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 The aquatic ecosystems are being 
increasingly degraded by the negative impacts 
of human activity and climate change (Erasmus 
et al., 2018).  The progression of human economic 
activities, such as mining and oil refining, 
pharmaceutical industry, and agriculture, results 
in discharge of organic waste, heavy metals, and 
toxic chemicals into the environment (Moruf and 
Akinjogunla, 2019).  These sources of pollution 
end up in the water through run-off, altering the 
quality of the biotope (sediment and water), the 
life of the biocenosis (plankton, invertebrates and

vertebrates) and, consequently, the nutritional 
quality of fishery products (fish, prawns, crabs, 
gastropods, bivalves, etc.) (Ennouri et al., 2013; 
Erasmus et al., 2018; Kondo et al., 2021).  The 
accumulation of pollutants in organisms and their 
transfer along the food chain are more rapid in 
continental waters (rivers, lakes, lagoons, etc.) 
than in the oceans (Barnabé, 2022).  Unlike the 
oceans, which have a high capacity for diluting 
and dispersing pollutants, continental waters have 
a low capacity for self-purification and concentrate 
pollutants even in the presence of small sources 
of pollution.  The small size of continental waters 
and their direct contact with built-up areas and
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ABSTRACT

 This study aimed to assess the physicochemical quality of the water and the heavy metal of the 
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concentrations (lead and cadmium).  The BOD5 concentrations exceeded 30 mg∙L-1, indicating poor water 
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The potential ecological risk posed by sediment contamination ranged from low during high water to 
considerable during low water seasons.  Measured lead and cadmium concentrations in the water exceeded 
permissible limits (0.05 and 0.005 mg∙L-1, respectively).  Brycinus macrolepidotus and Chrysichthys 
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agricultural and industrial land facilitate the 
accumulation of pollutants.  Consumption of fish 
products from continental waters therefore presents 
a high health risk when there are sources of pollution 
in the catchment area (Diop et al., 2019).  In Benin, 
inland fishing contributes over 63% of national 
fisheries production (FPD, 2019).  It is an income-
generating activity for more than 39,000 fishermen 
(FPD, 2019) and is the country's most important 
source of animal protein (Rurangwa et al., 2014). 
However, the development of human activities has 
led to a progressive concentration of heavy metals 
(such as lead, copper, and mercury), as well as 
organic and bacteriological pollutants in continental 
waters (Degila et al., 2019).  Several studies 
have revealed the presence of pollutants in high 
concentrations in some aquatic ecosystems in Benin, 
namely the Benin cotton basin (Agbohessi et al., 
2015; Agblonon Houelome et al., 2022), Lake 
Nokoué (Yèhouénou et al., 2014; Vodougnon et al., 
2018), the Cotonou channel (Yèhouénou et al., 
2014), the Porto Novo lagoon (Vodougnon et al., 
2018), the Ouémé River (Yèhouénou et al., 2014; 
Attingli et al., 2017), etc.  The Mono basin, one of 
the country's most important river systems, is also 
subject to anthropogenic pressures.  The installation 
of the Nangbéto hydroelectric dam in the middle 
reaches of the basin and its implementation have 
had a damaging effect on the Mono River.  The 
retention and sudden release of water from the dam 
accelerate bank erosion, modify the hydrology of 
the River (Amoussou et al., 2012), alter the quality 
of the biotope (Chouti and Hounkpêvi, 2018; Adje 
et al., 2021), and disrupt the biology and ecology 
of living organisms in the environment (Lederoun 
et al., 2021).  In addition, there is pollution from 
agricultural activities (use of pesticides and chemical 
fertilizers), livestock farming, domestic activities 
(cooking, washing clothes, and dishes), transport, 
and tourism (Chouti and Hounkpêvi, 2018; Adje 
et al., 2021).  Given these disturbances and threats 
to this ecosystem, there is a great need for research 
into the quality of the biotope and the aquatic 
organisms that are most commonly consumed. 
Available data on water quality in the basin relate 
to the coastal lagoon at Grand-Popo (Chouti et al., 
2017) and a few stations on the Mono River at

Grand-Popo in Benin (Chouti and Hounkpêvi, 2018). 
These studies reported organic and bacteriological
pollution of the water in the coastal part of the basin. 
A study conducted in the lake of the Nangbéto 
dam on the state of contamination of the biotope 
revealed contamination of the sediment by heavy 
metals (cadmium, lead, nickel, copper, chromium, 
arsenic, and mercury) (Adje et al., 2021).  However, 
there is a lack of data on water and sediment quality 
in other parts of the basin and on the quality of 
fishery products throughout the basin.  As the lower 
reaches is the final receptacle for pollution from 
the upper and middle reaches (Kondo et al., 2021), 
and fish is the main source of protein for riverside 
populations, there is an urgent need to assess the 
quality of the biotope of the lower reaches and the 
quality of the flesh of the fish species most consumed 
by riverside residents.  This study aims to assess 
the physicochemical quality of the water and the 
concentrations of heavy metals in the sediment, 
water, and flesh of the most abundant fish species 
and those most appreciated by residents in the lower 
reaches of the Mono basin.  Furthermore, correlation 
between fish size and heavy metal concentration 
was examined.  Additionally, the most influential 
water quality parameter affecting heavy metal 
concentration was also identified.

Study area 

 The Mono River rises in the Koura 
Mountains at Alédjo (9°21'N01°27'E) in north-
west Benin and drains a catchment area of around 
22,000 km2 (Lévêque and Paugy, 2006) between 
latitudes 6°10' and 9°00' North and longitudes 
0°30' and 1°50' East (Lederoun et al., 2018).  Most 
of the basin lies within Togolese territory, but its 
lower reaches form the natural border between 
Togo and Benin over a distance of around 100 km.  
Four stations, namely Ahossanou (06°57'N01°33'E), 
Codjohoué (06°50'N01°36'E), Athiémé (06°34'N
01°39'E) and Grand-Popo (06°17'N01°49'E) (Figure 1), 
were selected in the lower reaches based on their 
geographical location and human activities.        

MATERIALS AND METHODS
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Data collection methods
 
 Measurement of physicochemical parameters

 The stations were surveyed monthly 
during high-water (October to December 2021) 
and low-water (January to March 2022).  Water 
temperature (°C) and pH were measured with 
a Hanna HI991300 multimeter, dissolved oxygen 
(mg∙L-1) with a HI91436-Microprocessor Auto 
Cal-HANNA oximeter, transparency (cm) and 
depth (m) with a Secchi disc.  Water was sampled 
seasonally at the stations using the method described 
by Corriveau (2009) to measure biological oxygen 
demand (BOD5), nitrite, and nitrate. BOD5 was 
measured using an OxiTop BOD meter through the 
respirometric method in a chamber thermostated 
at 20 °C for five days.  Nitrite and nitrate, on the 
other hand, were measured using a Hach Lange 
DR 2800 spectrophotometer following the method 
described by Rodier et al. (2016). 

 Fish, sediment and water sampling for 
lead and cadmium determination

 During each sampling event, fish from the 
artisanal catches were sorted, identified beforehand, 
counted, and weighed using an electronic balance 
with a capacity of 2,000 g and a precision of 0.01 g.  
Two sets of specimens of each species were prepared, 
with one set being tagged and fixed in 10% formalin.  
This was done for laboratory confirmation of 
identification, following the methods outlined in 
Paugy et al. (2003a; 2003b) and Lederoun et al. 
(2018).  The other batch was packed, tagged, and 
stored in a cooler box with ice for metal assay in the 
laboratory.  Two species, identified as consistently 
present in the study area according to Lederoun et al. 
(2021) and found abundantly in the catches of the 
current study, were selected for the heavy metals 
assay.  Specifically, one sample of each species was 
collected during both high-water and low-water 
seasons at each station.  This resulted in a total of 
8 samples of each individual species and 16 samples 
when considering both species combined.

Figure 1. A map showing: (a) Mono River basin, and (b) sampling stations. 
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 Sediment and water samples were collected 
once per season at each station.  Sediments of 
0 to 10 cm deep were scraped by divers using 
polyethylene containers, placed in polyethylene 
bags, labeled, and kept in a cool box at 4 °C for 
transport to the laboratory (Adje et al., 2021).  
Water samples were collected from the water 
column using sterilized 1 L glass bottles, labeled, 
and then stored in a cool box at 4 °C for transport 
to the laboratory.  A total of 8 sediment samples 
and 8 water samples were collected for metal 
analysis, specifically, 2 sediment samples and 
2 water samples per station.

 Determination of lead and cadmium

 The sediment samples were processed 
following the methods described by Adje et al. 
(2021) to obtain a 100 mL solution which is used 
for the assay.  For the fish samples, pieces of flesh 
with skin were taken from the dorsal part and were 
processed using the methods outlined by Ennouri 
et al. (2013) to obtain a 100 mL solution, which 
is used for the assay.  For the water samples, a 
100 mL solution of each sample was taken for 
the determination of metals.  Lead and cadmium 
concentrations in the flesh with skin of these species, 
in the sediment, and in the water were determined 
per station and season using the SpectrAA 110 
Atomic Absorption Spectrometer (AAS).

Data analysis methods

 Physicochemical parameters

 The spatial and temporal variations of the 
parameters (temperature, pH, dissolved oxygen, depth, 
and transparency) were presented as mean±SD and 
the values of nutrients (nitrite, nitrate) and BOD5 were 
compared with the standards available to assess the 
physicochemical quality of the river water (Table 1).

 Selection of two species 

 The numerical and weight abundances 
of each species were calculated to select two of 
the most abundant species in artisanal catches. 
Numerical abundance is the percentage ratio of 
the number of individuals of one species to the 
total number of individuals of all species.  Weight 
abundance is the percentage ratio of the biomass 
of individuals of one species to the total biomass 
of individuals of all species.  Two species that are 
constant in the study area according to Lederoun 
et al. (2021) and abundant in artisanal catches in 
the present study were selected.

 Heavy metal contamination

 The potential Ecological Risk Index (ERI) 
has been used to assess heavy metal contamination 
of sediments and the risk of its transmission to 
biocenosis.  The ERI was proposed by Häkanson 
(1980) and is calculated as

     ERI =  ∑ i
n E r

i ; E r
i= Tfi×Cfi and Cfi = Cei/Cri,

 where Er
i = individual ecological risk index; 

Cfi = contamination coefficient for metal i; Cei = 
concentration of metal i in the sample; Cri = 
concentration of metal i in unpolluted sediments/
reference concentration; Tfi = toxicity weight or 
weighting factor for metal i.  The pre-industrial 
concentrations of lead and cadmium (17.0 and 
0.102 mg∙kg-1) were used as the concentrations of 
unpolluted sediments (Konan et al., 2021).  The 
respective weights assigned to the metals used in 
the calculations were: cadmium = 30 and lead = 5.  
When ERI>150, the ecological risk is low; 150≤
ERI<300, the ecological risk is moderate; 300≤
ERI<600, the ecological risk is considerable; 
and when ERI≥600, the ecological risk is very 
high.

4

Elements

BOD5

Nitrite

Nitrate

Standard values

30 mg∙L-1

3.28 mg∙L-1

44.28 mg∙L-1

Reference

US EPA (1992)

US EPA (2004)

US EPA (2004)

  Table 1. Standard values for organic pollutants.
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RESULTS
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 For water, the heavy metal concentrations 
obtained were compared with environmental quality 
standards (accepted average concentrations) for 
watercourses (0.05 and 0.005 mg∙L-1, respectively 
for lead and cadmium) (BE, 2016).  Heavy metal 
concentrations in fish flesh were compared with 
WHO standards for fish intended for human 
consumption (cadmium = 0.05 mg∙kg-1, lead = 0.3 
mg∙kg-1) (WHO/FAO, 2019; WHO/FAO/UE, 2021) 
to assess the quality of their flesh. 

Statistical analysis and tests

 The one-way analysis of variance (one-way 
ANOVA) was applied to test the difference between 
the mean values of each of the physicochemical 
parameters, metals (in water, sediment, and fish 
flesh), and ERI in spatial and temporal terms.  
Where there was a significant difference, post hoc 
comparisons (Least Significant Difference: LSD) 
were carried out.  Differences were considered 
significant at the 5% threshold.  A principal 
component analysis (PCA) was carried out using 
the Factoshiny package, using the mean values

of physicochemical parameters and heavy metal 
concentrations in the water to characterize the 
stations.  A matrix consisting of 10 rows (8 
physicochemical parameters and 2 heavy metals) 
and 4 columns (4 stations) was used.  Linear 
regressions were used to study the correlation 
between fish size and heavy metal concentration. 
These analyses were carried out using the R 4.1.3 
statistical environment.

Physicochemical parameters

 The physicochemical parameters slightly 
varied during the study period (Table 2).  Water 
temperature varied from 25.50 to 29.20 °C, while 
pH ranged from 6.51 to 7.44.  The dissolved oxygen 
varied from 5.41 to 8.01 mg∙L-1, and the depth was 
between 0.40 and 4.80 m.  Transparency ranged 
from 24.80 to 79.30 cm, while biological oxygen 
demand (BOD5) was between 58 and 270 mg∙L-1. 
The nitrate was between 0.282 and 1.992 mg∙L-1,

       Note: Mean±SD in each row superscripted with different lowercase letters denote significant (p<0.05) difference; AH = 
 Ahossanou; AT = Athiémé; CO, Codjohoué; GP = Grand-Popo.

Parameters

Temperature (°C)

pH

Dissolved oxygen (mg∙L-1)

Depth (m)

Transparency (cm)

BOD5 (mg∙L-1)

Nitrate (mg∙L-1)

Nitrite (mg∙L-1)

Description

Min–Max

Mean±SD

Min–Max

Mean±SD

Min–Max

Mean±SD

Min–Max

Mean±SD

Min–Max

Mean±SD

Min–Max

Mean±SD

Min–Max

Mean±SD

Min–Max

Mean±SD

AH

25.50–29.10

27.69±1.29a

6.52–7.44

7.10±0.34a

5.89–7.59

6.82±0.62a

0.56–3.20

1.82±1.31a

24.80–78.30

46.43±23.00ab

58.00–140.00

99.00±57.98a

1.383–1.992

1.69±0.43a

0.012–0.855

0.43±0.60a

GP

25.80–28.90

27.03±1.15a

6.51–7.12

6.83±0.20a

5.67–6.69

6.09±0.39a

1.00–4.80

2.80±1.87a

53.70–79.30

65.03±9.17b

100.00–171.00

135.5±50.20a

0.282–1.065

0.67±0.55a

0.068–0.394

0.23±0.23a

AT

25.50–27.40

26.60±0.69a

6.72–7.22

6.94±0.21a

5.74–8.01

6.88±0.97a

0.40–3.50

1.87±1.57a

28.00–42.90

35.38±6.10b

180.00–270.00

225±63.64a

0.891–1.557

1.22±0.47a

0.384–0.484

0.43±0.07a

CO

25.80–29.20

27.58±1.19a

6.80–7.12

6.96±0.11a

5.41–7.89

6.68±0.98a

0.70–4.30

2.05±1.55a

32.80–50.60

43.18±6.69ab

110.00–245.00

177.50±95.46a

1.615–1.905

1.76±0.20a

0.636–1.112

0.87±0.34a

  Table 2. Spatial variations of physicochemical water parameters in the lower reaches of the Mono basin. 
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and the nitrite was between 0.012 and 1.112 mg∙L-1. 
Only transparency varied significantly from one 
station to another (p<0.05; Table 2).  The highest 
transparency values were recorded at Ahossanou 
(46.43±23.00 m) and Grand-Popo (65.03±9.17 m) 
(Table 2).  A comparison of values between high-
water and low-water showed that the differences 
were significant only for temperature, dissolved 
oxygen, and water depth (p<0.05) (Table 3).

Composition of the ichthyofauna and choice of 
two species

 The observation of artisanal catches 
enabled 23 fish species to be inventoried, divided 
into 17 families and 20 genera (Table 4).  The species 
most represented in terms of numbers of individuals 
in the catches were Brycinus macrolepidotus 
(18.02% of the total number of individuals of all 
species), Labeo senegalensis (14.85%), Chrysichthys 
nigrodigitatus (13.32%), L. parvus (10.85%) and 
Pellonula leonensis (10.72%).  The other species 
contributed less than 5% each (Figure 2a).  In terms 
of biomass, Distichodus rostratus (18.90%), Lates 

niloticus (18.17%), C. nigrodigitatus (15.68%), 
C. gariepinus (14.03%), and C. auratus (9.45%) 
dominated the fishermen's catches.  The other species 
each contributed less than 5% of the artisanal catch 
biomass (Figure 2b).  As C. nigrodigitatus and 
B. macrolepidotus are constant in the study area, 
according to Lederoun et al. (2021), they were 
selected as abundant species for the determination 
of lead and cadmium in their flesh.

Heavy metal concentrations (lead and cadmium)

 The spatial variations of lead and cadmium 
concentrations in sediment, water, and flesh of 
B. macrolepidotus and C. nigrodigitatus are presented 
in Table 5 and those temporal are presented in 
Table 6.

 Heavy metal contamination of sediment

 The lead concentrations in sediment ranged 
from 0.850 to 22.206 mg∙kg-1.  There was no 
significant difference between stations (p>0.05; 
Table 5).  However, there was a significant difference

6

       Note: Mean±SD in each row superscripted with different lowercase letters denote significant (p<0.05) difference

Parameters

Temperature (°C)

pH

Dissolved oxygen (mg∙L-1)

Depth (m)

Transparency (cm)

BOD5 (mg∙L-1)

Nitrate (mg∙L-1)

Nitrite (mg∙L-1)

Description

Min–Max

Mean±SD

Min–Max

Mean±SD

Min–Max

Mean±SD

Min–Max

Mean±SD

Min–Max

Mean±SD

Min–Max

Mean±SD

Min–Max

Mean±SD

Min–Max

Mean±SD

Low-water

26.80–29.20

27.85±0.81b

6.51–7.44

6.93±0.25a

5.41–6.80

6.00±0.38b

0.40–1.20

0.73±0.26b

24.80–79.30

41.69±18.25a

100.00–180.00

132.50±35.94a

0.282–1.615

1.043±0.590a

0.012–1.112

0.394±0.506a

High-water

25.50–29.10

26.60±1.06a

6.52–7.42

6.98±0.23a

6.12–8.01

7.23±0.59a

2.40–4.80

3.54±0.74a

38.40–78.30

53.31±12.95a

58.00–270.00

186.00±95.124a

1.065–1.992

1.630±0.421a

0.394–0.855

0.592±0.201a

  Table 3. Temporal variations of physicochemical water parameters in the lower reaches of the Mono river.
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  Table 4. List of species inventoried in artisanal catches in the lower Mono basin.

Families

Polypteridae

Osteoglossidae

Notopteridae

Clupeidae

Cyprinidae

Distichodontidae

Alestidae

Hepsetidae

Mochokidae

Clariidae

Claroteidae

Schilbeidae

Latidae

Cichlidae

Gobiidae

Channidae

Protopteridae

                              Species

Polypterus senegalus senegalus Cuvier, 1829

Heterotis niloticus (Cuvier, 1829)

Xenomystus nigri (Günther, 1868)

Pellonula leonensis Boulenger, 1916

Labeo parvus Boulenger, 1902

Labeo senegalensis Valenciennes, 1842

Distichodus rostratus Günther, 1864

Brycinus macrolepidotus Valenciennes, 1849

Hepsetus odoe (Bloch, 1794)

Synodontis cf. obesus Boulenger, 1898

Clarias gariepinus (Burchell, 1822)

Chrysichthys auratus (Geoffroy Saint-Hilaire, 1808)

Chrysichthys nigrodigitatus (Lacépède, 1803)

Schilbe intermedius Rüppell, 1832

Schilbe mystus (Linnaeus, 1758)

Lates niloticus (Linnaeus, 1762)

Chromidotilapia guntheri (Sauvage, 1882)

Coptodon guineensis (Bleeker in Günther, 1862)

Oreochromis niloticus (Linnaeus, 1758)

Sarotherodon galilaeus galilaeus (Linnaeus, 1758)

Awaous lateristriga (Duméril, 1861)

Parachanna obscura (Günther, 1861)

Protopterus annectens annectens (Owen, 1839)

Figure 2. Numerical (a) and weight (b) abundances of species in artisanal catches.
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  Table 5.  Spatial variations of lead and cadmium concentrations in sediment (mg∙kg-1), water (mg∙L-1), and fish 
 (mg∙kg-1). 

Elements

                                                                                                 Lead
Sediment 

Water

Brycinus macrolepidotus

Chrysichthys nigrodigitatus

                                                                                                 Cadmium
Sediment 

Water 

Brycinus macrolepidotus

Chrysichthys nigrodigitatus

Description

Min–Max
Mean±SD
Min–Max
Mean±SD
Min–Max
Mean±SD
Min–Max
Mean±SD

Min–Max
Mean±SD
Min–Max
Mean±SD
Min–Max
Mean±SD
Min–Max
Mean±SD

AH

0.870–19.060
9.963±12.850a

0.661–0.712
0.687±0.036a

0.603–0.636
0.620±0.023a

0.687–0.738
0.713±0.036a

0.0424–1.176
0.609±0.802a

0.025–0.041
0.033±0.011a

0.003–0.006
0.005±0.002a

0.003–0.006
0.005±0.002a

GP

0.850–20.433
10.642±13.840a

0.557–0.729
0.643±0.122a

0.855–0.918
0.887±0.045b

0.939–0.981
0.960±0.030b

0.033–0.642
0.338±0.430a

0.026–0.039
0.033±0.009a

0.002–0.006
0.004±0.003a

0.002–0.009
0.006±0.005a

AT

0.918–22.206
11.562±15.050a

0.573–0.740
0.656±0.119a

0.837–0.933
0.885±0.068b

0.831–0.903
0.867±0.051ab

0.037–0.909
0.473±0.617a

0.029–0.036
0.032±0.005a

0.002–0.006
0.004±0.003a

0.004–0.006
0.005±0.001a

CO

0.997–21.405
11.201±14.430a

0.638–0.674
0.656±0.025a

0.561–0.588
0.575±0.019a

0.699–0.771
0.735±0.051a

0.038–0.579
0.308±0.383a

0.020–0.031
0.025±0.008a

0.002–0.002
0.002±0.000a

0.002–0.003
0.003±0.001a

       Note: Mean±SD in each row superscripted with different lowercase letters denote significant (p<0.05) difference; AH = 
 Ahossanou; AT = Athiémé; CO = Codjohoué; GP = Grand-Popo.

  Table 6.  Temporal variations of lead and cadmium concentrations in sediment (mg∙kg-1), water (mg∙L-1), and 
 fish (mg∙kg-1).

Parameters

                                                                                         Lead
Sediment 

Water

Brycinus macrolepidotus

Chrysichthys nigrodigitatus

                                                                                         Cadmium
Sediment 

Water

Brycinus macrolepidotus

Chrysichthys nigrodigitatus

Description

Min–Max
Mean±SD
Min–Max
Mean±SD
Min–Max
Mean±SD
Min–Max
Mean±SD

Min–Max
Mean±SD
Min–Max
Mean±SD
Min–Max
Mean±SD
Min–Max
Mean±SD

Low-water

19.056–22.206
20.775±1.356b

0.557–0.661
0.607±0.050b

0.588–0.855
0.729±0.137a

0.687–0.939
0.789±0.119a

0.579–1.176
0.827±0.273b

0.020–0.029
0.025±0.004b

0.002–0.006
0.004±0.002a

0.003–0.009
0.006±0.002b

High-water

0.850–0.997
0.909±0.065a

0.674–0.740
0.714±0.029a

0.561–0.933
0.754±0.199a

0.738–0.981
0.848±0.114a

0.033–0.042
0.038±0.004a

0.031–0.041
0.037±0.004a

0.002–0.006
0.004±0.002a

0.002–0.004
0.003±0.001a

       Note: Mean±SD in each row superscripted with different lowercase letters denote significant (p<0.05) difference
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between seasons (p<0.05; Table 6).  The highest
concentrations were recorded during the low-water 
period (20.775±1.356 mg∙kg-1), while the lowest 
was measured during the high-water period (0.909±
0.065 mg∙kg-1) (Table 6).

 For cadmium, the values recorded ranged 
from 0.033 to 1.176 mg∙kg-1.  There was no 
significant spatial difference (p>0.05; Table 5). 
The mean concentration during the low-water 
period (0.827±0.273 mg∙kg-1) was significantly 
higher than during the high-water period (0.038±
0.004 mg∙kg-1) (p<0.05; Table 6). 

 The Ecological Risk Index (ERI) was 
182.11±239.54, 94.02±116.78, 142.50±185.80, 
and 102.42±130.69 at Ahossanou, Codjohoué, 
Athiémé, and Grand-Popo, respectively (Table 7). 
There is a spatially significant difference for the 
ERI (p<0.05; Table 7).  The ERI values for the
 
 

low-water period are significantly higher than those 
for the high-water period (p<0.05; Table 7). 

 Heavy metal contamination of water

 The concentration of lead in the water 
was between 0.557 and 0.740 mg∙L-1 and that of 
cadmium between 0.020 and 0.041 mg∙L-1.  In 
general, the highest concentrations were recorded 
during the high-water period and the lowest values 
were noted during the low-water period for both 
metals (Table 6, Figure 3).  There were no spatially 
significant differences for either metal (p>0.05; 
Table 5).  The concentrations recorded during the 
high-water period are significantly higher than 
during the low-water period (p<0.05; Table 6) for 
both metals.  All the values recorded are higher 
than the recognized standard values for the two 
metals (0.05 and 0.005 mg∙L-1, respectively for 
lead and cadmium) (Figure 3a and 3b).

Figure 3. Spatial and temporal variations of lead (a) and cadmium (b) concentrations in water from the lower 
 reaches of the Mono River.

       Note: Mean±SD in each row superscripted with different lowercase letters denote significant (p<0.05) difference; AH = 
 Ahossanou; AT = Athiémé; CO = Codjohoué; GP = Grand-Popo.

Min–Max

Mean±SD

AH

12.73–351.49

182.11±239.54a

GP

10.01–194.83

102.42±130.69b

High-water

10.01–12.73

11.34±1.12a

Low-water

176.59–351.49

254.15±80.21b

AT

11.12–273.88

142.50±185.80ab

CO

11.44–176.59

94.02±116.78b

Spatial variations Temporal variations

  Table 7.  Spatial and temporal variations of Ecological Risk Index of sediment.
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 Heavy metal contamination of fish flesh

 The lead concentration in the flesh of 
the fish varied from 0.561 to 0.933 mg∙kg-1 for 
Brycinus macrolepidotus, while it ranged from 0.687 
to 0.981 mg∙kg-1 for Chrysichthys nigrodigitatus 
(Table 5).  For both species, there was a significant 
difference between the lead concentration values 
spatially (p<0.05; Table 5) whereas the difference 
was not significant temporally (p>0.05; Table 6). 
The concentration of lead in the flesh was not a 
function of specimen size (TL) for either species 
(r2<0.3; Figure 4a and 4b).  All the values measured 
are above the WHO/FAO standard (0.3 mg∙kg-1) 
(Figure 4a and 4b).

 For cadmium, the concentrations varied 
from 0.002 to 0.006 mg∙kg-1 for B. macrolepidotus 
and from 0.002 to 0.009 mg∙kg-1 for C. nigrodigitatus.

There was no significant difference between 
the cadmium concentration values in the flesh 
of the two species in spatial terms (p>0.05; 
Table 5).  In the case of B. macrolepidotus, the 
concentrations recorded during the high-water 
period were equal to those recorded during the 
low-water period (p>0.05; Table 6).  In the case 
of C. nigrodigitatus, the values recorded during 
the low-water period were significantly higher 
than those recorded during the high-water period 
(p<0.05; Table 6).  For both species, the cadmium 
concentration in their flesh decreased with the 
size (TL) of the specimen (r2>0.50) and all the 
values recorded remained below the WHO/FAO/
EU standard (0.05 mg∙kg-1) (Figure 4c and 4d).  
A comparison of lead and cadmium concentrations 
between the two species showed that there was no 
significant difference between species for the two 
metals (p>0.05).

10

Figure 4. Heavy metal concentrations as a function of total length of fish: (a) lead concentration in the flesh of 
 Brycinus macrolepidotus; (b) lead concentration in the flesh of Chrysichthys nigrodigitatus; (c) cadmium 
 concentration in the flesh of Brycinus macrolepidotus; (d) cadmium concentration in the flesh of 
 Chrysichthys nigrodigitatus.
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Characterization of stations: Relationship between 
physicochemical parameters and heavy metals

 The Principal Component Analysis of the 
physicochemical parameters and lead and cadmium 
concentrations in the water is shown in Figure 5. 
The first two axes express 80.01% of the total 
inertia of the data set.  Only these two axes were 
used in the expression of the analysis.  The first 
axis divides the stations into two groups: one made 
up of the Ahossanou, Codjohoué, and Athiémé 
stations, and the second made up of Grand-Popo.  
The Axis 2 route also divides the stations into two 
groups.  The first group is formed by Ahossanou

 The physicochemical parameters of the 
water (temperature, pH, dissolved oxygen, depth, 
biological oxygen demand, nitrite, and nitrate) 
in the lower reaches of the Mono River (Benin, 
West Africa) did not vary significantly from a 
spatial point of view, except water transparency, 
whose values in Grand-Popo were significantly 
different from those in Athiémé and Codjohoué. 
As the stations selected for this study are all

and Grand-Popo, and the second by Athiémé and 
Codjohoué.  In summary, three groups of stations 
were identified: Group 1: Ahossanou, Group 2: 
Codjohoué and Athiémé, and Group 3: Grand-Popo 
(Figure 5a).  The projection of physicochemical 
and metallic parameters shows that the Ahossanou 
station (group 1) is characterized by high values 
for temperature, lead, pH, and nitrate.  The 
Codjohoué and Athiémé stations (group 2) are 
characterized by high values for BOD5, nitrite, 
and dissolved oxygen.  Group 3 (Grand-Popo) is 
characterized by high-water depths and transparency 
and, to a smaller extent, high cadmium values 
(Figure 5b).

downstream of the Nangbéto hydroelectric dam, 
the absence of significant variation in the other 
physicochemical parameters can be attributed to 
the strong renewal of water by the dam's water 
release phenomenon (El morhit et al., 2008; 
Amoussou et al., 2012).  In terms of time, there 
were no significant differences between high 
and low-water values other than for temperature, 
dissolved oxygen, and water depth.  The highest 
temperatures were recorded in the low-water period, 
while the highest values for depth and dissolved

Figure 5. Principal Component Analysis of physicochemical and metallic parameters of water in the lower reaches 
 of the Mono River: Abiotic typology of stations (a); Characterization of groups of stations with water
 parameters (b). 
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oxygen were recorded in the high-water period.  
These variations can be explained by the hydrological 
regime (alternating high-water and low-water) of 
the Mono basin (Amoussou et al., 2012; Chouti 
and Hounkpêvi, 2018).  The biological oxygen 
demand (BOD5), nitrite, and nitrate are often used 
to characterize the pollution status of surface waters 
(Ifé, 2010).  All BOD5 values (58 to 270 mg∙L-1) 
are above 30 mg∙L-1, which is the value above 
which surface water is said to be of poor quality 
for aquatic biodiversity (US EPA, 1992).  About 
nitrite, the value above which aquatic biodiversity 
is threatened is 3.28 mg∙L-1 (i.e. 1 mg-N∙L-1) (US 
EPA, 2004).  All recorded values (0.012 to 1.112 
mg∙L-1) are below this standard.  For nitrate, all 
values measured (0.283 to 1.992 mg∙L-1) remained 
below the standard 44.28 mg∙L-1 (10 mg-N∙L-1) 
(US EPA, 2004).  In general, the highest values for 
all three pollutants were recorded at the Athiémé 
and Codjohoué stations, which are located in the 
most agricultural areas of the basin (rice and cotton 
growing) (Baglo, 2022).  As agriculture is well 
known as a source of organic pollution of surface 
waters (Pinay et al., 2017; Chouti and Hounkpêvi, 
2018; De Kinkelin and Petit, 2018), the high organic 
pollution at these stations would come from residues 
of agricultural inputs and organic matter drained 
by runoff water.

 The determination of lead and cadmium 
concentrations in sediment and water revealed 
that the lower reaches of the Mono basin are 
contaminated with heavy metals.  All values of lead 
(0.557 to 0.740 mg∙L-1) and cadmium (0.020 to 0.041 
mg∙L-1) recorded in the water are above the limit 
values for these metals in rivers and water bodies 
(0.05 and 0.005 mg∙L-1, respectively for lead and 
cadmium) for the protection of the environment 
and aquatic biodiversity (BE, 2016).  The highest 
concentrations were recorded during the high-water 
period and the lowest during the low-water period. 
As for sediment, the concentrations varied from 
0.850 to 22.206 mg∙kg-1 for lead and from 0.033 
to 1.176 mg∙kg-1 for cadmium.  The overall mean 
concentrations of lead and cadmium recorded in the 
sediment (10.842 and 0.432 mg∙kg-1, respectively) 
are significantly higher than those recorded by 
Adje et al. (2021) in the Nangbéto Dam Lake in the 
same basin (4.835 and 0.055 mg∙kg-1, respectively).

These results show the accumulation of heavy 
metals in the lower reaches of the Mono basin.  The 
heavy metals originating from pollution sources 
in the upper and middle reaches would be drained 
downstream (the lower reaches), where they would be 
added to local pollution to produce high concentrations 
of heavy metals (Blanc et al., 2005; Damy, 2011; 
Moruf and Akinjogunla, 2019).  The phenomenon of 
water releases from the Nangbéto Dam, responsible 
for high erosion in the basin (Amoussou et al., 2012), 
would facilitate this accumulation of metals in the 
lower course (Kondo et al., 2021).  High-water 
velocity in a river encourages bank erosion, releasing 
particles (including organic matter, metals, etc.) that 
move with the current and are deposited downstream, 
contributing to the accumulation of pollutants in the 
lower reaches where water velocity is low (ha Dang, 
2011; Baglo, 2022).

 The assessment of sediment pollution 
status is based on the calculation of indices rather 
than a comparison of metal concentrations against 
reference values (Adje et al., 2021; Konan et al., 
2021).  The potential Ecological Risk Index (ERI) 
was used for this purpose.  In the low-water period, 
the ERI was between 150 and 300 for Codjohoué, 
Athiémé, and Grand-Popo, while it was over 300 
at Ahossanou, indicating that the ecological risk 
is considerable at Ahossanou and moderate at the 
other stations.  In the high-water period, the ERI 
was below 150 for all stations, indicating a low 
ecological risk.  Spatially, sediment at the Ahossanou 
station is more contaminated with heavy metals 
than at the other stations.  This can be explained 
by the high level of anthropogenic activity at 
Ahossanou.  Indeed, the Ahossanou station is the 
site of choice for the illicit transport of smuggled 
petroleum products (gasoline and kerosene) and 
agri-food products from Benin to Togo.  Some 
gasoline cans are buried in the water in the event 
of police checks, thus increasing the risk of 
contamination of the ecosystem by oil spills (Biney 
et al., 1994).  Contrary to Adje et al. (2021), who 
concluded that contamination of the sediment 
of Lake Nangbéto by trace metals was negligible, 
the present study reports the presence of metallic 
pollution in the sediment and water of the Mono 
River.  The contamination of sediment is higher in 
low-water than in high-water, while that of water
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the WHO/FAO standard for fish for human 
consumption (0.05 mg∙kg-1) (WHO/FAO/UE, 2021). 
As for lead, the concentrations in the flesh ranged 
from 0.561 to 0.933 mg∙kg-1 for B. macrolepidotus 
and from 0.687 to 0.981 mg∙kg-1 for C. nigrodigitatus.  
All values recorded were above the WHO/FAO 
standard for fish for human consumption (0.3 
mg∙kg-1) (WHO/FAO, 2019).  It was concluded that 
the consumption of fish from the lower reaches of 
the Mono River poses a contamination risk to the 
health of consumers.

 This study has highlighted organic pollution 
of the water, metallic pollution of the sediment and 
water, and contamination of the flesh of Brycinus 
macrolepidotus and Chrysichthys nigrodigitatus by 
lead and cadmium in the lower reaches of the Mono 
basin.  The level of organic pollution is highest 
at stations located in areas with a high level of 
agricultural activity (Athiémé and Codjohoué), while 
metallic pollution is highest in areas with a high level 
of anthropogenic pressure (Ahossanou and Grand-
Popo).  The contamination of sediment is higher 
during the lower water period.  The concentrations of 
cadmium in the flesh of both species are below the 
WHO/FAO standard, while those of lead are above the 
standard.  This study concludes that the consumption 
of fish caught in the lower reaches of the Mono basin 
poses a health risk to consumers.
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is higher in high-water than in low-water: this is 
the phenomenon of settling.  The input of pollutants 
by runoff and the stirring up of sediment when 
rainfall arrives during high-water explain the high 
concentrations of metals in river water during 
high-water (Tahiri et al., 2005).  The absence of 
rain during low-water favors settling and explains 
the high sediment contamination and low metal 
concentrations in the water (Tahiri et al., 2005; 
Adje et al., 2021).

 A Principal Component Analysis performed 
on the mean values of physicochemical and metal 
parameters in the water revealed that the Codjohoué 
and Athiémé stations are characterized mainly by 
high BOD5 and nitrite values, probably due to the 
development of agricultural activities in the areas 
where these stations are located.  The Ahossanou 
station stands out from the others for its high lead 
and nitrate concentrations, probably due to the 
increased transport of agro-industrial products 
(fuel and food) and people at Ahossanou.  As for 
the Grand-Popo station, it is characterized by depth, 
transparency, and cadmium. The high depth and 
transparency may be linked to manual dredging 
activities in the lagoon part of the Mono basin 
(close to the Grand-Popo station) (Lalèyè et al., 
2022), while the cadmium is thought to come from 
domestic effluents (batteries, cement, and paint 
residues) from the town of Grand-Popo (Biney 
et al., 1994).

 A total of 23 fish species, divided into 
17 families and 20 genera, were inventoried in the 
artisanal catches.  All these species have already 
been reported in the study area by Lederoun (2015) 
and Lederoun et al. (2021).  According to Noppe and 
Prygiel (1999), the choice of species for a fishery 
product quality study must take into account both 
the representativity of the species at the scale of 
the study area and their abundance in the area.  The 
species Brycinus macrolepidotus and Chrysichthys 
nigrodigitatus are constant in the study area 
according to Lederoun et al. (2021) and abundant 
in the artisanal catches of the present study.  They 
were therefore selected for the determination of lead 
and cadmium in their flesh.  The concentrations of 
cadmium in the flesh of B. macrolepidotus (between 
0.002 and 0.006 mg∙kg-1) and C. nigrodigitatus
(between 0.002 and 0.009 mg∙kg-1) were all below 
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