pH average, pH difference,
TAN, NO,-N, ALK, Trans, date, and month. The
mortality rate of red tilapia fingerlings was used
as a label, with 134 cases of low mortality and
39 cases of high mortality. A detailed description
of the water quality parameters is provided in
Table 3. Table 4 displays the optimal parameters
generated for the EL-V ;. 1, v, DT, DL and NB
models.

The result for the performance indicators

Table 3. Description of water quality parameters.
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of EL-V 1 pp ng in predicting the mortality rate
of red tilapia fingerlings had accuracy of 90.85%,
precision of 84.00%, and recall of 77.50%.
Therefore, the proposed model produced better
results compared to the single predictive models
based on 10-fold cross-validation on the same dataset,
as shown in Figure 4. The second-best predictive
model was DT with accuracy of 89.58%, precision
of 80.38%, and recall of 79.17%. However, both DL
and NB exhibited comparatively lower performance
levels.

Meanwhile, the AUC for the EL-V ;51 ;v
reached 0.896, whereas individual models like DT,
DL, and NB achieved AUC values of 0.874, 0.916,
and 0.887, respectively, as depicted in Figure 5-8.

Water quality parameter Unit Min Max Mean Standard deviation
Temp average °C 18.50 27.00 22.67 1.92
Temp difference °C 0.00 4.00 1.79 0.84
DO average mg-L! 3.60 7.85 5.77 0.87
DO difference mgL! 0.00 3.90 1.54 0.94
pH average - 5.15 7.60 7.29 0.23
pH difference - 0.00 0.90 0.19 0.19
TAN mgL! 0.00 3.00 1.11 0.73
NO,~N mg-L"! 0.00 1.40 0.71 0.43
ALK mgL! 60.00 110.00 79.11 9.41
Trans cm 15.00 45.00 33.78 8.22
Table 4. Optimal values for EL—V(DLDLNB), DT, DL and NB models.
Operator Sub-operator Parameter Optimal value
EL-V 51 pL gy DT Criterion Gini_index
DT Minimal leaf size 2
DT Maximal depth 10
DL Activation Rectifier
NB Laplace correction True
DT - Criterion Information_gain
Minimal leaf size 8
Maximal depth 4
DL - Activation Rectifier
NB - Laplace correction False
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Figure 4. Performance comparison of EL-V ;1 ,; v, and three single predictive models.
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Figure 8. AUC of NB.

The research revealed that ensemble
methods (EL-V ;1 1 yg) outperformed individual
models such as DT, DL, and NB, in terms of
overall performance. Each model has its strengths
and weaknesses. For instance, DT excel in easy
interpretation of results, handling missing data well,
being less impacted by outliers compared to other
models, and handling both linear and non-linear
relationships between features and target variables.
However, they tend to overfit complex or high-
dimensional data and struggle with imbalanced
data compared to other methods (Quinlan, 1986;
Podgorelec ef al., 2002; Zhao et al., 2021).

DL, on the other hand, handles large-scale
data efficiently, learns complex and deep patterns
well, and offers a flexible, customizable structure.
However, it demands significant computational
resources, a substantial amount of high-quality
data for effective model training, and sometimes
operates as a 'black box', making it challenging to
interpret (LeCun ef al., 2015; Schmidhuber, 2015;
Goodfellow ef al., 2016).

NB demonstrates speed in training and good
prediction capabilities, has an easily understandable
algorithm with simple code suitable for basic use,
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and performs well in predicting and grouping large
datasets. However, it often struggles when data is
incomplete or when crucial variables have missing
values, and it might not handle diverse feature values
effectively, leading to lower accuracy (Rish, 2001;
Zhang, 2004).

EL-V 1 po ns) leverages the strengths of
individual models while mitigating their weaknesses.
They enhance overall model accuracy, reduce errors
from individual models, mitigate overfitting, and
effectively handle complex data (Kuncheva, 2004;
Zhou, 2012). Although ensembles aim to reduce
overfitting, in some cases, they can still overfit if
individual models within the ensemble are highly
correlated or if the ensemble is too complex relative
to the dataset size (Breiman, 2001; Kuncheva, 2004;
Caruana ef al., 2000).

Additionally, from the data in this study,
it was observed that the data used for prediction
(low-high mortality rates) was not equal. Dealing
with imbalanced data can be approached through
various methods, such as employing resampling
techniques to balance the dataset, using bagging
and boosting to create accurate models adept at
handling imbalanced data, importing models from
different algorithms into an ensemble, and adjusting
class importance values (He and Garcia, 2009; Sun
et al., 2009; Lemaitre ef al., 2017).

For this study, we opted for ensemble
methods utilizing DT, DL, and NB models to
enhance learning from imbalanced data. This study's
conclusions were supported by various research
works, such as Jardim et al. (2021) advising on
fisheries management; Alfatinah et al. (2023)
predicting skipjack area for each time slice; Chen
et al. (2023) projecting fish distribution in response to
climate changes; and Khiem e al. (2023) predicting
the growth of abalone.

However, to increase accuracy, there
should be additional data collection with comparable
quantities. The next study step should involve
integrating real-time internet of things sensory
systems for future predictive applications.

CONCLUSION

Machine learning provides technical support
in data mining and has been widely applied in
aquaculture. The use of single predictive algorithms
sometimes encounters challenges in mining,
particularly with a limited dataset. Here, we
proposed a voting-based ensemble learning technique,
combining three algorithms (EL-V 1 yg), t0
enhance the predictive performance of the mortality
rate of red tilapia fingerlings based on a water
quality dataset. The performance indicators of the
proposed model outperform the compared models
in all aspects, achieving an accuracy of 90.85%,
precision of 84.00%, and recall of 77.50%. Overall,
the results of this study demonstrate that the
reliability and implementation of the proposed
technique could be useful in predicting the mortality
rate of red tilapia fingerlings raised in outdoor
earthen ponds using a recirculating aquaculture
system. Therefore, the EL-V ;1 1, g model may
serve as a valuable component for developing
future decision support systems for the aquaculture
industry.

In the future, this study could be expanded
by utilizing a larger dataset to predict the mortality
rate of red tilapia during their grow-out period.
In addition, for classification purposes, other
classification algorithms could be tested to obtain
the best performance results.
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