

Fish Antioxidant Enzyme Activity as Protein-Level Biomarkers of Ecological Stress in Tropical Eutrophic Wetlands: A Review

Sourav Ghosh Hazra¹, Sujay Kumar Bag¹, Nilotpal Ghosh¹, Shreyosi Dey¹,
Bibhas Guha² and Susmita Lahiri^{1*}

ABSTRACT

Eutrophication-related stressors, including low dissolved oxygen, nutrient enrichment, and harmful algal blooms, negatively affect the health and function of organisms, populations, and ecosystems, resulting in ecological stress. Aquatic life struggles to withstand such irregular and abrupt disruption to ecosystem homeostasis, leading to alteration in ecosystem metabolism (e.g., simplified food webs and shortened food chains), reduced nutrient uptake and utilization efficiency, hyperphosphorylation-induced cellular damage, and increased pathogen virulence. As a first line of defense against eutrophication stress, fish release antioxidant enzymes (AOEs) such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), peroxidase (POD), acetylcholinesterase (AChE), and others from various body organs. These enzymes react with reactive oxygen species (ROS) produced during stress and convert them into less harmful compounds. Most studies indicate that SOD is the primary enzyme secreted in response to ammonia and nitrate toxicity in eutrophic water bodies. The liver is the main organ responsible for AOE release followed by the gills and brain. Maximum AOE activity is typically observed at 48–96 h of exposure to ammonia, nitrate, or microcystin contamination. Thus, species-specific AOE release mechanisms can reflect the nature and intensity of stressor impact and may serve as biomarkers of ecological stress in tropical eutrophic wetlands. These eco-remediation tools can help mitigate the effects of eutrophication and promote healthier aquatic environments for species to thrive and develop.

Keywords: Antioxidant enzymes, Eutrophication stress, Reactive oxygen species, Tropical wetland

INTRODUCTION

Ecological stress occurs when extremes of abiotic factors (beyond permissible limits) negatively affect the health and functioning of an organism, population and/or ecosystem (Nawaz *et al.*, 2023). Natural or anthropogenic stressors can directly (e.g., decreased oxygen and increased reactive oxygen species) or indirectly (e.g., stress-induced decline in prey species) impact ecosystems, often through multi-interactive and synergistic pathways (Bănăduc *et al.*, 2024).

Compared to other ecosystems, abiotic stress in aquatic ecosystems is more harmful, due to the random discharge of inorganic and organic waste from industries, agriculture, municipal, and domestic sources, as well as the effects of global warming (Bashir *et al.*, 2020). It becomes increasingly difficult for aquatic life to withstand such rapid and random disruptions of ecosystem homeostasis, ultimately leading to eutrophication symptoms such as depleted dissolved oxygen, nutrient enrichment, harmful algal blooms, and fish kill (Zeng *et al.*, 2016).

¹Department of Ecological Studies and International Centre for Ecological Engineering, University of Kalyani, West Bengal, India

²Department of Zoology, School of Sciences, Netaji Subhas Open University, West Bengal, India

*Corresponding author. E-mail address: minku_lahiri@yahoo.co.in

Received 29 November 2024 / Accepted 4 August 2025

Eutrophic conditions represent a system with a perfect combination of abiotic stressors capable of causing deep environmental perturbation but offering poor prospects for ecosystem recovery. This situation prevents a clear-cut categorization of the stress status of a particular ecosystem, whether it is poorly, moderately, or severely stressed cannot be stated clearly (Birk *et al.*, 2020). Therefore, it is most pertinent to consider a species-specific response to these eutrophication-induced abiotic stressors as a biomarker of stress status (El-SiKaily and Shabaka, 2024). Thus, to overcome eutrophication stress, fish release various types of antioxidant enzymes (AOEs) such as catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), glutathione peroxidase (GPx), peroxidase (POD), acetylcholinesterase (AChE), lactate dehydrogenase (LDH), and others (Abhijith *et al.*, 2016; Hu *et al.*, 2019; Jin *et al.*, 2024; Monier *et al.*, 2025) from different body organs to defend themselves from the abiotic stressor (Wang *et al.*, 2016).

2016), which could serve as a meaningful biomarker (Teh *et al.*, 1997). Quantitative and qualitative assay of antioxidant enzymes (Khan *et al.*, 2016; Faheem and Lone, 2018), when compared with suitable controls, determine the fish health status due to pollution (including eutrophication) and toxicity stress in their tissues. Because it is difficult to quantify the impact of multiple stressors of eutrophication on biodiversity, physiology, and ecosystem functioning (Figure 1), species-specific impact quantification in terms of their ecological interactions can untangle the complex responses due to physical, chemical, and biological stressor more easily (Figure 2) (Sanon *et al.*, 2020).

Therefore, the present review evaluates the interactive ecological role of fish antioxidant enzymes as protein-level biomarkers of variable eutrophication stressors, with the potential to inform both preventive and remediation measures.

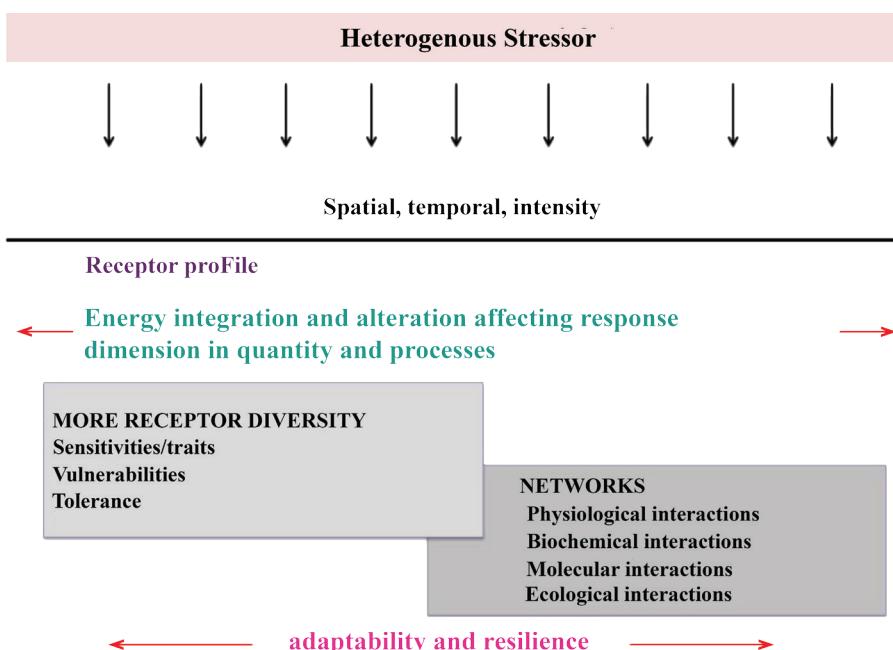


Figure 1. Conceptual model illustrating the impact of multiple stressors on freshwater biota, highlighting how receptor diversity (traits, sensitivities, vulnerabilities, tolerance) and interactive network (physiological, biochemical, molecular, and ecological) influence biological adaptability and resilience (adapted from Karageorgis *et al.*, 2005).

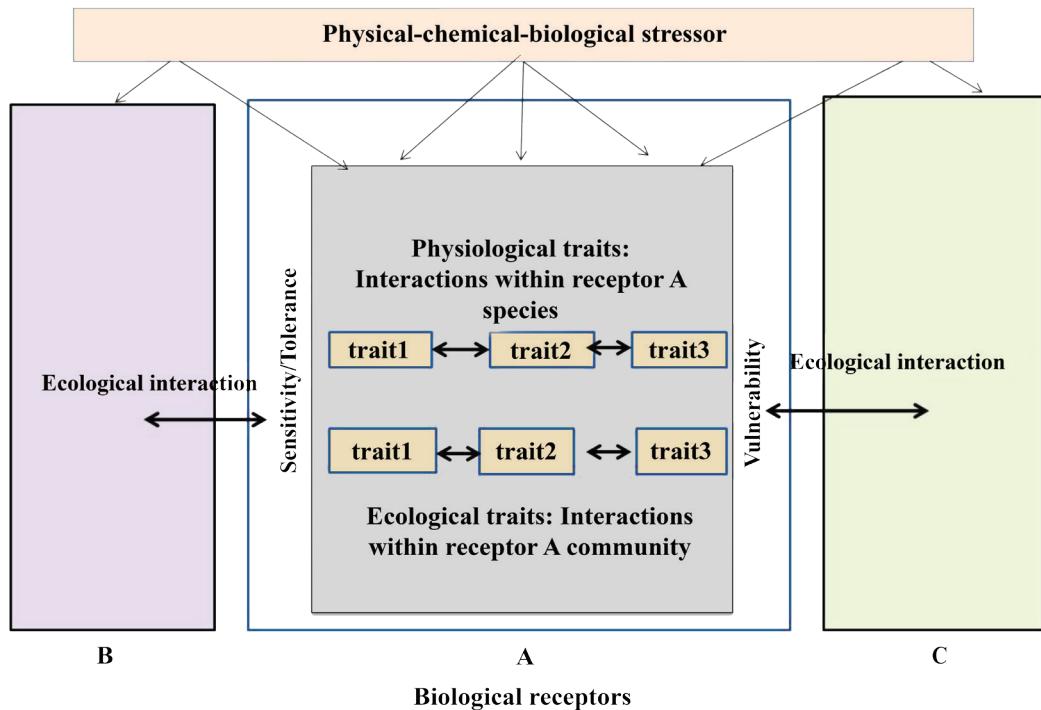


Figure 2. Ecological interactions between diverse receptors play a significant role in mediating responses to physical, chemical, and biological stressors (adapted from Segner *et al.*, 2014).

REVIEW METHODS

Different secondary data were retrieved from manuscripts published in peer-reviewed journals relevant to the review topic. Various academic search engines were used to access literature for exhaustive (500 papers), representative, and priority-based coverage (Paré and Kitsiou, 2017). The main thrust areas of data collection included sources of eutrophication, such as the harmful impacts of urbanization, abiotic and biotic ecological stress, and first-line enzyme mediated defense responses of fish in eutrophic wetland ecosystems.

After evaluating the suitability of the collected review materials, potential study findings were identified. This was followed by a screening process based on the relevance of each source to the review objectives. The inclusion and exclusion of literature were conducted using predetermined criteria to ensure data suitability. To enhance objectivity and minimize errors, approximately

50 papers were finalized, focusing primarily on the qualitative and quantitative responses of fish antioxidant enzyme (AOE) activity to varying concentrations of eutrophication parameters.

A wide range of alterations in abiotic factors due to eutrophication was critically assessed to evaluate ecological stress across different levels of biological organization. A comprehensive synthesis of recent and past experimental studies and reviews was conducted. The functional attributes of antioxidant stress mechanisms in various freshwater fishes were then used to develop an interaction model linking ecological stress, AOE secretion levels, and fish species exposed.

This interaction model was designed to categorize stress status and interpret AOE activity accordingly. Based on this framework, the entire review was categorized into the sub-topics to systematically address the objectives outlined for the study (Figure 3).

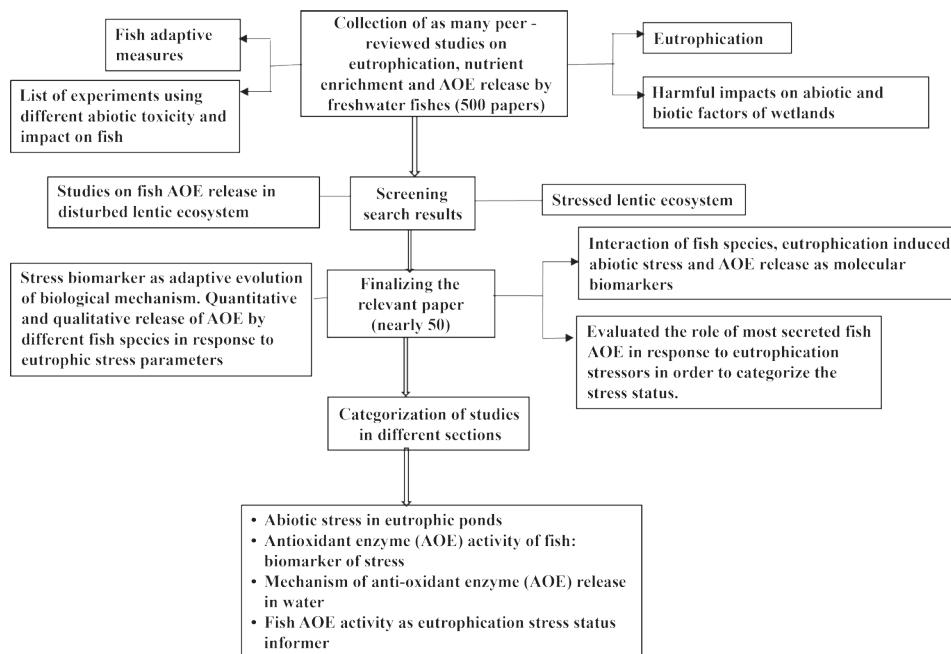


Figure 3. Workflow diagram of the present study outlining the methodological approach.

RESULTS AND DISCUSSION

Abiotic stress in eutrophic ponds

Nutrient enrichment

Anthropogenic pressures have consistently intensified the scale and rate of eutrophication by introducing limiting nutrients such as nitrogen and phosphorus into aquatic ecosystems through both point and non-point sources (Schindler, 2012; Paul *et al.*, 2021). Phosphorus-rich sources include fertilizers, untreated sewage, detergents, and industrial waste discharge (Khan and Mohammad, 2014) generating 10.8 gN and 2.2 gP, respectively of average nitrogen and phosphorous per individual (Witek-Krowiak *et al.*, 2022).

Half of the nitrogen applied to crops is lost to groundwater, making agriculture a significant contributor to nitrate contamination of freshwater systems, in contrast to phosphate enrichment. In comparison, Wastewater Treatment Plants (WTPs), livestock manure, and urban runoff are major sources of phosphorus input into aquatic ecosystems

(Figure 4). Additionally, livestock farming plays a major role in agricultural eutrophication.

This nutrient stress triggered a feedback loop between macrophyte community and water transparency (Dubey and Dutta, 2020), disrupts metabolic balance (Cross *et al.*, 2022), and alters nutrient uptake and utilization. The primary consequences include changes in algal biomass quantity and quality, as along with dissolved oxygen depletion. These disturbances affect the balance between dominant and redundant species in aquatic communities (Clark *et al.*, 2013).

High harmful algal biomass

Blooms of *Ankistrodes musciculus*, *Chlorococcum humicola*, *Melosira granulata* and *Monoraphidium arcuatum* (Ray *et al.*, 2021), as well as cyanobacteria such as *Microcystis aeruginosa* and *Anabaena flos-aquae*, release toxic substances known as cyanotoxins, including cyclic peptides, alkaloids, and lipopolysaccharides, into the water. These toxins induce stress in aquatic organisms by inhibiting protein phosphatases,

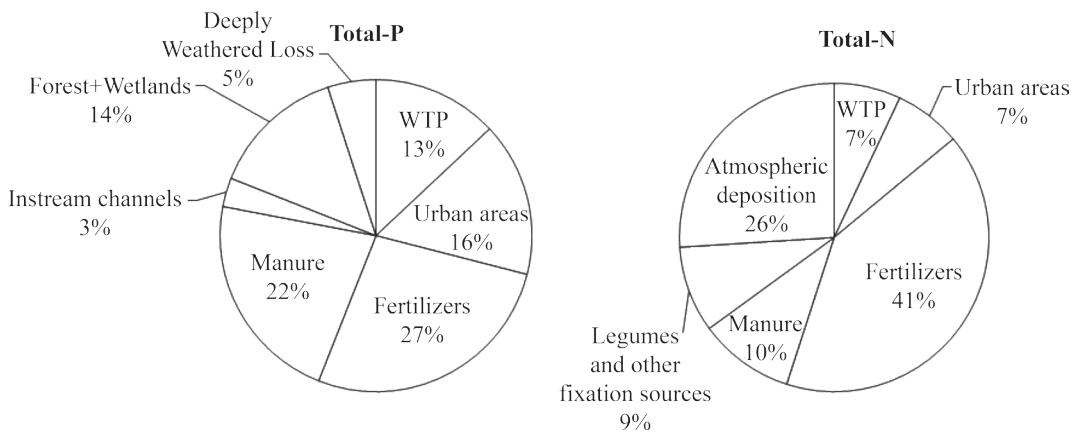


Figure 4. Proportions of different sources of phosphorus and nitrogen loading in wetlands, compiled from various literature sources.

leading to hyperphosphorylation and cellular damage (Wiltsie *et al.*, 2018). Microcystins also affect fish by impairing immune responses, altering haematological parameters and liver function, disrupting osmoregulation, and damaging reproductive health (Pham and Utsumi, 2018; Banerjee *et al.*, 2021). Consequently, only tolerant species are able to survive, resulting in reduced biodiversity and a shift toward simplified food webs and shorter food chains compared to non-eutrophic systems (Zhu *et al.*, 2020).

Anoxia

Algal blooms-induced rapid bacterial decomposition reduces dissolved oxygen levels, a common outcome of eutrophication. Aquatic animals exposed to dissolved oxygen (DO) concentrations below optimal thresholds suffer from acute stress, including reduced feeding, stunted growth, increased disease susceptibility, and eventual mortality (Abdel-Tawwab *et al.*, 2019). Additionally, pathogenicity may increase due to microbial genomic alterations and the emergence of antibiotic-resistant genes (Ahmad *et al.*, 2024). Most fish species show signs of distress and may die when DO levels fall below 2–4 mg·L⁻¹ (Lushchak and Bagnyukova, 2006), although some hardy species such as Nile tilapia (1.39–2.92 mg·L⁻¹ at the incipient stage) and catfish, can tolerate lower oxygen levels (Abdel-Tawwab *et al.*, 2015).

Hydrogen ion concentration (pH)

Phytoplankton blooms utilize the majority of available carbon dioxide during peak phases of photosynthesis, driving pH levels above 10. Beyond the optimal range of 6.5–8.5, fish can become physiologically stressed. In water with a pH<6.5, fish growth is inhibited, reproduction is halted, and fry may die. Mortality is almost certain at pH<4.0 or >11.0 (Stevens *et al.*, 2010). Both low and high pH enhance the production of ROSs, leading to oxidative stress that damages DNA, proteins, and lipids, ultimately causing developmental harm (Aranda-Rivera *et al.*, 2022). Significant impacts have also been observed on calcium ion availability and cellular signalling. Genetic alterations include *Hox* gene expression, epigenetic modification, and DNA methylation patterns (Madesh *et al.*, 2024).

Biochemical and chemical oxygen demand (BOD and COD) stress

The ideal pond BOD values ranged between 24 and 64 mg·L⁻¹, with the highest and lowest values recorded during summer and post-monsoon seasons, respectively (Lkr *et al.*, 2020). Rapid decomposition of organic matter by saprophytic bacteria in eutrophic systems increases biological oxygen demand (BOD) and depletes almost the entire available dissolved oxygen (Reynolds, 1992), causing anoxic stress to the existing aquatic organisms (Bhateria and Jain, 2016).

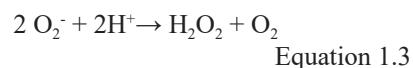
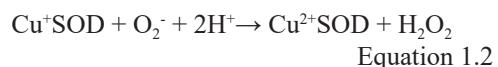
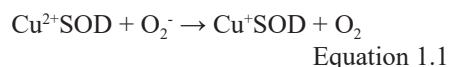
Light and temperature

In addition to industrial and domestic runoff, global climate change contributes to increased nutrient enrichment of water bodies, thereby accelerating eutrophication. Algal growth improves under light intensity of approximately 4,000 lux (Satthong *et al.*, 2019) and higher temperature (around 30 °C). Many shallow lakes experience a loss of submerged macrophytes as eutrophication progresses, primarily due to reduced light penetration triggered by dense algal blooms (Tu *et al.*, 2015), which can extend several metres and absorb almost the entire light (Amorin and Moura, 2021). Increased temperature due to altered precipitation pattern triggers increased nutrient loadings in freshwater habitats, creating environmental conditions of enhanced cyanobacterial blooms (Rodgers, 2021).

Reactive oxygen species (ROS)

There is increased production of ROS in response to eutrophication conditions in degraded wetlands (Jin *et al.*, 2025). The overproduction of ROS disrupts the typical equilibrium of O_2^- , $\cdot\text{OH}$, and H_2O_2 in the intracellular milieu, resulting in increased oxidative damage and ultimately leading to cell death (Zainab *et al.*, 2021) of aquatic organisms. A cell is considered to be in a condition of "oxidative stress" when the levels of ROS exceed the defensive systems and cause protein oxidation, lipid peroxidation, damage to nucleic acids, enzyme inhibition, and activation of pathways associated with programmed cell death, culminating in cell death.

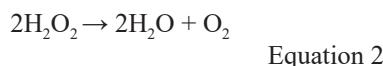
Antioxidant enzyme (AOE) activity of fish: Biomarker of stress




To resist this eutrophication-triggered extreme change in aquatic ecological function and structure, organisms have developed certain mechanisms by manipulating either their metabolic pathways, adaptive evolution, or phenotypic plasticity (Norin and Metcalfe, 2019). Fish antioxidant enzymatic and non-enzymatic systems

(Hu *et al.*, 2019) present in the tissues help to maintain cellular redox homeostasis by removing ROS species. Increased ROS levels trigger the biological system to develop a first-line defence mechanism by modulating the activities of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), and glutathione related enzymes (GPx, GR etc.) (Jomova *et al.*, 2024). Evolutionary evidence indicates the development of sophisticated antioxidant defence systems in fishes, although their underlying activating mechanisms and variation among fish species are yet to be understood. This is very important for assessing the health of the derelict and eutrophic aquatic systems in order to develop mitigation strategies (Kumari *et al.*, 2014; Bakiu *et al.*, 2024).

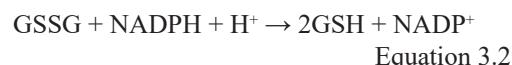
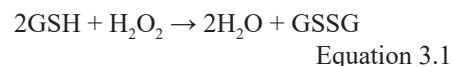
Mechanism of antioxidant enzyme (AOE) release in water

Superoxide dismutase (SOD)


This enzyme alternately catalyzes the dismutation of the superoxide (O_2^-) radical into two less harmful species: molecular oxygen (O_2) and hydrogen peroxide (H_2O_2), by either donating or removing an electron from the superoxide molecules it encounters (Tahri *et al.*, 2016). The resulting products are far less damaging than superoxides. This dismutation catalysed by SOD can be expressed as Cu, Zn-SOD, with the following half-reactions (Equation 1.1–1.3) (Bragadóttir, 2001).

Three major families of SOD are categorized based on protein folding and the type of metal cofactor, including Cu/Zn-, Fe-, Mn- and Ni-containing SODs (Tahri *et al.*, 2016).

Catalase (CAT)



Catalase (CAT) is a tetrameric, metal-containing enzyme that rapidly reacts with H_2O_2 to produce water and molecular oxygen. It can also react with H donors (such as methanol, ethanol, formic acid, or phenols) to exhibit peroxidatic activity in a redox reaction (Equation 2).

Hydrogen peroxide is not highly reactive with most of the significant biological molecules; however, it serves as a precursor for more reactive oxidants such as hydroxyl radicals ($\cdot\text{OH}$) (Bragadóttir, 2001). Therefore, the concurrent activation of SOD and CAT is commonly observed response to oxidative stress (Figure 5), often assisted by the action of GPx (Peixoto *et al.*, 2013).

Glutathione peroxidase (GSH-px)

Glutathione Peroxidase (GSH-px) functions as an additional propagation inhibitor within the aqueous phase of fish muscle, mitochondria and the cytosol of skeletal muscle cells. The presence of selenium in the enzyme structure enables the reduction of lipid peroxides (LOOH) using reduced glutathione (GSH) as an electron donor (Equation 3.1 and 3.2). This reaction produces oxidized glutathione disulphide (GSSG), which is subsequently reduced back to GSH by glutathione reductase (GR) using NADPH as a cofactor.

Although GPx shares H_2O_2 as a substrate with CAT, it alone can react effectively with lipid and other organic hydroperoxides, serving as the major source of protection against low levels of oxidant stress (Krishnamurthy and Wadhwani, 2012).

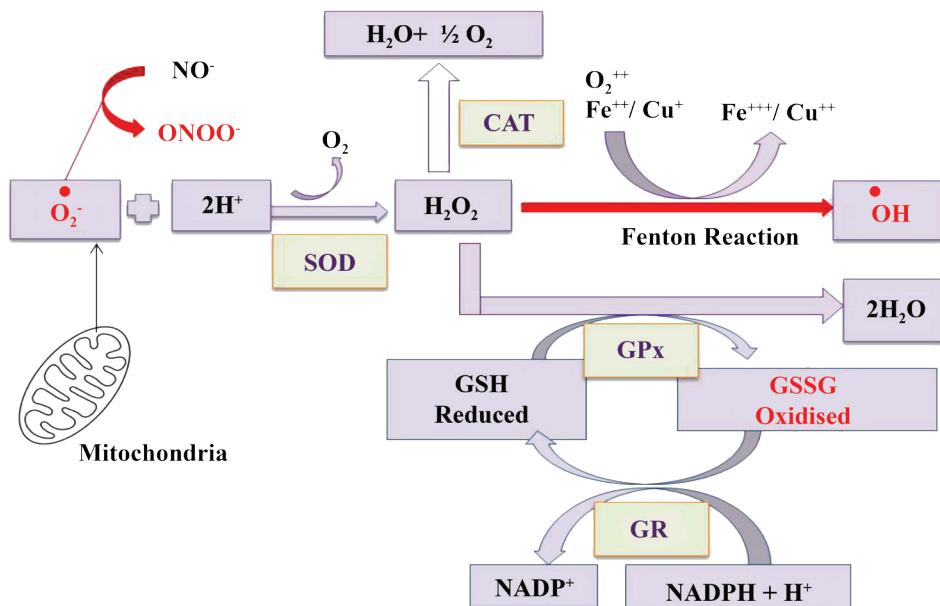


Figure 5. Synchronized roles of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in the cellular antioxidant defense system (adapted from Brunetti, 2017).

Fish AOE activity as an eutrophication stress status informer

Experimental studies on various fish species exposed to abiotic stressors have shown that antioxidant enzyme responses are multi-dimensional and influenced by habitat, life stages, and environmental conditions (Table 1). Peak enzyme activities varied across species and stressors, indicating differences in tolerance potentials. Therefore, the linkage between these multi-dimensional aspects of AOE release supports the potential use of AOE activity as an indicator of eutrophication stress status in various degraded and eutrophic wetlands.

To highlight the major findings, it was observed that the minimum exposure time required for most of the studied AOE secretion was 24 h, while maximum exposure durations varied: 96 h for SOD, POD, and GST; 48 h for CAT; and 84 h for GPx (Figure 6). The liver was identified as the main organ responsible for the maximum release of SOD (37%), CAT (35%), POD (29%), GR (47%), GPx (43%), and GST (38%), according to the

reviewed literature. The gill was the second most significant organ, with LDH (31%), GSH (33%), and ACP (50%) being secreted at the highest levels from this tissue (Figure 7). However, 46% of the literature reported the brain as the organ primarily responsible for releasing only one enzyme: AChE.

The summarized information derived from Table 1 clearly reflects an interactive mechanism among environmental stressors, fish species, and the levels of AOE activity released under specific regulating environmental conditions. The doses and types of experimental stressors simulate the conditions found in degraded, contaminated, or eutrophic wetlands. Since SOD has been identified as the most prominently secreted AOE, it has been used to develop a representative molecular biomarker, indicating its potential as an indicator of eutrophication stress in freshwater fishes (Figure 8).

The stress impact of ammonia on *Lates calcarifer* is high, even at a low concentration of 15 mg·L⁻¹, as evidenced by the elevated secretion of SOD as a first line of defence. In contrast, *Ctenopharyngodon idella* exhibited a strong

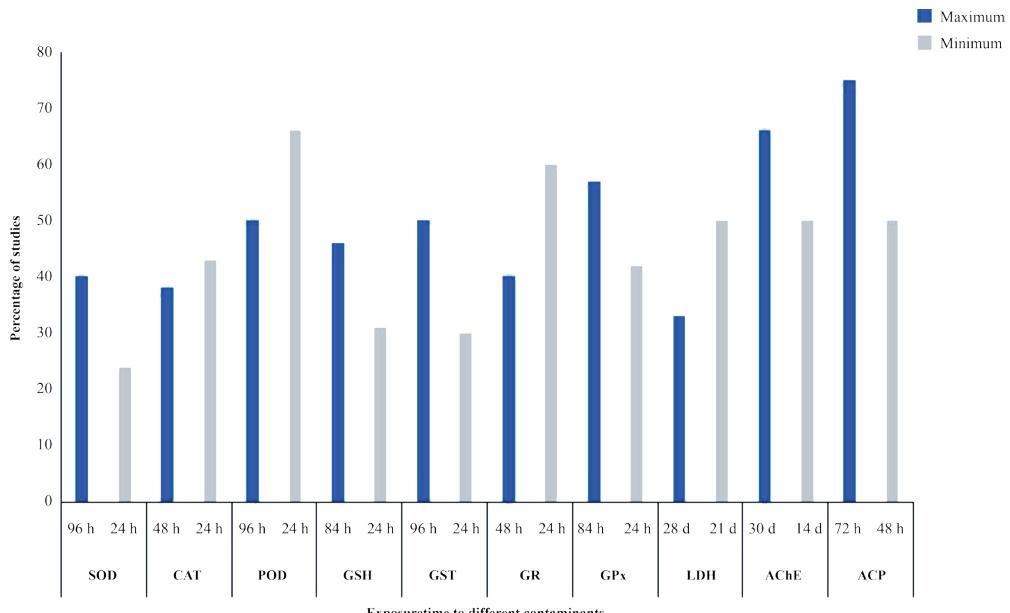


Figure 6. Maximum and minimum activities of different anti-oxidant enzymes at different hours of exposure based on percentage of studies.

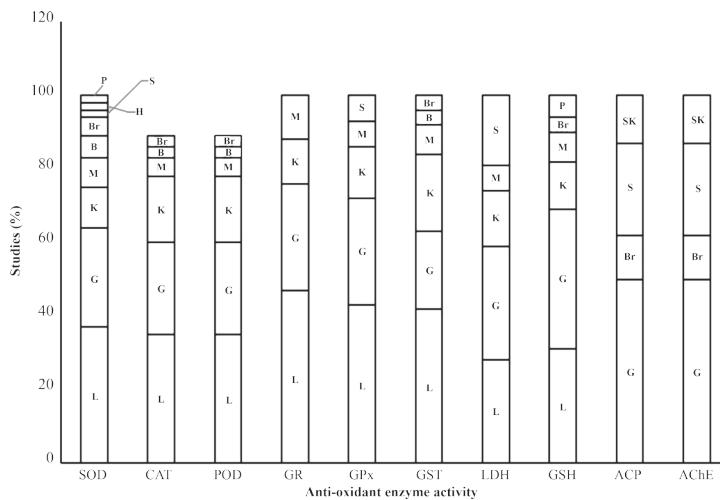


Figure 7. Maximum AOE secretion by different fish organs based on the percentage of studies.

Note: L = Liver; G = Gill; K = Kidney; M = Muscle; B = Body Tissue; Br = Brain; S = Serum; H = Heart; P = Plasma; Sk = Skin.

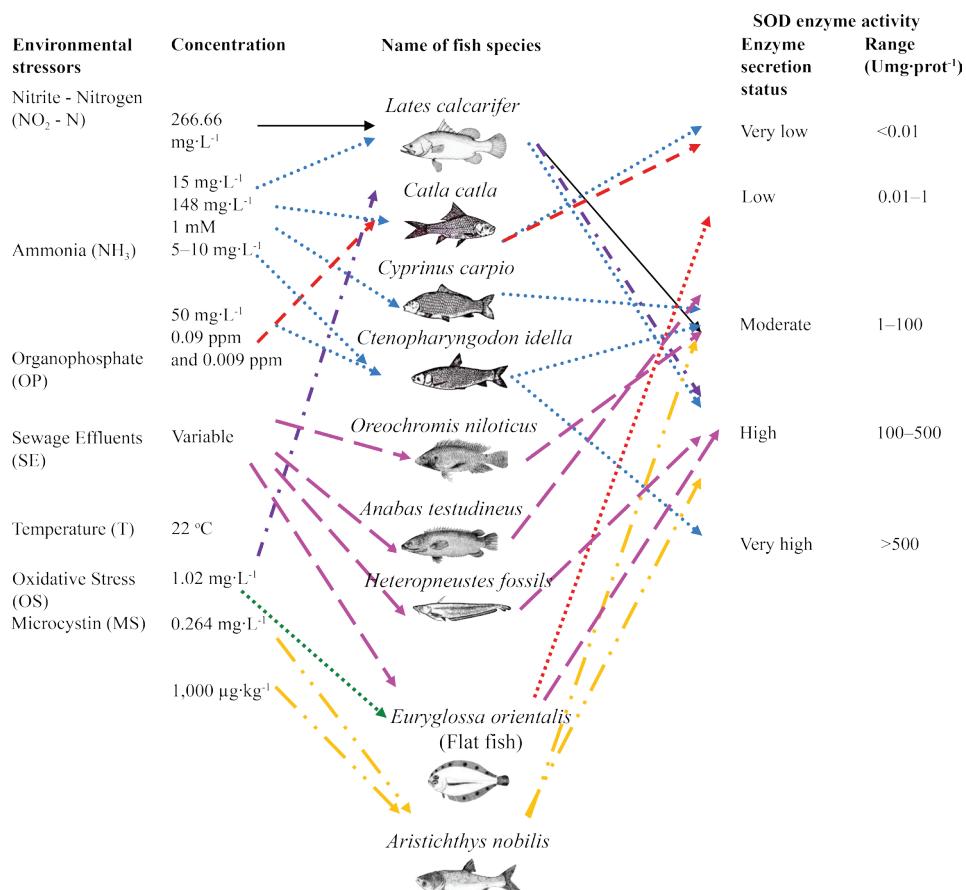


Figure 8. Amount of SOD secretion in various fish species in response to varying types and concentrations of environmental stressors related to eutrophication.

Note: Different stressor actions are depicted by the following colours:

Different stressor actions are depicted by the following colours:

Table 1. Concentration of anti-oxidant enzyme released by fishes in response to different stressors in freshwater systems.

Name of Fish Species	Stressor (mg·L ⁻¹)	Organ	Concentration of antioxidant enzyme/Peak·h ⁻¹									References	
			SOD	POD	CAT	GSH	ACP	ACHE	LDH	ALP	GPx	GR	
<i>Lates calcarifer</i>	NO _x -266.6	Skin, Gill,	25 ^a /48	-	-	150 ^a /48	-	-	-	-	-	-	Hu <i>et al.</i> (2019)
	NO _x -399.9	Body Tissue	5 ^a /48	35 ^a /96	1,800 ^a /48	-	-	-	-	-	-	-	Liu <i>et al.</i> (2018); Zhou <i>et al.</i>
	NH ₄ -1.5		180 ^a /72	18 ^a /24	35 ^a /96	320 ^a /24	-	-	-	-	-	-	
	NH ₄ -20		-	-	-	180 ^a /72	-	-	-	-	-	-	(2018)
<i>Catla catla</i> (C)	NO ₂ -10.4	Brain	-	-	-	0.52 ^a ; M	48 ^c ; C	5 ^b ; M	0.5 ^a ; R	-	-	-	Das <i>et al.</i>
	(C, R, M)	Liver				-	48 ^a ; M	7.5 ^b ; M	-	-	-	-	(2004)
		Kidney				-	-	4.9 ^b ; M	-	-	-	-	
		Gill				0.7 ^a ; R	-	2.0 ^b ; M	0.45 ^a ; R	-	-	-	
<i>Labeo rohita</i> (R)		Serum				135 ^a ; R	-	0.10 ^b ; C	11.5 ^a ; M	-	-	-	
		Serum	4.35 ^c	-	6.87 ^c	-	-	-	-	5.65 ^f	-	-	Senthilkumar
		Liver	7.85 ^c	-	9.56 ^c	-	-	-	-	7.89 ^f	-	-	and
		Kidney	6.75 ^c	-	8.45 ^c	-	-	-	-	6.12 ^f	-	-	Sivasubramania
<i>Cirrhinus mrigala</i> (M)		Gill	5.90 ^c	-	8.12 ^c	-	-	-	-	5.11 ^f	-	-	(2018)
		Brain	45 ^a /48	-	180 ^a /84	-	-	-	-	33 ^a /84	2.8 ^e /240	-	Sinha <i>et al.</i>
		Liver	35 ^a /48	-	225 ^a /180	-	-	-	-	66 ^a /180	1.8 ^e /180	-	(2015)
		Gill	18 ^a /180	-	70 ^a /84	-	-	-	-	22 ^a /12	1.3 ^e /180	-	
<i>Dicentrarchus labrax</i>	NH ₄ -20	Muscle	20 ^a /240	-	135 ^a /240	-	-	-	-	40 ^a /84	1.5 ^a /84	-	
		Kidney	11.2 ^a /84	-	60 ^a /12	-	-	-	-	35 ^a /240	1.48 ^a /240	-	
		Body Tissue	49.4 ^a	-	82.6 ^a %	62.8 ^a %	-	-	-	-	-	-	Karadag <i>et al.</i>
	(NO ₂ + NO ₃ ⁻ + P) - 9 NH ₄ -1mM	Liver	4.3 ^a /84	-	330 ^a /84	1,100 ^a /84	-	-	-	30 ^a /48	1.3 ^a /24	-	(2014)
<i>Cyprinus carpio</i>		Gill	19 ^a /84	-	75 ^a /84	700 ^a /3	-	-	-	23 ^a /48	1.2 ^a /24	-	Sinha <i>et al.</i>

Table 1. Cont.

Species	Name of Fish	Stressor (mg·L ⁻¹)	Organ	Concentration of antioxidant enzyme/Peak h ⁻¹								References	
				SOD	POD	CAT	GSH	ACP	AChE	LDH	ALP	GPx	
<i>Ctenopharyngodon idella</i>	NH ₄ -1.7 & 50	Gill/Liver	45 ^a /24	2.8 ^a /48	-	-	-	-	-	-	-	-	Cao <i>et al.</i> (2021)
<i>Oreochromis niloticus</i>	NH ₄ -5 & 10	Liver	700 ^b	-	350 ^b	-	-	-	-	3 ^b	1.8 ^b	2.2 ^b	Hegazi <i>et al.</i> (2010)
<i>Oreochromis mossambicus</i>	DO-1.02	Gill	0.12 ⁱ	-	-	-	-	-	-	1.5 ^b	3 ^b	1.2 ^b	Ahmed <i>et al.</i> (2016)
<i>Hoplophthalichthys molitrix</i>	Microcytai n-206 µg·g ⁻¹	Body/Tissue	-	-	-	9.5 ^j	-	-	-	-	-	-	Bláha <i>et al.</i> (2004)
<i>M. Cys with NH₃-0.06, 0.264</i>	M-Cys 1,000 µg·kg ⁻¹	-	-	-	-	48 ^{y/72}	-	-	-	-	-	-	Sun <i>et al.</i> (2011)
<i>Aristicichthys nobilis</i>	M-Cys 1,000 µg·kg ⁻¹		390 ^{y/48}	-	8,000 ^{y/48}	-	-	-	-	-	3.5 ^{y/48}	0.9 ^{y/24}	3 ^{y/24} <i>Li et al.</i> (2010)
<i>Clarias gariepinus</i>	M-Cys LR- (400 µg MC.LR·kg ⁻¹)	Liver	850 ^{y/28days}	-	-	-	-	-	-	-	-	185/28 days Isibor (2017)	
<i>Eleutheronema tetradactylum</i>	NH ₃ -1.0±0.4	Liver	1,020 ^{y/24}	-	38 ^{y/24}	-	-	-	-	-	-	-	Jin <i>et al.</i> (2025)
<i>Labeo rohita</i>	NH ₃ -0.1		220 ^{y/48}		54 ^{y/24}						40 ^{y/48}	100 ^{y/48}	Parida and Sahoo (2023)

Note: ^a = U·mg⁻¹ prot; ^b = OD min⁻¹·g⁻¹; ^c = U·g⁻¹; ^d = U·L⁻¹; ^e = nmol; Note: NADPH·min⁻¹·mg⁻¹ protein; ^f = U·mL⁻¹; ^g = mmol·g⁻¹ wet wt⁻¹; ^h = µ mol H₂O₂·min⁻¹·mg⁻¹ protein; ⁱ = U·mL⁻¹; ^j = µg·mg⁻¹ protein; ^k = nkat·mg⁻¹; ^l = nmol·min⁻¹·mg⁻¹ protein; Units for peak hour are hours unless indicated; SOD = Super oxide dismutase; POD = Peroxidase; CAT = Catalase; GSH = Glutathione; ACP = Acid phosphatase; AChE = Acetylcholinesterase; LDH = Acetylcholinesterase; ALP = Alkaline phosphatase; GPx = Glutathione peroxidase; GR = Glutathione reductase; GST = Glutathione S-transferase.

antioxidant response only when exposed to a higher ammonia dose ($50 \text{ mg}\cdot\text{L}^{-1}$), suggesting that *L. calcarifer* possesses lower tolerance to ammonia-induced stress compared to this exotic freshwater species. Conversely, the indigenous freshwater Indian major carp (*Catla catla*) demonstrated remarkable resilience to high ammonia concentration ($148 \text{ mg}\cdot\text{L}^{-1}$), as indicated by its very low SOD secretion ($<0.01 \text{ U}\cdot\text{mg}^{-1}\cdot\text{prot}^{-1}$), relative to other fish species. Among other tolerant species, *Aristichthys nobilis* showed increased SOD secretion only when exposed to extremely high concentration of microcystin ($1,000\text{--}2,000 \mu\text{g}\cdot\text{kg}^{-1}$). Additionally, moderate SOD secretion levels ($1\text{--}100 \text{ U}\cdot\text{mg}^{-1}\cdot\text{prot}^{-1}$) observed in other fishes in response to various eutrophication-related stressors reflect their capacity to mitigate oxidative stress through regulated AOE release. Therefore, the secretion patterns of antioxidant enzymes serve as useful indicators for assessing stress levels in fish and for classifying species into tolerant and less tolerant categories.

CONCLUSIONS

Nutrient enrichment is an emerging issue as a result of alterations in ecological integrity related to global warming in most wetlands. The role of fish AOE has the potential to provide the platform as a protein-level biomarker for this stress assessment. From the review, it can be concluded that due to the high enrichment of nutrients into waterbodies, tolerant fishes secrete some AOEs like SOD, CAT, GPx, etc., to overcome the stress condition, while some non-tolerant fishes cannot easily cope up with the harsh environment and ultimately may die, indicating a toxic effect on them. The differential release of fish AOEs, as demonstrated by the interaction model of SOD in response to random variations in nutrient enrichment, reveals a swift activation of fish defence mechanisms. Consequently, this review emphasizes the significance of fish antioxidant enzyme release in assessing the nutrient stress status of eutrophic wetlands that are trending towards more climate change-induced trophic state degradation in the future.

Further research in this area could facilitate the development of novel molecular biomarkers through advanced techniques of projections, emphasizing the importance of biological organization in bio-indication. The potential application of this function can serve as a sustainable mitigation strategy to tackle the combined impacts of climate change and nutrient enrichment on other affected species and their habitats in a eutrophic wetland.

ACKNOWLEDGEMENTS

We are grateful to Prof. B. B. Jana, former Professor, Department of Zoology and Fisheries Scientist, University of Kalyani, for providing us necessary guidance. We are also grateful to the Department of Science and Technology and Biotechnology, Government of West Bengal (Sanction No-128(Sanc)/ST/P/S&T/17G-8/2018) and to the Personal Research Grant(PRG), University of Kalyani, for providing the necessary funding.

LITERATURE CITED

Abdel-Tawwab, M., A.E. Hagras, H.A.M. Elbaghdady and M.N. Monier. 2015. Effects of dissolved oxygen and fish size on Nile tilapia, *Oreochromis niloticus* (L.): growth performance, whole-body composition, and innate immunity. *Aquaculture International* 23: 1261–1274. DOI: 10.1007/s10499-015-9882-y.

Abdel-Tawwab, M., M.N. Monier, S.H. Hoseinifar and C. Faggio. 2019. Fish response to hypoxia stress: growth, physiological, and immunological biomarkers. *Fish Physiology and Biochemistry* 45(3): 997–1013. DOI: 10.1007/s10695-019-00614-9.

Abhijith, B.D., M. Ramesh and R.K. Poopal. 2016. Responses of metabolic and antioxidant enzymatic activities in gill, liver and plasma of *Catla catla* during methyl parathion exposure. *The Journal of Basic and Applied Zoology* 77: 31–40. DOI: 10.1016/j.jobaz.2015.11.002.

Ahmad, N.B., M.S. Jaafaru, Z. Isa, Y. Abdulhamid, R.A. Kakudi, A.Y. Ugya and K. Meguelliati. 2024. High pollution loads engineer oxygen dynamics, ecological niches, and pathogenicity shifts in freshwater environments. **Journal of Hazardous Materials Advances** 14: 100425. DOI: 10.1016/j.hazadv.2024.100425.

Ahmed, M.K., K.N. Islam, M. Ibrahim, G.N.N. Sultana, M.S. Khan, M.S. Akter and A. Hossain. 2016. Oxidative stress mediated antioxidant enzyme responses in tilapia (*Oreochromis mossambicus*) and silver carp (*Hypophthalmichthys molitrix*) fingerlings during hypoxic transportation and reoxygenation. **Bioresearch Communication** 2(2): 264–269.

Aranda-Rivera, A.K., A. Cruz-Gregorio, Y.L. Arancibia-Hernández, E.Y. Hernández-Cruz and J. Pedraza-Chaverri. 2022. RONS and oxidative stress: an overview of basic concepts. **Oxygen** 2(4): 437–478. DOI: 10.3390/oxygen2040030.

Bakiu, R., E. Piva, S. Pacchini and G. Santovito. 2024. Antioxidant systems in extremophile marine fish species. **Journal of Marine Science and Engineering** 12(8): 1280. DOI: 10.3390/jmse12081280.

Bănăduc, D., A. Curtean-Bănăduc, S. Barinova, V.L. Lozano, S. Afanasyev, T. Leite, P. Branco, D.F.G. Isaza, J. Geist, A. Tegos and S.B. Simić. 2024. Multi-interacting natural and anthropogenic stressors on freshwater ecosystems: their current status and future prospects for 21st century. **Water** 16(11): 1483. DOI: 10.3390/w16152193.

Banerjee, S., S. Maity, R. Guchhait, A. Chatterjee, C. Biswas, M. Adhikari and K. Pramanick. 2021. Toxic effects of cyanotoxins in teleost fish: a comprehensive review. **Aquatic Toxicology** 240: 105971. DOI: 10.1016/j.aquatox.2021.105971.

Bashir, I., F.A. Lone, R.A. Bhat, S.A. Mir, Z.A. Dar and S.S. Dar. 2020. Concerns and threats of contamination on aquatic ecosystems. **Bioremediation and Biotechnology** 27: 1–26. DOI: 10.1007/978-3-030-35691-0_1.

Bhateria, R. and D. Jain. 2016. Water quality assessment of lake water: a review. **Sustainable Water Resources Management** 2(2): 161–173. DOI: 10.1007/s40899-015-0014-7.

Birk, S., D. Chapman, L. Carvalho, B.M. Spears, H.E. Andersen, C. Argillier and D. Hering. 2020. Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. **Nature Ecology and Evolution** 4(8): 1060–1068. DOI: 10.1038/s41559-020-1216-4.

Bláha, L., R. Kopp, K. Simková and J. Mares. 2004. Oxidative stress biomarkers are modulated in silver carp (*Hypophthalmichthys molitrix* Val.) exposed to microcystin-producing cyanobacterial water bloom. **Acta Veterinaria Brno** 73(4): 477–482. DOI: 10.2754/avb200473040477.

Bragadóttir, M. 2001. **Endogenous Antioxidants in Fish**. Master Thesis, University of Iceland, Reykjavík, Iceland. 63 pp.

Brunetti, A. 2017. **The insulin receptor**. In: **Encyclopaedia of Cancer** (ed. M. Schwab), pp. 2289–2293. Springer, Berlin, Heidelberg.

Cao, S., D. Zhao, R. Huang, Y. Xiao, W. Xu, X. Liu and S. Liu. 2021. The influence of acute ammonia stress on intestinal oxidative stress, histology, digestive enzymatic activities and PepT1 activity of grass carp (*Ctenopharyngodon idella*). **Aquaculture** 20: 100–722. DOI: 10.1016/j.aqrep.2021.100722.

Clark, C.M., Y. Bai, W.D. Bowman, et al. 2013. **Nitrogen deposition and terrestrial biodiversity**. In: **Encyclopedia of Biodiversity**, 2nd ed. (ed. S.A. Levin), pp. 519–536. Academic Press, Waltham, Maryland, USA.

Cross, W.F., J.M. Hood, J.P. Benstead, A.D. Huryn, J.R. Welter, G.M. Gíslason and J.S. Ólafsson. 2022. Nutrient enrichment intensifies the effects of warming on metabolic balance of stream ecosystems. **Limnology and Oceanography Letters** 7(4): 332–341. DOI: 10.1002/lol2.10244.

Das, P.C., S. Ayyappan, B.K. Das and J.K. Jena. 2004. Nitrite toxicity in Indian major carps: sublethal effect on selected enzymes in fingerlings of *Catla catla*, *Labeo rohita* and *Cirrhinus mrigala*. **Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology** 138(1): 3–10. DOI: 10.1016/j.cca.2004.03.010.

Dubey, D. and V. Dutta. 2020. Nutrient enrichment in lake ecosystem and its effects on algae and macrophytes. **Environmental Concerns and Sustainable Development** 2: 81–126. DOI: 10.1007/978-981-13-6358-0_5.

El-SiKaily, A. and S. Shabaka. 2024. Biomarkers in aquatic systems: Advancements, applications and future directions. **Egyptian Journal of Aquatic Research** 50(2): 169–182. DOI: 10.1016/j.ejar.2024.05.002.

Faheem, M. and K.P. Lone. 2018. Oxidative stress and histopathologic biomarkers of exposure to bisphenol-A in the freshwater fish, *Ctenopharyngodon idella*. **Brazilian Journal of Pharmaceutical Sciences** 53(3): e17003. DOI: 10.1590/s2175-97902017000317003.

Gusti, A.M., S.Y. Qusti, E.M. Alshammari, E.A. Toraih and M.S. Fawzy. 2021. Antioxidants-related superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione-S-transferase (GST), and nitric oxide synthase (NOS) gene variants analysis in an obese population: a preliminary case-control study. **Antioxidants** 10(4): 595. DOI: 10.3390/antiox10040595.

Hegazi, M.M., Z.I. Attia and O.A. Ashour. 2010. Oxidative stress and antioxidant enzymes in liver and white muscle of Nile tilapia juveniles in chronic ammonia exposure. **Aquatic Toxicology** 99(2): 118–125. DOI: 10.1016/j.aquatox.2010.04.007.

Hu, J., L. Allais, R. Yang, Y. Liu, S. Zhou, J.G. Qin and X. Meng. 2019. Physical responses of *Lates calcarifer* to acute nitrite stress. **Israeli Journal of Aquaculture-Bamidgeh** 71: 1563. DOI: 10.46989/001c.20993.

Isibor, P.O. 2017. Oxidative stress biomarkers in *Clarias gariepinus* (Burchel, 1822) exposed to microcystin-LR. **Journal of Basic Applied Science** 6(1): 69–75. DOI: 10.1016/j.bjbas.2017.01.005.

Jin, J.H., E. Amenyogbe, Y. Yang, Z.L. Wang, Y. Lu, R.T. Xie, E.K. Droeppen and J.S. Huang. 2024. Effects of ammonia nitrogen stress on the physiological, biochemical, and metabolic levels of the gill tissue of juvenile four-finger threadfin (*Eleutheronema tetradactylum*). **Aquatic Toxicology** 274: 107049. DOI: 10.1016/j.aquatox.2024.107049.

Jin, M., A. Zheng, E.M. Mkulo, et al. 2025. Metabolomics-based analysis of adaptive mechanism of *Eleutheronema tetradactylum* to low-temperature stress. **Animals** 15(8): 1174. DOI: 10.3390/ani15081174.

Jomova, K., S.Y. Alomar, S. H. Alwasel, E. Nepovimova, K. Kuca and M. Valko. 2024. Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. **Archives of Toxicology** 98(5): 1323–1367. DOI: 10.1007/s00204-024-03696-4.

Karadag, H., Ö. Fırat and Ö. Fırat. 2014. Use of oxidative stress biomarkers in *Cyprinus carpio* L. for the evaluation of water pollution in Ataturk Dam Lake (Adiyaman, Turkey). **Bulletin of Environmental Contamination and Toxicology** 92: 289–293. DOI: 10.1007/s00128-013-1187-0.

Karageorgis, A.P., M.S. Skourtos, V. Kapsimalis, A.D. Kontogianni, N.T. Skoulikidis, K. Pagou and C. Anagnostou. 2005. An integrated approach to watershed management within the DPSIR framework: Axios River catchment and Thermaikos Gulf. **Regional Environmental Change** 5(2): 138–160. DOI: 10.1007/s10113-004-0078-7.

Khan, M.N. and F. Mohammad. 2014. Eutrophication: challenges and solutions. **Eutrophication: Causes, Consequences and Control** 2: 1–15. DOI: 10.1007/978-94-007-7814-6_1.

Khan, A., A.M. Yousafzai, N. Shah, Muhammad, M.S. Ahmad, M. Farooq, F. Aziz, M. Adnan, M. Rizwan and S.M. Jawad. 2016. Enzymatic profile activity of grass carp (*Ctenopharyngodon idella*) after exposure to the pollutant named Atrazine (Herbicide). **Polish Journal of Environmental Studies** 25(5): 2003–2008. DOI: 10.15244/pjoes/62821.

Kumari, K., A. Khare and S. Dange. 2014. The applicability of oxidative stress biomarkers in assessing chromium induced toxicity in the fish *Labeo rohita*. **Bio Med Research International** 2014(1): 782493. DOI: 10.1155/2014/782493.

Krishnamurthy, P. and A. Wadhwan. 2012. Antioxidant enzymes and human health. **Antioxidant Enzyme** 1: 3–18. DOI: 10.5772/48109.

Li, L., P. Xie and L. Guo. 2010. Antioxidant response in liver of the phytoplanktivorous bighead carp (*Aristichthys nobilis*) intraperitoneally injected with extracted microcystins. **Fish Physiology and Biochemistry** 36(2): 165–172. DOI: 10.1007/s10695-008-9228-z.

Liu, Y., J. Hu, S. Zhou, R. Yang, J.G. Qin, Z. Ma and Q. Yang. 2018. Effect of acute ammonia stress on antioxidant enzymes and digestive enzymes in barramundi *Lates calcarifer* larvae. **Israeli Journal of Aquaculture – Bamidgeh**. 70: 1508. DOI: 10.46989/001c.20930.

Lkr, A., M.R. Singh and N. Puro. 2020. Assessment of water quality status of Doyang River, Nagaland, India, using water quality index. **Applied Water Science** 10: 46. DOI: 10.1007/s13201-019-1133-3.

Lushchak, V.I. and T.V. Bagnyukova. 2006. Effects of different environmental oxygen levels on free radical processes in fish. **Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology** 144 (3): 283–289. DOI: 10.1016/j.cbpb.2006.02.014.

Madesh, S., S. Gopi, A. Sau, R. Rajagopal, S.K.R. Namasivayam and J. Arockiaraj. 2024. Chemical contaminants and environmental stressors induced teratogenic effect in aquatic ecosystem—A comprehensive review. **Toxicology Reports** 13(2): 101819. DOI: 10.1016/j.toxrep.2024.101819.

Monier, M.N., A.S. Abd El-Naby, R.M. Fawzy, F. Samir, S.H. Shady, S.Y. Grana and M. Abdel-Tawwab. 2025. Growth performance, antioxidant, and immune responses of Nile tilapia (*Oreochromis niloticus*) fed on low-fishmeal diets enriched with sodium chloride and its adaptability to different salinity levels. **Fish Physiology and Biochemistry** 51(1): 6. DOI: 10.1007/s10695-024-01426-2.

Nawaz, M., J. Sun, S. Shabbir, W.A. Khattak, G. Ren, X. Nie, Y. Bo, Q. Javed, D. Du and C. Sonne. 2023. A review of plants strategies to resist biotic and abiotic environmental stressors. **Science of the Total Environment** 900: 165832. DOI: 10.1016/j.scitotenv.2023.165832.

Norin, T. and N.B. Metcalfe. 2019. Ecological and evolutionary consequences of metabolic rate plasticity in response to environmental change. **Philosophical Transactions of the Royal Society B** 374(1768): 20180180. DOI: 10.1098/rstb.2018.0180.

Paré, G. and S. Kitsiou. 2017. **Methods for literature reviews**. In: *Handbook of eHealth Evaluation: An Evidence-Based Approach* [Internet] (eds. F. Lau and C. Kuziemsky), pp. 1–504. University of Victoria, British Columbia, Canada.

Paul, B., S.S. Bhattacharya and N. Gogoi. 2021. Primacy of ecological engineering tools for combating eutrophication: An ecohydrological assessment pathway. **Science of Total Environment** 762: 143–171. DOI: 10.1016/j.scitotenv.2020.143171.

Parida, S. and P.K. Sahoo. 2023. Antioxidant defence in *Labeo rohita* to biotic and abiotic stress: Insight from mRNA expression, molecular characterization and recombinant protein-based ELISA of catalase, glutathione peroxidase, CuZn superoxide dismutase, and glutathione S-transferase. **Antioxidants** 13(1): 18. DOI: 10.3390/antiox13010018.

Peixoto, F.P., J.S. Carrola, A.M. Coimbra, *et al.* 2013. Oxidative stress responses and histological hepatic alterations in barbel, *Barbus bocagei*, from Vizela River, Portugal. **Revista Internacional de Contaminacion Ambiental** 29(1): 29–38.

Pham, T.L. and M. Utsumi. 2018. An overview of the accumulation of microcystins in aquatic ecosystems. **Journal of Environmental Management** 213: 520–529. DOI: 10.1016/j.jenvman.2018.01.077.

Ray, J.G., P. Santha Kumaran and S. Kookal. 2021. Phytoplankton communities of eutrophic freshwater bodies (Kerala, India) in relation to the physico-chemical water quality parameters. **Environment Development and Sustainability** 23(1): 259–290. DOI: 10.1007/s10668-019-00579-y.

Reynolds, C. 1992. Eutrophication of freshwaters: Principles, problems and restoration. **Reviews in Fish Biology and Fisheries** 3: 376–377. DOI: 10.1007/BF00043389.

Rodgers, E.M. 2021. Adding climate change to the mix: Responses of aquatic ectotherms to the combined effects of eutrophication and warming. **Biology Letters** 17(10): 20210442. DOI: 10.1098/rsbl.2021.0442.

Sanon, V.P., P. Toe, J. Caballer Revenga, H. El Bilali, L.J. Hundscheid, M. Kulakowska and A.H. Melcher. 2020. Multiple-line identification of socio-ecological stressors affecting aquatic ecosystems in semi-arid countries: implications for sustainable management of fisheries in sub-Saharan Africa. **Water** 12(6): 1518. DOI: 10.3390/w12061518.

Satthong, S., K. Saego, P. Kitrungloadjanaporn, N. Nuttavut, S. Amornsamankul and W. Triampo. 2019. Modelling the effects of light sources on the growth of algae. **Advances in Difference Equations** 170: Schindler, D.W. 2012. The dilemma of controlling cultural eutrophication of lakes. **Proceedings of the Royal Society B: Biological Sciences** 279(1746): 4322–4333. DOI: 10.1098/rspb.2012.1032.

Segner, H., M. Schmitt-Jansen and S. Sabater. 2014. Assessing the impact of multiple stressors on aquatic biota: the receptor's side matters. **Environmental Science and Technology** 48(14): 7690–7696. DOI: 10.1021/es405082t.

Senthilkumar, K. and C. Sivasubramanian. 2018. Impact of fertilizer ammonium sulphate on oxidative stress markers in *Catla catla*. **International Journal of Biological and Medical Research** 9: 6544–6550.

Sinha, A.K., H. AbdElgawad, T. Giblen, G. Zinta, M. De Rop, H. Asard and G. De Boeck. 2014. Anti-oxidative defences are modulated differentially in three freshwater teleosts in response to ammonia-induced oxidative stress. **PLOS One** 9(4): e95319. DOI: 10.1371/journal.pone.0095319.

Sinha, A.K., G. Zinta, H. AbdElgawad, H. Asard, R. Blust and G. De Boeck. 2015. High environmental ammonia elicits differential oxidative stress and antioxidant responses in five different organs of a model estuarine teleost (*Dicentrarchus labrax*). **Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology** 174: 21–31. DOI: 10.1016/j.cbpc.2015.06.002.

Stevens, C.J., K. Thompson, J.P. Grime, C.J. Long and D.J. Gowin. 2010. Contribution of acidification and eutrophication to declines in species richness of calcifuge grasslands along a gradient of atmospheric nitrogen deposition. **Functional Ecology** 24(2): 478–484. DOI: 10.1111/j.1365-2435.2009.01663.x.

Sun, H., W. Yang, Y. Chen and Z. Yang. 2011. Effect of purified microcystin on oxidative stress of silver carp *Hypophthalmichthys molitrix* larvae under different ammonia concentrations. **Biochemical Systematics and Ecology** 39(4–6): 536–543. DOI: 10.1016/j.bse.2011.08.001.

Tahri, M., A.J. Crivelli, J. Panfili and M. Bensouilah. 2016. Health status of the swim bladder of the European eel *Anguilla anguilla* in north-eastern Algeria's Lake Oubeïra. **International Journal of Fisheries and Aquatic Studies** 4(1): 364–369.

Teh, S.J., S.M. Adams and D.E. Hinton. 1997. Histopathologic biomarkers in feral freshwater fish populations exposed to different types of contaminant stress. **Aquatic Toxicology** 37(1): 51–70. DOI: 10.1016/S0166-445X(96)00808-9.

Tu, R., W. Jin, T. Xi, Q. Yang, S.F. Han and A.E.F. Abomohra. 2015. Effect of static magnetic field on the oxygen production of *Scenedesmus obliquus* cultivated in municipal wastewater. **Water Research** 86: 132–138. DOI: 10.1016/j.watres.2015.07.039.

Wang, R.L., A.D. Biales, N. Garcia-Reyero, E.J. Perkins, D.L. Villeneuve, G.T. Ankley and D.C. Bencic. 2016. Fish connectivity mapping: linking chemical stressors by their mechanisms of action-driven transcriptomic profiles. **BMC Genomics** 17(1): 1–20. DOI: 10.1186/s12864-016-2406-y.

Wiltsie, D., A. Schnetzer, J. Green, M. Vander Borgh and E. Fensin. 2018. Algal blooms and cyanotoxins in Jordan lake, North Carolina. **Toxins** 10(2): 92. DOI: 10.3390/toxins10020092.

Witek-Krowiak, A., K. Gorazda, D. Szopa, K. Trzaska, K. Moustakas and K. Chojnacka. 2022. Phosphorus recovery from wastewater and bio-based waste: An overview. **Bioengineered** 13(5): 13474–13506. DOI: 10.1080/21655979.2022.2077894.

Zainab, Q., M.T. Chaudhury, X. Du, L. Hinze and M.T. Azhar. 2021. Review of oxidative stress and antioxidative defence mechanisms in *Gossypium hirsutum* L. in response to extreme abiotic conditions. **Journal of Cotton Research** 4: 9. DOI: 10.1186/s42397-021-00086-4.

Zeng, Q., L. Qin, L. Bao, Y. Li and X. Li. 2016. Critical nutrient thresholds needed to control eutrophication and synergistic interactions between phosphorus and different nitrogen sources. **Environmental Science and Pollution Research** 23(20): 21008–21019. DOI: 10.1007/s11356-016-7321-x.

Zhou, Q., X. Qiao, Z. Cheng, S. Yin and P. Cui. 2018. Response of antioxidant enzymes and digestive enzymes to temperature stress in *Lates calcarifer* larvae. **Israeli Journal of Aquaculture -Bamidgeh** 70: 20909. DOI: 10.46989/001c.20910.

Zhu, K., Y. Wu, C. Li, J. Xu and M. Zhang. 2020. Ecosystem-based restoration to mitigate eutrophication: A case study in a shallow lake. **Water** 12(8): 2141. DOI: 10.3390/w12082141.