

Distribution of Polyopisthocotyleans in Some Marine Fishes from the Gulf of Thailand, Chonburi Province

Watchariya Purivirojkul¹

ABSTRACT

A survey of polyopisthocotylean parasites was carried out in 77 marine fish species from the Gulf of Thailand, Chonburi province during 2006-2007. A total of 17 species from eight families of polyopisthocotyleans were identified from fish samples during the study period, as follows: Family Axinidae (*Axine* sp.), Family Discocotylidae (*Oligapta* sp., *Vallisia* sp.), Family Gastrocotylidae (*Gotocotyla* sp.), Family Heteraxinidae (*Allencotyla* sp., *Leuresthicola* sp.), Family Heteromicrocotylidae (*Heteromicrocotyla* sp.), Family Mazocraeidae (*Diclidophoropsis* sp., *Mazocraeoides* spp.), Family Microcotylidae (*Aspinatrium* sp., *Microcotyle* spp.) and Family Thoracocotylidae (*Pricea multae*, *Pseudothoracocotyla ovalis*). *Microcotyle* spp. had the highest number of species (four out of six). The prevalence of polyopisthocotylean parasites in *Caranx armatus* and *Tylosurus annulata* was the highest (100%). The mean intensity of *Pricea multae* in *Scomberomorus guttatus* was the greatest, followed by *Pseudothoracocotyla ovalis* in *Scomberomorus guttatus* and *Mazocraeoides* sp.2 in *Anodontostoma chacunda*, 5.6, 5.33 and 4 respectively. In this study, *Allencotyla* sp., *Aspinatrium* sp., *Diclidophoropsis* sp., *Leuresthicola* sp., *Mazocraeoides* sp.1, *Mazocraeoides* sp.2, *Oligapta* sp., *Pricea multae*, *Pseudothoracocotyla ovalis* and *Vallisia* sp., parasites of *Caranx armatus*, *Sphyraena obsoleta*, *Johnius dussumieri*, *Tylosurus annulata*, *Anodontostoma chacunda*, *Stolephorus* sp., *Hyporhamphus gaimardi*, *Scomberomorus guttatus* and *Chorinemus lysan* were reported for the first time in Thailand.

Key words : Polyopisthocotylean, parasite, marine fish, Gulf of Thailand, Chonburi

INTRODUCTION

Monogeneans are flatworms with representatives in freshwater, brackishwater and marine habitats. They are the most common and abundant ectoparasitic flukes of fish, with a greater diversity of species occurring in the tropics than in the temperate regions of the world (Rohde, 1982). All monogeneans have a direct life cycle without intermediate hosts. Most monogeneans are ectoparasites of fish. The main characteristic of the group is the opisthaptor. This organ of attachment is normally

equipped with sclerotinized structures such as hooks, clamps and suckers. The hooks, clamps and suckers all have direct contact with host tissues and may directly inflict mechanical damage. Monogeneans comprise of two very distinct groups, the monopisthocotyleans and the polyopisthocotyleans, which differ considerably, with important implications for pathogenicity, treatment and host response. Polyopisthocotyleans can possess sclerotized clamps, often in large numbers, which are extremely important for pinching the gill secondary lamellae of the host fish (Buchmann and Bresciani, 2006).

¹ Department of Zoology, Faculty of Science, Kasetsart University, Jatujak, Bangkok 10900
e-mail : fsciwyp@ku.ac.th

Polyopisthocotyleans, which are primary sanguinivorous parasites, are adapted for the absorption of hemoglobin (Halton, 1974). Direct blood feeding by polyopisthocotyleans can result in anemia in the host. Several reports have described high pathogenicity of these parasites to certain host species, not only in aquaculture systems but also in natural lakes, rivers and seas (Buchmann and Bresciani, 2006). For example, in Japan, an infestation of *Pseudanthocotyloides* sp. in the semi-enclosed Sea of Lyo resulted in the death of 87,000 Japanese anchovy (*Engraulis japonica*) (Yamamoto *et al.*, 1984). The European catfish *Silurus glanis* can have high populations of *Ancylodiscoides vistulensis* (Szekely and Molnar, 1990). *Sparicotyle chrysophrii* was (originally called *Microcotyle chrysophrii*) is a gill monogenean strongly specific for sea bream and able to induce mortalities in culture systems (Sanz, 1992). Moreover, monogeneans have been used widely as biological tags to provide information for fishery managers on the movements and population structure of their hosts (Buchmann and Lindenstrom, 2002; Buchmann and Bresciani, 2006).

The aim of the present study was to survey the occurrence of polyopisthocotylean parasites in marine fishes in the Gulf of Thailand, Chonburi province. The results will provide fundamental data for fish parasite research.

MATERIALS AND METHODS

Seventy-seven marine fish species were bought from fishermen in the Gulf of Thailand at Chonburi Province during 2006-2007. Identification of the fishes was undertaken according to the Department of Fisheries (1964), Collette and Nauen (1983), Russell (1990), McKay (1992), Nakamura and Parin (1993), Rainboth (1996) and Nelson (2006). The gills of fishes were examined for polyopisthocotyleans under a stereomicroscope. Parasites were then removed from the hosts and preserved in

ammonium picratum glycerine. Samples were studied using light microscopy, manipulation and measuring techniques.

Polyopisthocotylean identification was based on morphological features of the opisthaptor (clamps and hooks) and the genital atrium according to McMahon (1963), Yamaguti (1963), Schell (1970), Hayward and Rohde (1999), Rohde and Hayward (1999) and Sirikanchana (2003). Prevalence and mean intensity of each parasitic species were determined as in Margolis *et al.* (1982).

RESULTS AND DISCUSSION

One thousand eight hundred and twenty fish samples from 77 marine fish species were collected from the Gulf of Thailand. Sixteen fish species were found to be infested with polyopisthocotylean parasites (Table 1). The highest diversity of parasites was found in *Scomberomorus guttatus*, *Hyporhamphus gaimardi* and *Caranx armatus* with 3, 2 and 2 species of parasites, respectively. There were 17 species of polyopisthocotyleans found on the gill filaments. These 17 species belong to 13 genera and eight families (Figure 1). Two genera each were found from families Discocotylidae, Heteraxinidae, Mazocraeidae, Microcotylidae and Thoracocotylidae, while one genus each was found from families Axinidae, Gastrocotylidae and Heteromicrocotylidae (Table 1, Figure 1).

Two genera, *Aspinatrium* sp. and *Microcotyle* spp., were found under family Microcotylidae, with genus *Microcotyle* having four species, the highest number of species (four out of six) found under one genus in this study. *Microcotyle* spp. (Figure 2) are gill filament parasites of six species of Perciformes fishes, *Gerres filamentosus*, *Gazza minuta*, *Nemipterus hexodon*, *Pelates quadrilineatus*, *Therapon jarbua* and *T. theraps*. Moreover, *Microcotyle* sp. 4 was found in three species of fish of two genera in the same family.

The prevalence of polyopisthocotylean parasites in *Caranx armatus* and *Tylosurus annulata* was the highest at 100%. The mean intensity of *Pricea multae* in *Scomberomorus guttatus* was the highest, followed by *Pseudothoracocotyla ovalis* in *S. guttatus* and *Mazocraeoides* sp.2 in *Anodontostoma chacunda*, 5.6, 5.33 and 4, respectively. All marine fish samples were infected with a low number of parasites (mean intensity of 1.00-5.60), which was insufficient to cause any mortality.

Microcotylidae are encountered very widely on the Perciformes (Bychowsky, 1961). In this study, four species of family Microcotylidae were found only in Perciform fishes. *Pseudanthocotyloides* sp. (family Mazocraeidae) was found in *Stolephorus* sp. (order Clupeiformes). This result was similar to the report of Bychowsky (1961) which found Mazocraeidae in Clupeiformes. These data showed host-specificity of *Pseudanthocotyloides* at the order level.

The gills of Spanish mackerel (family Scombridae, *Scomberomorus* spp.) are known

to be infected with representatives of two families of polyopisthocotyleans that belong to the suborders Gastrocotylinea, Gotocotylidae and Thoracocotylidae (Hayward and Rohde, 1999). In this study, *Pseudothoracocotyla ovalis* (family Thoracocotylidae) was found on *S. guttatus*. In India and other countries from the Indo-west Pacific, *Pseudothoracocotyla ovalis* was found in *S. guttatus* and seven species of *Scomberomorus* spp. (Hayward and Rohde, 1999). *Pricea multae* has been recorded from seven species of *Scomberomorus* from the Indo-west Pacific, from off eastern South Africa north to the Persian Gulf and as far east as Fiji (Rohde and Hayward, 1999). These data showed host-specificity at the genus level of these polyopisthocotyleans.

Allencotyla sp., *Aspinatrium* sp., *Diclidophoropsis* sp., *Leuresthicola* sp., *Mazocraeoides* spp., *Oligapta* sp., *Pricea multae*, *Pseudothoracocotyla ovalis* and *Vallisia* sp. were regarded as having been reported in Thailand for the first time (Figure 3).

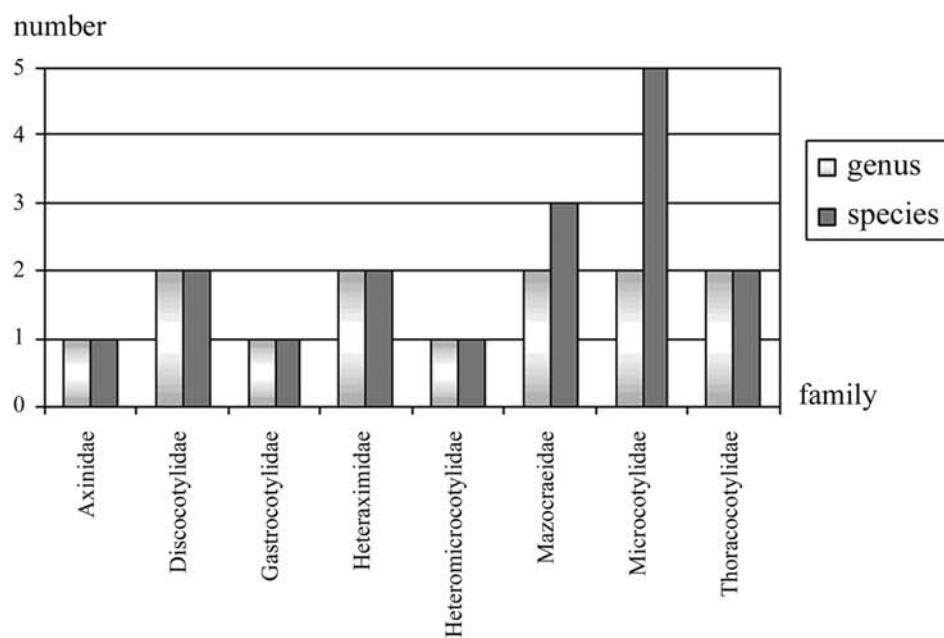


Figure 1 The number of families, genus and species of polyopisthocotylean found in some marine fishes in the Gulf of Thailand.

Table 1 Prevalence and mean intensity of polyopisthocotyleans in marine fishes from the Gulf of Thailand, Chonburi province.

order	fish		no. of fish	parasite		prevalence	mean intensity
	family	species		species	family		
Orectolobiformes	Hemiscylliidae	<i>Chiloscyllium punctatum</i>	60	-	-	-	-
Anguilliformes	Muraenesocidae	<i>Muraenesox</i> sp.	60	-	-	-	-
	Ophichthidae	<i>Ophichthys</i> sp.	12	-	-	-	-
Clupeiformes	Clupeidae	<i>Dussumieri hasseltii</i>	45	-	-	-	-
	Engraulidae	<i>Stolephorus</i> sp.	2	<i>Mazocraeoides</i> sp.1	Mazocraeidae	50.00	1.00
Cypriniformes	Cyprinidae	<i>Hilsa kanaguria</i>	20	-	-	-	-
		<i>Anodontostoma chacunda</i>	9	<i>Mazocraeoides</i> sp.2	Mazocraeidae	11.11	4.00
Siluriformes	Plotosidae	<i>Plotosus anguillaris</i>	40	-	-	-	-
		<i>Plotosus canius</i>	16	-	-	-	-
	Ariidae	<i>Arius</i> sp.	20	-	-	-	-
Aulopiformes	Synodontidae	<i>Saurida micropectoralis</i>	60	-	-	-	-
Batrachoidiformes	Batrachoididae	<i>Batrachus grunniens</i>	2	-	-	-	-
Mugiliformes	Mugilidae	<i>Liza dussumieri</i>	8	-	-	-	-
		<i>Liza vaigiensis</i>	4	-	-	-	-
		<i>Valamugil buchanani</i>	12	-	-	-	-
Beloniformes	Hemirhamphidae	<i>Hyporhamphus gaimardi</i>	40	<i>Axine</i> sp.	Axinidae	44.00	2.50
				<i>Oligapta</i> sp.	Discocotylidae	40.00	3.00

Table 1 Prevalence and mean intensity of polyopisthocotyleans in marine fishes from the Gulf of Thailand, Chonburi province (continued).

order	family	fish		no. of	parasite	prevalence	mean
		species	fish				
	Belonidae	<i>Tylosurus annulata</i>	2	<i>Leuresthecola</i> sp.	Heteraxinidae	100.00	1.00
Beryciformes	Holocentridae	<i>Holocentrus rubrum</i>	5	-	-	-	-
Scorpaeniformes	Platycephalidae	<i>Platycephalus indicus</i>	30	-	-	-	-
Perciformes	Latidae	<i>Lates calcarifer</i>	40	-	-	-	-
		<i>Psammoperca waigiensis</i>	1	-	-	-	-
	Serranidae	<i>Epinephelus areolatus</i>	30	-	-	-	-
		<i>Epinephelus tauvina</i>	25	-	-	-	-
		<i>Epinephelus faveatus</i>	5	-	-	-	-
	Priacanthidae	<i>Priacanthus tayenus</i>	34	-	-	-	-
	Sillaginidae	<i>Sillago sihama</i>	30	-	-	-	-
		<i>Sillago maculata</i>	20	-	-	-	-
	Rachycentridae	<i>Rachycentron canadum</i>	10	-	-	-	-
	Carangidae	<i>Selaroides leptolepis</i>	15	-	-	-	-
		<i>Caranx malam</i>	45	-	-	-	-
		<i>Caranx hippos</i>	45	-	-	-	-
		<i>Caranx armatus</i>	1	<i>Allencotyla</i> sp.	Heteraxinidae	100.00	3.00
				<i>Heteromicrocotyla</i> sp.	Heteromicrocotylidae	100.00	1.00

Table 1 Prevalence and mean intensity of polyopisthocotyleans in marine fishes from the Gulf of Thailand, Chonburi province (continued).

order	fish		parasite		prevalence	mean intensity	
	family	species	fish	species	family		
		<i>Chorinemus lysan</i>	6	<i>Vallisia</i> sp.	Discocotylidae	50.00	1.50
		<i>Seriolina nigrofasciata</i>	20	-	-	-	-
		<i>Pampus argenteus</i>	15	Unidentified Polyopisthocotylean	-	10.00	1.00
		<i>Parastromateus niger</i>	15	-	-	-	-
	Leiognathidae	<i>Gazza minuta</i>	25	<i>Microcotyle</i> sp. 1	Microcotylidae	2.94	1.00
		<i>Leiognathus</i> sp.	60	-	-	-	-
	Lutjanidae	<i>Lutjanus vitta</i>	20	-	-	-	-
		<i>Lutjanus johni</i>	2	-	-	-	-
	Gerreidae	<i>Gerres filamentosus</i>	19	<i>Microcotyle</i> sp. 2	Microcotylidae	10.53	3.50
		<i>Gerres oyena</i>	20	-	-	-	-
	Haemulidae	<i>Plectorhynchus pictus</i>	4	-	-	-	-
		<i>Gaterin diagrammus</i>	2	-	-	-	-
		<i>Pomadasys maculatus</i>	2	-	-	-	-
	Nemipteridae	<i>Nemipterus furcosus</i>	14	-	-	-	-
		<i>Nemipterus hexodon</i>	250	<i>Microcotyle</i> sp. 3	Microcotylidae	3.80	2.00
		<i>Scolopsis dubiosus</i>	25	-	-	-	-
	Polynemidae	<i>Eleutheronema tetracanthum</i>	10	-	-	-	-

Table 1 Prevalence and mean intensity of polyopisthocotyleans in marine fishes from the Gulf of Thailand, Chonburi province (continued).

order	family	fish	no. of		parasite	prevalence	mean
			species	fish			
Perciformes	Sciaenidae	<i>Johnius soldado</i>	20	-	-	-	-
		<i>Otolithes ruber</i>	20	-	-	-	-
		<i>Johnius duosumieri</i>	23	<i>Diclidophoropsis</i> sp.	<i>Mazocraeidae</i>	8.70	1.50
Sparidae		<i>Sparus berda</i>	1	-	-	-	-
		<i>Parupeneus</i> sp.	6	-	-	-	-
Mullidae		<i>Platax orbicularis</i>	1	-	-	-	-
		<i>Platax teira</i>	1	-	-	-	-
		<i>Drepane punctata</i>	45	-	-	-	-
Drepaneidae		<i>Parachaetodon ocellatus</i>	2	-	-	-	-
		<i>Therapon jarbua</i>	65	<i>Microcotyle</i> sp. 4	<i>Microcotylidae</i>	24.56	1.93
Terapontidae		<i>Therapon theraps</i>	20	<i>Microcotyle</i> sp. 4	<i>Microcotylidae</i>	42.86	1.50
		<i>Pelates quadrilineatus</i>	15	<i>Microcotyle</i> sp. 4	<i>Microcotylidae</i>	33.33	1.75
Gobiidae		<i>Trypauchen vagina</i>	20	-	-	-	-
		<i>Unidentified</i> sp.1	1	-	-	-	-
Siganidae		<i>Scatophagus argus</i>	70	-	-	-	-
		<i>Siganus javus</i>	25	-	-	-	-
		<i>Siganus canaliculatus</i>	25	-	-	-	-

Table 1 Prevalence and mean intensity of polyopisthocotyleans in marine fishes from the Gulf of Thailand, Chonburi province (continued).

fish		no. of		parasite		prevalence	mean
order	family	species	fish	species	family	intensity	intensity
	Sphyraenidae	<i>Sphyraena obsoletus</i>	12	<i>Aspinatrium</i> sp.	Microcotylidae	40.00	2.00
	Trichiuridae	<i>Trichiurus lepturus</i>	10	-	-	-	-
	Scombridae	<i>Rastrelliger neglectus</i>	20	-	-	-	-
		<i>Rastrelliger kanagurta</i>	30	-	-	-	-
		<i>Scomberomorus guttatus</i>	15	<i>Gotocotyla</i> sp.	Gastrocotylidae	33.33	2.50
				<i>Pricea multae</i>	Thoracocotylidae	33.33	5.60
				<i>Pseudothoracocotyla ovalis</i>	Thoracocotylidae	40.00	5.33
				<i>Euthynnis affinis</i>	-	-	-
Pleuronectiformes	Psettodidae	<i>Psettodes erumei</i>	34	-	-	-	-
	Soleidae	<i>Syngnathus aculeatus</i>	3	-	-	-	-
	Cynoglossidae	<i>Cynoglossus bilineatus</i>	30	-	-	-	-
Tetraodontiformes	Monacanthidae	<i>Monacanthus chinensis</i>	40	-	-	-	-
	Tetraodontidae	<i>Lagocephalus spadiceus</i>	1	-	-	-	-

CONCLUSION

Seventy-seven species (1,820 samples) of marine fishes from the Gulf of Thailand were investigated and 16 species (86 samples) or 20.78% (4.73% of samples) were found to be infested with polyopisthocotylean parasites. Seventeen species of polyopisthocotylean parasites were found in this study and some species were specific to their hosts.

ACKNOWLEDGEMENTS

This research was supported by Kasetsart University Research and Development Institute. I would like to thank Assoc. Prof. Prapisiri Sirikanchana, Assoc. Prof. Dr. Chalor Limsuwan and Assist. Prof. Dr. Niti Chuchird for their generous assistance.

LITERATURE CITED

Buchmann, K. and J. Bresciani. 2006. Monogenea (Phylum Platyhelminthes), pp. 297-344. In Woo, P.T.K., ed. *Fish Diseases and Disorders Vol 1: Protozoan and Metazoan Infections*. 2nd edition. CAB international, London.

Buchman, K. and T. Lindenstrom. 2002. Interaction between monogenean parasites and their fish host. *Int. J. Parasitol.* 32:309-319.

Bychowsky, B.E. 1961. **Monogenetic Trematodes, their systematics and phylogeny**. American Institute of biological sciences, Washington D.C.

Collette, B.B. and C.E. Nauen. 1983. **FAO Species Catalogue Vol. 2. Scombrids of the World**. O Fisheries Synopsis No. 125, Volume 2. FAO, Rome.

Department of fisheries. 1964. **Marine fishes of Thailand**. Bangkok. (in Thai)

Halton, D.W. 1974. Hemoglobin absorption in the gut of monogenetic trematode *Diclidophora merlangi*. *J. Parasitol.* 60: 59-66.

Hayward, C.J. and K. Rohde. 1999. Revision of the monogenean subfamily Thoracocotylinae Price, 1936 (Polyopisthocotylea: Thoracocotylidae), with the description of a new species of the genus *Pseudothoracocotyla Yamaguti*, 1963. *Syst. Parasitol.* 44: 157-169.

Margolis L., G. Esch, J.C. Holmes, A.M. Kuris and G.A. Schad. 1982. The use of ecological terms in parasitology. *J. Parasitol.* 68: 131-133.

McKay, R.J. 1992. **FAO Species Catalogue Vol. 14. Sillaginid Fishes of The World**. FAO Fisheries Synopsis No. 125, Volume 14. FAO, Rome.

McMahon, J.W. 1963. Monogenetic Trematodes from Some Chesapeake Bay Fishes. Part I: The Superfamilies Capsaloidea Price, 1936 and Diclidophoroidea Price, 1936. *Chesapeake Science* 4(4) : 151-160.

Nakamura, I. and N.V. Parin. 1993. **FAO Species Catalogue Vol. 15. Snake Mackerels and Utlassfishes of the World**. FAO Fisheries Synopsis No.125, Volume 15. FAO, Rome.

Nelson, J.S. 2006. **Fishes of the world**. 4th ed. John Wiley & Son, Inc., New Jersey.

Rainboth, W.J. 1996. **Fishes of the Cambodian Mekong**. FAO species identification field guide for fishery proposes. FAO, Rome.

Rohde, K. 1982. **Ecology of Marine Parasites**. University of Queensland Press, St Lucia.

Rohde, K. and C.J. Hayward. 1999. Revision of the monogenean subfamily Priceinae Chauhan, 1953 (Polyopisthocotylea: Thoracocotylidae). *Syst. Parasitol.* 44: 171-182.

Russell, B.C. 1990. **FAO Species Catalogue Vol. 12. Nemipterid Fishes of the World**. FAO Fisheries Synopsis No. 125, Volume 12. FAO, Rome.

Sanz, F. 1992. Mortality of cultured seabream (*Sparus aurata*) caused by an infection with a trematode of the genus *Microcotyle*. **Bulletin of the European Association of Fish Pathologists** 12(6): 186–188.

Schell, S.C. 1970. **How to know the trematodes**. WM. C. Brown company publishers, Iowa.

Sirikanchana, P. 2003. **Parasites of Aquatic Animals**. Sky word Advertising Ltd., Bangkok. (in Thai).

Szekely, C. and K. Molnar. 1990. Treatment of *Ancylodiscoides vistulensis* monogenean infestations of the European catfish (*Silurus glanis*). **Bulletin of the European Association of Fish Pathologists** 10: 74-77.

Yamaguti, S. 1963. **Systema Helminthum**. Vol. IV. Monogenea and Aspidocotylea. Interscience publishers, A Division of John Wiley & Sons, New York.

Yamamoto, K., S. Takagi and S. Matsuoka. 1984. Mass mortality of the Japanese anchovy (*Engraulis japonica*) caused by a gill monogenean *Pseudanthocotyloides* sp. (Mazocraeidae) in the sea of Iyo ('Iyonada'), Ehime prefecture. **Fish Pathol.** 19: 119-123.