
 

Seaweeds significantly contribute to the 
Philippine economy, ranking first among fishery 
products in 2023 with an estimated production of 
1.63 million metric tons (wet weight) (Department 
of Agriculture Bureau of Fisheries and Aquatic 
Resources, DA-BFAR, 2024).  The industry is 
dominated by eucheumatoids (Kappaphycus and 
Eucheuma), which are valued not only as food but 
more importantly as raw materials for carrageenan 
extraction.  Although the Philippines pioneered 
eucheumatoid farming in the 1960s (Hurtado et al.,
2015; Valderrama et al., 2013; DA-BFAR, 2022) 

and once led global production, output has since 
declined due to pest and epiphyte infestations, ice-ice 
syndrome, climate change, and biosecurity threats 
(Ward et al., 2020; 2022; Kambey et al., 2021).

To address declining productivity, tissue 
culture and micropropagation techniques are being 
adopted to produce high-quality seedstocks with 
desirable traits such as rapid growth and resistance 
to epiphytes and diseases (Reddy et al., 2008; Jiksing 
et al., 2022).  However, the success of these efforts 
depends heavily on effective transport of tissue-
cultured explants from laboratories to nurseries 
and farms.  
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ABSTRACT

The cultivation of eucheumatoids (Eucheuma and Kappaphycus) is increasingly threatened by 
pests, diseases, climate change, and biosecurity concerns, leading to declining yields.  Tissue culture 
offers a more resilient propagation approach; however, the success of outplanting depends on minimizing 
stress and mortality during the transfer of cultivars.  This study evaluated the effects of different transport 
treatments on the photosystem II (PSII) photochemical efficiency and survival of tissue-cultured 
Eucheuma denticulatum microplantlets.  An 8-h transport simulation followed by a 7-day laboratory 
culture was conducted to evaluate the effectiveness of various packaging and storage conditions.  After 
8 h, the maximum quantum yields (Fv/Fm) of transport treatments 1 (0.53±0.08) and 2 (0.51±0.11), in 
which explants were placed in plastic bags containing 250 mL of seawater stored in a styrofoam box 
without and with ice, respectively, did not significantly differ from their initial values (0.58±0.11 and 
0.54±0.08, respectively).  All explants in these treatments remained viable after 7 days.  In contrast, 
treatments 3 (0.33±0.11) and 4 (0.44±0.09), where explants were wrapped in moistened muslin cloths and 
stored in a styrofoam box without and with ice, respectively, showed significantly lower Fv/Fm values 
compared with their initial states (0.64±0.09 and 0.63±0.11, respectively), with treatment 3 resulting 
in complete die-off (0.01±0.06) after 7 days.  These findings suggest that transporting microplantlets in 
seawater-filled plastic bags, especially with ice insulation, is the most effective method for maintaining 
photochemical efficiency and viability during transport. 
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 Current seaweed transport practices, such 
as using ice and seawater (Yong et al., 2013; Ali 
et al., 2020; Ciaramella, 2022) or wrapping thalli 
in seawater-moistened paper towels (Dawes and 
Koch, 1991; Borlongan et al., 2016; Hinaloc and 
Roleda, 2021; Gonzaga et al., 2025), are mostly 
empirical, and their physiological effects on seed 
stock viability remain poorly understood.  For 
tissue-cultured microplantlets, common methods 
include placing explants in seawater-filled plastic 
bags or polyethylene terephthalate (PET) bottles 
stored in styrofoam boxes, with or without ice. 
However, the impact of these transport conditions 
on seedstock viability has not been thoroughly 
evaluated.  Recent studies evaluated shipment stress 
in cultivated seaweed juveniles using chlorophyll 
fluorescence as an indicator of physiological 
integrity.  Sato et al. (2022) demonstrated that 
Undaria pinnatifida sporelings maintained 
photosystem II (PSII) efficiency under saturated 
humidity for up to 72 h at low temperatures, 
whereas Caulerpa chemnitzia var. laetevirens 
exhibited irreversible declines in PSII efficiency at 
4 °C but remained viable under room-temperature, 
high-humidity conditions (Terada et al., 2024). 
These findings highlight the potential of PAM-
chlorophyll fluorometry for optimizing transport 
environments for seaweed seedstock.

 This study therefore evaluates the 
physiological responses of Eucheuma denticulatum 
microplantlets to four transport strategies to identify 
the most effective approach for maintaining 
photosynthetic integrity and post-transport viability. 
The results are expected to contribute practical 
insights toward the development of optimized, 
field-adaptable transport protocols that support 
seedstock resilience in sea-based nurseries and 
grow-out farms.

Preparation of experimental samples 

 Tissue-cultured Eucheuma denticulatum 
microplantlets used in this study were derived from 
apical segments of farmed thalli exhibiting the green 
color morphotype, collected from a seaweed farm
in San Dionisio, Iloilo.  The culture protocols were 

adapted from Hurtado et al. (2009) and Tibubos 
et al. (2017).  Explants were surface-cleaned, 
acclimated, and cultured in UV-filtered seawater 
supplemented with seaweed extract and plant 
growth regulators.  Microplantlets were maintained 
for approximately six months under controlled 
conditions in the walk-in culture room of the 
Seaweed Laboratory, University of the Philippines 
Visayas, at a temperature of 23–24 °C, salinity of 
30±3 psu, incident irradiance of 110±5 μmol 
photons∙m-2∙s-1 from LED tubes, a 13 h light:11 h 
dark photoperiod, and continuous moderate aeration.  
Healthy individuals exhibiting active growth and 
normal pigmentation were selected for transport 
trials.

 A total of 300 microplantlets (approximately 
2 cm in length) were used in the transport simulation 
experiment and distributed across four transport 
treatments.  Photosystem II (PSII) photochemical 
efficiency was monitored during and after transport, 
and survival rates were assessed after a 7-day 
laboratory culture period.

Transport simulation experiment 

 Four transport treatments were designed to 
simulate live-seaweed transport under typical field 
conditions.  In treatment 1 (T1) microplantlets were 
placed in clear polyethylene bags (approximately 
10×30 cm) containing 250 mL UV-filtered seawater, 
stored in a styrofoam box without ice. Treatment 2 
(T2) followed the same procedure as T1, but the 
styrofoam box contained ice packs to provide 
cooling.  In treatment 3 (T3), microplantlets were 
wrapped in muslin cloth moistened with UV-filtered 
seawater and stored in a styrofoam box without ice, 
whereas treatment 4 (T4) was identical to T3 except 
that ice packs were added to maintain a lower 
temperature during transport.

 Each treatment had three replicates, with 
one styrofoam box (31.5×23.5×33.5 cm) serving as 
a replicate and containing 25 microplantlets.  For 
T1 and T2, a stocking density of one microplantlet 
per 10 mL of seawater was maintained. For T2 and 
T4, each styrofoam box contained four ice packs 
(500 mL of frozen UV-filtered seawater per pack), 
placed at the bottom and separated from the samples 
by ten layers of paper to prevent direct contact. 
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 In total, 12 styrofoam boxes were exposed 
to ambient outdoor temperature and irradiance 
to simulate field transport conditions.  PSII 
photochemical efficiency (maximum quantum yield, 
Fv/Fm) was measured at designated time points 
between 9:00 a.m. to 5:00 p.m. to capture treatment 
responses while minimizing diurnal variation.

Chronological changes in maximum quantum yield 
(Fv/Fm) 

 Fv/Fm was measured using a Junior PAM 
fluorometer (Heinz Walz, Germany) throughout 
the 8-h transport simulation.  At the start of the 
experiment, 25 microplantlets were randomly 
assigned to each replicate, and Fv/Fm values of 
10 randomly selected individuals per replicate (n = 
30 per treatment) were recorded as the initial values. 
Before measurement, samples were dark-acclimated 
in a light-proof chamber for 10–15 min to ensure 
PSII reaction centers were fully relaxed. Fv/Fm 
was subsequently measured every 2 h during the 
8-h transport period.  The temperature inside and 
outside each styrofoam box was also recorded at 
2-h intervals using a digital thermometer.

 Following the transport simulation, samples 
were transferred to 250-mL flasks containing UV-
filtered seawater and incubated under the same 
laboratory conditions.  Fv/Fm values (n = 30 per 
treatment) were measured again after 16 h to assess 
PSII recovery.

Survival assessment

 Post-transport recovery was assessed by 
monitoring survival over a 7-day laboratory culture 
period.  Survival rates (%) were determined by 
counting viable microplantlets in each replicate.  To 
assess physiological recovery, Fv/Fm values were 
measured again after 7 days.  For each treatment, 
10 microplantlets per replicate (n = 30 per treatment) 
were randomly selected for analysis.

Statistical analyses

 Fv/Fm and survival data were tested for
normality using the Shapiro-Wilk test, and for 
homogeneity of variances using Levene’s test.
When assumptions were met, a one-way ANOVA

followed by Tukey’s HSD test was applied to 
compare Fv/Fm across different time points: the 
initial measurement (0 h), post-transport (8 h), and 
subsequent assessments after 16 h and 7 days of 
laboratory culture.  Survival rates were analyzed 
using the same procedure.  When data did not meet 
the assumption of normality, the non-parametric 
Kruskal-Wallis test was used, followed by Dunn’s 
test for pairwise comparisons.  All values are 
presented as mean±standard deviation (SD), and 
all analyses were performed using R version 4.4.1 
(R Core Team, 2023).

PSII photochemical efficiency (Fv/Fm) of Eucheuma 
denticulatum microplantlets across transport 
treatments

 The maximum quantum yield (Fv/Fm) 
of E. denticulatum microplantlets varied across 
transport treatments over time (Figure 1, Table 1). 
In T1 (seawater without ice), Fv/Fm declined 
slightly from 0.58±0.10 to 0.53±0.08 over 8 h, 
further decreasing to 0.48±0.05 after 16 h, but 
recovering to 0.57±0.06 after seven days (Figure 1a). 
T2 (seawater with ice) showed a gradual decline 
from 0.54±0.08 to 0.51±0.11 during transport, 
followed by a marked recovery to 0.61±0.08 after 
seven days (Figure 1b).  In contrast, T3 (moistened 
cloth without ice) exhibited the most pronounced 
decline, with Fv/Fm dropping from 0.64±0.09 to 
0.33±0.11 over 8 h, remaining low at 0.25±0.08 
after 16 h, and decreasing further to 0.01±0.06 
after seven days (Figure 1c).  All replicates in T3 
showed depigmentation and whitening, indicative 
of ice-ice syndrome (Figure 2).  T4 (moistened cloth 
with ice) also showed a significant decline from 
0.63±0.11 to 0.44±0.09 during transport, with only 
minimal recovery to 0.49±0.08 after seven days 
(Figure 1d).  Among all treatments, T2 demonstrated 
the highest post-transport recovery, whereas T3 
exhibited the most severe physiological stress.

Temperature profiles inside styrofoam boxes 

 The transport experiment was conducted on 
20 May 2024, in Miagao, Iloilo, under a heat index 
of 42–43 °C (Philippine Atmospheric, Geophysical

RESULTS
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and Astronomical Services Administration, PAGASA 
2024).  Ambient air temperatures ranged from 
34.3 °C at 9:00 a.m., peaked at 48.2–48.7 °C between 
11 a.m. and 1 p.m., and declined to 33.5–37.2 °C 
by 3–5 p.m.
 
 Transport treatments without ice (T1 
and T3) recorded higher internal temperatures, 
averaging 32.6–34.5 °C throughout the day, 
whereas ice-treated setups (T2 and T4) maintained 
significantly lower temperatures (p<0.001), 
ranging from 24.6–25.3 °C (Figure 3).  The highest 
internal temperatures were recorded between 11 
a.m. and 3 p.m., with T3 reaching 35.8–39.3 °C 
and T1 at 34.0–35.2 °C.  In contrast, T2 ranged 
from 26.2–30.0 °C, while T4 remained within 
24.7–28.8 °C.

Survival rates after seven days of culture

 Survival rates of E. denticulatum microplantlets 
differed significantly among treatments (Figure 4).  
T3 (moistened cloth without ice) resulted in 0% 
survival, with all microplantlets exhibiting thallus 
whitening and softening, symptoms characteristic of 
ice-ice syndrome.  This was consistent with their 
near-zero Fv/Fm value (0.01±0.06).  In contrast, T1 
and T2 (seawater without and with ice, respectively) 
achieved 100% survival, with explants remaining 
healthy throughout the experiment.  T4 (moistened 
cloth with ice) showed a survival rate of 49.3±41.1%, 
with some individuals displaying visible signs of stress.  
Statistically, survival in T1 and T2 was significantly 
higher than in T3 (p<0.05), while no significant 
differences were observed among T1 and T2, or 
between T3 and T4.

Figure 1. Chronological changes in the maximum quantum yield (Fv/Fm) of Eucheuma denticulatum microplantlets 
 during the 8-h transport simulation and subsequent 7-day laboratory culture. Treatments: (a) seawater 
 without ice, (b) seawater with ice, (c) moistened cloth without ice, and (d) moistened cloth with ice. 
 Symbols represent mean values measured (n = 30); error bars indicate standard deviation (SD). Shaded 
 regions denote the 7-day laboratory culture phase.
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Figure 2. Representative Eucheuma denticulatum microplantlets subjected to different transport treatments, observed 
 after (a) 16 h and (b) 7 days of laboratory culture, following an 8-h simulated transport experiment. Scale 
 bar = 2.0 cm.

  Table 1. Mean maximum quantum yields (Fv/Fm, mean±SD) over time for Eucheuma denticulatum microplantlets 
 under different transport conditions. Superscript letters indicate statistical groupings based on Tukey’s 
 HSD test, with significant pairwise differences (p<0.05) observed across designated time points within 
 each treatment.

         Treatment

Seawater without ice

Seawater with ice

Moistened cloth without ice

Moistened cloth with ice

Time

0 h

8 h

24 h

D7

0 h

8 h

24 h

D7

0 h

8 h

24 h

D7

0 h

8 h

24 h

D7

Mean±SD

0.58±0.10a

0.53±0.08a

0.48±0.05b

0.57±0.06a

0.53±0.08b

0.51±0.10b

0.49±0.05b

0.61±0.08a

0.64±0.09a

0.33±0.11b

0.25±0.08c

0.01±0.06d

0.63±0.11a

0.44±0.09b

0.45±0.07b

0.49±0.08b
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Figure 4. Survival rates (%, mean±standard deviation, SD) of Eucheuma denticulatum microplantlets after 7 days 
 of laboratory culture following an 8-h transport simulation. Treatments: T1 = seawater without ice, T2 = 
 seawater with ice, T3 = moistened cloth without ice, and T4 = moistened cloth with ice. Different letters above 
 bars indicate statistically significant differences among treatments (p<0.05) and error bars represent ±SD.

Figure 3. Temperature changes inside the styrofoam boxes across transport treatments during the 8-h simulation. 
 Treatments: (a) seawater without ice, (b) seawater with ice, (c) moistened cloth without ice, and (d) 
 moistened cloth with ice. Symbols represent mean values (n = 3); error bars indicate standard deviation (SD). 
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 Optimizing transport strategies is essential 
for maintaining the physiological integrity of tissue-
cultured seaweeds and minimizing stress-induced 
mortality during transfer to sea-based nurseries. 
Effective handling and temperature-moisture 
regulation during transit are critical for preserving 
microplantlet viability and supporting successful 
acclimation under field conditions.

 This study demonstrated that transport 
conditions significantly affected the photosynthetic 
performance and survival of E. denticulatum 
microplantlets.  Treatments using clear plastic bags 
with UV-filtered seawater (T1 and T2) provided the 
best physiological stability, as indicated by stable 
Fv/Fm values and complete recovery after seven 
days.  Although T1 (seawater without ice) exhibited 
a delayed Fv/Fm recovery, survival remained 
unaffected, suggesting that seawater provided 
a buffering effect against dehydration and osmotic 
stress.  Continuous hydration and ionic support from 
seawater likely helped maintain cellular water potent 
and enzyme stability, minimizing physiological 
disruption during exposure to ambient heat (Eggert, 
2012; Karsten, 2012).  The superior performance 
of T2 (seawater with ice) further highlights the role 
of cooling in maintaining PSII function, possibly 
through reduced metabolic demand and slower 
pigment degradation.

 In contrast, muslin cloth-based treatments 
(T3 and T4) exhibited marked declines in Fv/Fm, 
with T3 (moistened cloth without ice) resulting in 
complete mortality.  The irreversible loss of PSII 
efficiency in these treatments likely stemmed from 
dehydration stress during prolonged emersion, 
which can damage cellular structures and impair 
photosynthetic machinery.  Dehydration is known 
to induce oxidative stress and inhibit PSII activity, 
with the severity of these effects depending on 
species-specific desiccation tolerance (Flores-
Molina et al., 2014; Shindo et al., 2022).  T3 also 
experienced extreme temperatures (up to 39.3 °C),
which likely exceeded the thermal tolerance of 
E. denticulatum, inhibiting enzymatic processes 
essential for photosynthesis (Salvucci and Crafts-
Brandner, 2004; Allakhverdiev et al., 2008).   

 Although muslin cloth initially retained 
moisture, it dried out over the 8-h period, reducing 
water availability.  Similar results were obtained 
in the brown alga Saccharina japonica, which 
maintained ΔF/Fm during short-term emersion 
but exhibited irreversible declines with prolonged 
exposure (Shindo et al., 2022).  Cellular dehydration 
is known to alter membrane structures and increase 
intracellular electrolyte concentrations, disrupting 
electron transport between PSI and PSII (Gao et al., 
2011; Hurd et al., 2014).  The physiological decline 
observed in T3 and T4 supports these findings and 
underscores the vulnerability of E. denticulatum 
microplantlets to emersion stress.  Measuring 
algal tissue moisture content would help quantify 
dehydration effects in future studies.

 T4 (moistened cloth with ice) maintained 
lower temperatures (24.7–28.8 °C), yet Fv/Fm still 
declined, suggesting that dehydration, rather than 
heat, was the dominant stressor.  The reduced 
survival in T4 (49.3±41.1%) further supports 
the conclusion that thermal regulation alone is 
insufficient without adequate moisture retention. 
The combination of dehydration and thermal stress 
in T3 likely triggered oxidative damage and ice-ice 
symptoms, resulting in complete loss of viability. 
Heat stress disrupts PSII by denaturing proteins, 
destabilizing thylakoid membranes and impairing 
D1 protein synthesis, leading to photoinhibition and 
reduced oxygen evolution (Borlongan et al., 2017; 
Kumar et al., 2020).

 Photosynthetic impairment under stress is 
also linked to disrupted chlorophyll biosynthesis and 
pigment degradation, leading to thallus whitening 
(Dutta et al., 2009).  E. denticulatum responds to 
environmental stress by producing halogenated 
organic compounds, notably bromoform and 
diiodomethane, which generate hydrogen peroxide 
and exacerbate oxidative stress (Mtolera et al., 
1996).  Elevated temperatures destabilize PSII, 
accelerate carotenoid breakdown, and reduce 
chlorophyll-a levels, further compromising 
photosynthetic efficiency (Eggert, 2012; Wernberg 
et al., 2016; Eismann et al., 2020; Zuo et al., 2023). 
Temperatures above 33 °C have been shown to 
reduce growth, induce pigment loss, and trigger 
ice-ice syndrome in E. denticulatum (Ganzon-

DISCUSSION
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