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Fish Antioxidant Enzyme Activity as Protein-Level Biomarkers of
Ecological Stress in Tropical Eutrophic Wetlands: A Review
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ABSTRACT

Eutrophication-related stressors, including low dissolved oxygen, nutrient enrichment, and
harmful algal blooms, negatively affect the health and function of organisms, populations, and ecosystems,
resulting in ecological stress. Aquatic life struggles to withstand such irregular and abrupt disruption to
ecosystem homeostasis, leading to alteration in ecosystem metabolism(e.g., simplified food webs and
shortened food chains), reduced nutrient uptake and utilization efficiency, hyperphosphorylation-induced
cellular damage, and increased pathogen virulence. As a first line of defense against eutrophication
stress, fish release antioxidant enzymes (AOEs) such as superoxide dismutase (SOD), catalase (CAT),
glutathione peroxidase (GPx), glutathione reductase (GR), peroxidase (POD), acetylcholinesterase
(AChE), and others from various body organs. These enzymes react with reactive oxygen species (ROS)
produced during stress and convert them into less harmful compounds. Most studies indicate that SOD
is the primary enzyme secreted in response to ammonia and nitrate toxicity in eutrophic water bodies.
The liver is the main organ responsible for AOE release followed by the gills and brain. Maximum AOE
activity is typically observed at 48-96 h of exposure to ammonia, nitrate, or microcystin contamination.
Thus, species-specific AOE release mechanisms can reflect the nature and intensity of stressor impact
and may serve as biomarkers of ecological stress in tropical eutrophic wetlands. These eco-remediation
tools can help mitigate the effects of eutrophication and promote healthier aquatic environments for
species to thrive and develop.
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INTRODUCTION

Ecological stress occurs when extremes
of abiotic factors (beyond permissible limits)
negatively affect the health and functioning
of an organism, population and/or ecosystem
(Nawaz et al., 2023). Natural or anthropogenic
stressors can directly (e.g., decreased oxygen and
increased reactive oxygen species)or indirectly
(e.g., stress-induced decline in prey species)
impact ecosystems, often through multi-interactive
and synergistic pathways (Banaduc et al., 2024).

Compared to other ecosystems, abiotic stress in
aquatic ecosystems is more harmful, due to the
random discharge of inorganic and organic waste
from industries, agriculture, municipal, and domestic
sources, as well as the effects of global warming
(Bashir et al., 2020). It becomes increasingly
difficult for aquatic life to withstand such rapid
and random disruptions of ecosystem homeostasis,
ultimately leading to eutrophication symptoms such
as depleted dissolved oxygen, nutrient enrichment,
harmful algal blooms, and fish kill (Zeng et al.,
2016).
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Eutrophic conditions represent a system
with a perfect combination of abiotic stressors
capable of causing deep environmental perturbation
but offering poor prospects for ecosystem recovery.
This situation prevents a clear-cut categorization
of the stress status of a particular ecosystem,
whether it is poorly, moderately, or severely
stressed cannot be stated clearly (Birk et al., 2020).
Therefore, it is most pertinent to consider a species-
specific response to these eutrophication-induced
abiotic stressors as a biomarker of stress status
(El-SiKaily and Shabaka, 2024). Thus, to overcome
eutrophication stress, fish release various types of
antioxidant enzymes (AOEs) such as catalase (CAT),
superoxide dismutase (SOD), glutathione reductase
(GR), glutathione peroxidase (GPx), peroxidase
(POD), acetylcholinesterase (AChE), lactate
dehydrogenase (LDH), and others (Abhijith et al.,
2016; Hu et al., 2019; Jin et al., 2024; Monier
et al., 2025) from different body organs to defend
themselves from the abiotic stressor (Wang et al.,
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2016), which could serve as a meaningful biomarker
(Teh et al., 1997). Quantitative and qualitative
assay of antioxidant enzymes (Khan ef al., 2016;
Faheem and Lone, 2018), when compared with
suitable controls, determine the fish health status
due to pollution (including eutrophication) and
toxicity stress in their tissues. Because it is
difficult to quantify the impact of multiple stressors
of eutrophication on biodiversity, physiology,
and ecosystem functioning (Figure 1), species-
specific impact quantification in terms of their
ecological interactions can untangle the complex
responses due to physical, chemical, and biological
stressor more easily (Figure 2) (Sanon et al.,
2020).

Therefore, the present review evaluates
the interactive ecological roleof fish antioxidant
enzymes as protein-level biomarkers of variable
eutrophication stressors, with the potential to
inform both preventive and remediation measures.
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Figure 1. Conceptual model illustrating the impact of multiple stressors on freshwater biota, highlighting how
receptor diversity (traits, sensitivities, vulnerabilities, tolerance) and interactive network (physiological,
biochemical, molecular, and ecological) influence biological adaptability and resilience (adapted from

Karageorgis et al., 2005).
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Figure 2. Ecological interactions between diverse receptors play a significant role in mediating responses to physical,
chemical,and biological stressors (adapted from Segner et al., 2014).

REVIEW METHODS

Different secondary data were retrieved
from manuscripts published in peer-reviewed
journals relevant to the review topic. Various
academic search engines were used to access
literature for exhaustive (500 papers), representative,
and priority-based coverage (Paré¢ and Kitsiou, 2017).
The main thrust areas of data collection included
sources of eutrophication, such as the harmful
impacts of urbanization, abiotic and biotic ecological
stress, and first-line enzyme mediated defense
responses of fish in eutrophic wetland ecosystems.

After evaluating the suitability of the
collected review materials, potential study findings
were identified. This was followed by a screening
process based on the relevance of each source to
the review objectives. The inclusion and exclusion
of literature were conducted using predetermined
criteria to ensure data suitability. To enhance
objectivity and minimize errors, approximately

50 papers were finalized, focusing primarily on
the qualitative and quantitative responses of fish
antioxidant enzyme (AOE) activity to varying
concentrations of eutrophication parameters.

A wide range of alterations in abiotic
factors due to eutrophication was critically assessed
to evaluate ecological stress across different
levels of biological organization. A comprehensive
synthesis of recent and past experimental studies
and reviews was conducted. The functional
attributes of antioxidant stress mechanisms in
various freshwater fishes were then used to develop
an interaction model linking ecological stress, AOE
secretion levels, and fish species exposed.

This interaction model was designed to
categorize stress status and interpret AOE activity
accordingly. Based on this framework, the entire
review was categorized into the sub-topics to
systematically address the objectives outlined for
the study (Figure 3).
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Figure 3. Workflow diagram of the present study outlining the methodological approach.

RESULTS AND DISCUSSION
Abiotic stress in eutrophic ponds
Nutrient enrichment

Anthropogenic pressures have consistently
intensified the scale and rate of eutrophication by
introducing limiting nutrients such as nitrogen and
phosphorus into aquatic ecosystems through both
point and non-point sources (Schindler, 2012; Paul
et al.,2021). Phosphorus-rich sources include
fertilizers, untreated sewage, detergents, and
industrial waste discharge (Khan and Mohammad,
2014) generating 10.8 gN and 2.2 gP, respectively
of average nitrogen and phosphorous per individual
(Witek-Krowiak et al., 2022).

Half of the nitrogen applied to crops is lost
to groundwater, making agriculture a significant
contributor to nitrate contamination of freshwater
systems, in contrast to phosphate enrichment. In
comparison, Wastewater Treatment Plants (WTPs),
livestock manure, and urban runoff are major
sources of phosphorus input into aquatic ecosystems

(Figure 4). Additionally, livestock farming plays
a major role in agricultural eutrophication.

This nutrient stress triggered a feedback
loop between macrophyte community and water
transparency (Dubey and Dutta, 2020), disrupts
metabolic balance (Cross et al., 2022), and alters
nutrient uptake and utilization. The primary
consequences include changes in algal biomass
quantity and quality, as along with dissolved oxygen
depletion. These disturbances affect the balance
between dominant and redundant species in aquatic
communities (Clark et al., 2013).

High harmful algal biomass

Blooms of Ankisrtodes musfalcatus,
Chlorococcum humicola, Melosira granulate
and Monoraphidium arcuatum (Ray et al., 2021),
as well as cyanobacteria such as Microcystis
aeruginosa and Anabaena flos-aquae, release
toxic substances known as cyanotoxins, including
cyclicpeptides, alkaloids, and lipopolysaccharides,
into the water. These toxins induce stress in aquatic
organisms by inhibiting protein phosphatases,
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Figure 4. Proportions of different sources of phosphorus and nitrogen loading in wetlands, compiledfrom various

literature sources.

leading to hyperphosphorylation and cellular
damage (Wiltsie et al., 2018). Microcystins also
affect fish by impairing immune responses, altering
haematological parameters and liver function,
disrupting osmoregulation, and damaging
reproductive health (Pham and Utsumi, 2018;
Banerjee et al., 2021). Consequently, only tolerant
species are able to survive, resulting in reduced
biodiversity and a shift toward simplified food
webs and shorter food chains compared to non-
eutrophic systems (Zhu et al., 2020).

Anoxia

Algal blooms-induced rapid bacterial
decomposition reduces dissolved oxygen levels,
a common outcome of eutrophication. Aquatic
animals exposed to dissolved oxygen (DO)
concentrations below optimal thresholds suffer from
acute stress, including reduced feeding, stunted
growth, increased disease susceptibility, and
eventual mortality (Abdel-Tawwab et al., 2019).
Additionally, pathogenicity may increase due to
microbial genomic alterations and the emergence
of antibiotic-resistant genes (Ahmad ef al., 2024).
Most fish species show signs of distress and may die
when DO levels fall below 2—4 mg-L' (Lushchak
and Bagnyukova, 2006), although some hardy
species such as Nile tilapia (1.39-2.92 mg-L"! at
the incipient stage) and catfish, can tolerate lower
oxygen levels (Abdel-Tawwab ef al., 2015).

Hydrogen ion concentration (pH)

Phytoplankton blooms utilize the majority
of available carbon dioxide during peak phases of
photosynthesis, driving pH levelsabovel0. Beyond
the optimal range of 6.5-8.5, fish can become
physiologically stressed. In water with a pH<6.5,
fish growth is inhibited, reproduction is halted, and
fry may die. Mortality is almost certain at pH<4.0
or >11.0 (Stevens et al., 2010). Both low and high
pH enhance the production of ROSs, leading to
oxidative stress that damages DNA, proteins, and
lipids, ultimately causing developmental harm
(Aranda-Rivera et al., 2022). Significant impacts
have also been observed on calcium ion availability
and cellular signalling. Genetic alterations include
Hox gene expression, epigenetic modification, and
DNA methylation patterns (Madesh et al., 2024).

Biochemical and chemical oxygen demand
(BOD and COD) stress

The ideal pond BOD values ranged between
24 and 64 mg-L"!, with the highest and lowest values
recorded during summer and post-monsoon seasons,
respectively (Lkr et al., 2020). Rapid decomposition
of organic matter by saprophytic bacteria in eutrophic
systems increases biological oxygen demand (BOD)
and depletes almost the entire available dissolved
oxygen (Reynolds, 1992), causing anoxic stress to the
existing aquatic organisms (Bhateriaand Jain, 2016).
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Light and temperature

In addition to industrial and domestic
runoff, global climate change contributes to
increased nutrient enrichment of water bodies,
thereby accelerating eutrophication. Algal growth
improves under light intensity of approximately
4,000 lux (Satthong ef al., 2019) and higher
temperature (around 30 °C). Many shallow lakes
experience a loss of submerged macrophytes as
eutrophication progresses, primarily due to reduced
light penetration triggered by dense algal blooms
(Tu et al., 2015), which can extend several metres
and absorb almost the entire light (Amorin and
Moura, 2021). Increased temperature due to altered
precipitation pattern triggers increased nutrient
loadings in freshwater habitats, creating environmental
conditions of enhanced cyanobacterial blooms
(Rodgers, 2021).

Reactive oxygen species (ROS)

There is increased production of ROS in
response to eutrophication conditions in degraded
wetlands (Jin ef al., 2025). The overproduction of
ROS disrupts the typical equilibrium of O,*—, ‘OH,
and H,0, in the intracellular milieu, resulting in
increased oxidative damage and ultimately leading
to cell death (Zainab et al., 2021) of aquatic
organisms. A cell is considered to be in a condition
of "oxidative stress" when the levels of ROS exceed
the defensive systems and cause protein oxidation,
lipid peroxidation, damage to nucleic acids, enzyme
inhibition, and activation of pathways associated
with programmed cell death, culminating in cell
death.

Antioxidant enzyme (AOE) activity of fish: Biomarker
of stress

To resist this eutrophication-triggered
extreme change in aquatic ecological function
and structure, organisms have developed certain
mechanisms by manipulating either their metabolic
pathways, adaptive evolution, or phenotypic
plasticity (Norin and Metcalfe, 2019). Fish
antioxidant enzymatic and non-enzymatic systems
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(Hu et al., 2019) present in the tissues help to
maintain cellular redox homeostasis by removing
ROS species. Increased ROS levels trigger the
biological system to develop a first-line defence
mechanism by modulating the activities of
antioxidant enzymes such as catalase (CAT),
superoxide dismutase (SOD), and glutathione
related enzymes (GPx, GR etc.) (Jomova ef al.,
2024). Evolutionary evidence indicates the
development of sophisticated antioxidant defence
systems in fishes, although their underlying
activating mechanisms and variation among fish
species are yet to be understood. This is very
important for accessing the health of the derelict
and eutrophic aquatic systems in order to develop
mitigation strategies (Kumari et al., 2014; Bakiu
etal., 2024).

Mechanism of antioxidant enzyme (AOE)
release in water

Superoxide dismutase (SOD)

This enzyme alternately catalyzes the
dismutation of the superoxide (O,") radical into two
less harmful species: molecular oxygen (O,) and
hydrogen peroxide (H,0,), by either donating or
removing an electron from the superoxide molecules
it encounters (Tahri ef al., 2016). The resulting
products are far less damaging than superoxides.
This dismutation catalysed by SOD canbe expressed
as Cu, Zn-SOD, with the following half-reactions
(Equation 1.1-1.3) (Bragadottir, 2001).

Cu?**SOD + O, — Cu'SOD + O,
Equation 1.1

Cu'SOD + O, + 2H"— Cu*'SOD + H,0,
Equation 1.2

20, +2H'— H,0,+ 0,
Equation 1.3

Three major families of SOD are categorized based
on protein folding and the type of metal cofactor,
including Cu/Zn-, Fe-, Mn- and Ni-containing
SODs (Tahri et al., 2016).
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Catalase (CAT)

Catalase (CAT) is a tetrameric, metal-
containing enzyme that rapidly reacts with H,O, to
producewater and molecular oxygen. It can also
react with H donors (such as methanol, ethanol,
formic acid, or phenols) to exhibitperoxidatic
activity in a redox reaction (Equation 2).

2H,0,— 2H,0 + O,
Equation 2

Hydrogen peroxide is not highly reactive with most
of the significant biological molecules; however,
it serves as a precursor for more reactive oxidants
such as hydroxyl radicals (*OH) (Bragadottir, 2001).
Therefore, the concurrent activation of SOD and
CAT is commonly observed response to oxidative
stress (Figure 5), often assisted by the action of
GPx (Peixoto et al., 2013).
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Glutathione peroxidase (GSH-px)

Glutathione Peroxidase (GSH-px) functions
as an additional propagation inhibitor within the
aqueous phase of fish muscle, mitochondria and
the cytosol of skeletal muscle cells. The presence
of selenium in the enzyme structure enables the
reduction of lipid peroxides (LOOH) using reduced
glutathione (GSH) as an electron donor (Equation 3.1
and 3.2). This reaction produces oxidized glutathione
disulphide (GSSG), which is subsequently reduced
back to GSH by glutathione reductase(GR)using
NADPH as a cofactor.

2GSH + H,0, — 2H,0 + GSSG
Equation 3.1

GSSG + NADPH + H" — 2GSH + NADP*
Equation 3.2

Although GPx shares H,0, as a substrate with
CAT, it alone can react effectively with lipid and
other organic hydroperoxides, serving asthe major
source of protection against low levels of oxidant
stress (Krishnamurthy and Wadhwani, 2012).

| HO+ %0, |
NO- a OZH
Fe™/ Cu*  Fe™*/ Cu™
ONOO* 0, CAT
° W o J [ ]
o, G 2H ———| H,0, |-——————— O
Fenton Reaction
SOD (
2H,0
me A4
GSH = GSSG
Reduced Oxidised
Mitochondria 3 /
y
/ GR
NADP* NADPH + H*

Figure 5. Synchronizedroles of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)
in the cellular antioxidant defense system (adapted from Brunetti, 2017).
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Fish AOE activity as an eutrophication stress status
informer

Experimental studies on various fish
pecies exposed to abiotic stressors have shown
that antioxidant enzyme responses are multi-
dimensional and influenced by habitat, life stages,
and environmental conditions (Table 1). Peak
enzyme activities varied across species and stressors,
indicating differences intolerance potentials.
Therefore, the linkage between these multi-
dimensional aspects of AOE release supports the
potential use of AOE activity as an indicator of
eutrophication stress status in various degraded and
eutrophic wetlands.

To highlight the major findings, it was
observed that the minimum exposure time required
for most of the studied AOE secretion was 24 h,
while maximum exposure durations varied:96 h
for SOD, POD, and GST; 48 h for CAT; and 84 h
for GPx (Figure 6). The liver was identified as the
main organ responsible for the maximum release of
SOD (37%), CAT (35%), POD (29%), GR (47%),
GPx (43%), and GST (38%), according to the
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reviewed literature. The gill was the second most
significant organ, with LDH (31%), GSH (33%),
and ACP (50%) being secreted at the highest levels
from this tissue (Figure 7). However, 46% of the
literature reported the brain as the organ primarily
responsible for releasing only one enzyme: AChE.

The summarized information derived from
Tablel clearly reflects an interactive mechanism
among environmental stressors, fish species, and
the levels of AOE activity released under specific
regulating environmental conditions. The doses
and types of experimental stressors simulate the
conditions found in degraded, contaminated, or
eutrophic wetlands. Since SOD has been identified
as the most prominently secreted AOE, it has
been used to develop a representative molecular
biomarker, indication its potential as an indicator of
eutrophication stress in freshwater fishes (Figure 8).

The stress impact of ammonia on Lates
calcarifer is high, even at a low concentration of
15 mg-L', as evidenced by the elevated secretion
of SOD as a first line of defence. In contrast,
Ctenopharyngodon idella exhibited a strong
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Figure 6. Maximum and minimum activities of different anti-oxidant enzymes at different hours of exposure based

on percentage of studies.
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antioxidant response only when exposed to a higher
ammonia dose (50 mg-L"), suggesting that
L. calcarifer possesses lower tolerance to ammonia-
induced stress compared to this exotic freshwater
species. Conversely, the indigenous freshwater
Indian major carp (Catla catla) demonstrated
remarkable resilience to high ammonia concentration
(148 mg-'L"), as indicated by its very low SOD
secretion (<0.01 U-mg'-prot™), relative to other
fish species. Among other tolerant species,
Aristichthys nobilis showed increased SOD
secretion only when exposed to extremely high
concentration of microcystin (1,000-2,000 ug-kg™).
Additionally, moderate SOD secretion levels
(1-100 U-mg'-prot') observed in other fishes in
response to various eutrophication-related stressors
reflect their capacity to mitigate oxidative stress
through regulated AOE release. Therefore, the
secretion patterns of antioxidant enzymes serve
as useful indicators for assessing stress levels in
fish and for classifying species into tolerant and
less tolerant categories.

CONCLUSIONS

Nutrient enrichment isan emerging issue
as a result of alterations in ecological integrity
related to global warming in most wetlands. The
role of fish AOE has the potential to provide the
platform as a protein-level biomarker for this stress
assessment. From the review, it can be concluded
that due to the high enrichment of nutrients into
waterbodies, tolerant fishes secrete some AOEs
like SOD, CAT, GPx, etc., to overcome the stress
condition, while some non-tolerant fishes cannot
easily cope up with the harsh environment and
ultimately may die, indicating a toxic effect on
them. The differential release of fish AOEs, as
demonstrated by the interaction model of SOD
in response to random variations in nutrient
enrichment, reveals a swift activation of fish
defence mechanisms. Consequently, this review
emphasizes the significance of fish antioxidant
enzyme release in assessing the nutrient stress
status of eutrophic wetlands that are trending
towards more climate change-induced trophic state
degradation in the future.
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Further research in this area could facilitate
the development of novel molecular biomarkers
through advanced techniques of projections,
emphasizing the importance of biological organization
in bio-indication. The potential application of
this function can serve as a sustainable mitigation
strategy to tackle the combined impacts of climate
change and nutrient enrichment on other affected
species and their habitats in a eutrophic wetland.
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