

Available online at www.ptat.thaigov.net

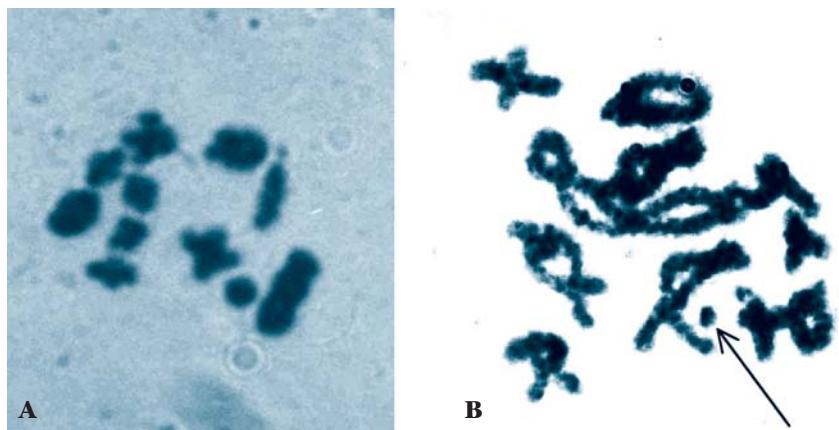
Chromosomes and Chromosome Breakage in the Lung Fluke, *Paragonimus heterotremus*

Chalit Komalamisra

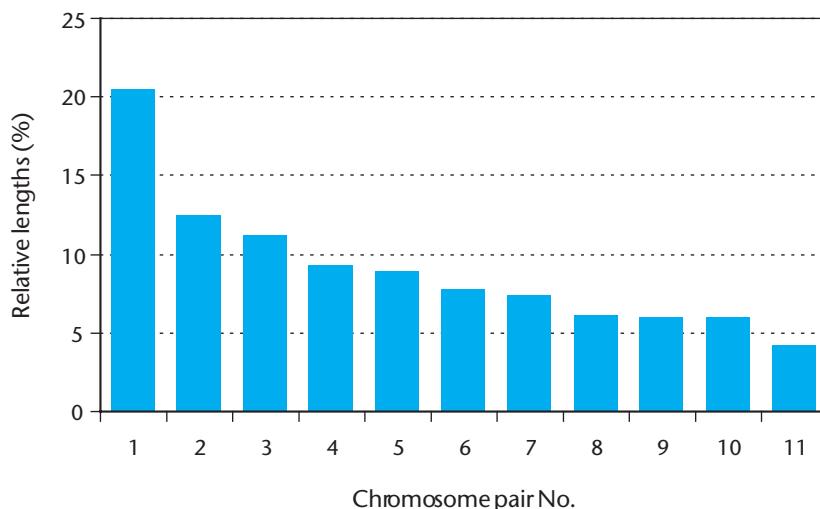
Department of Helminthology, Faculty of Tropical Medicine, Mahidol University,
420/6 Ratchawithi Road, Bangkok 10400, Thailand

Abstract

The chromosomes of the lung fluke, *Paragonimus heterotremus*, were studied by air-drying technique. The results showed the chromosome numbers were $2n = 22$ and $n = 11$, which consisted of one pair of large metacentric, four pairs of medium subtelocentric, three small metacentric or submetacentric, and three small submetacentric or subtelocentric, whereas the relative lengths of the chromosomes were 20.5 ± 0.4 , 12.6 ± 0.2 , 11.2 ± 0.2 , 9.3 ± 0.2 , 8.9 ± 0.2 , 7.8 ± 0.2 , 7.4 ± 0.1 , 6.0 ± 0.1 , 6.0 ± 0.1 , 6.0 ± 0.1 and $4.2 \pm 0.0\%$, respectively. The results also revealed chromosome breakage on the small chromosome (No. 8).


Keyword: lung fluke, *Paragonimus heterotremus*, chromosomes, chromosome breakage

The lung fluke, *Paragonimus*, is a harmful parasite causing paragonimiasis in humans and animals, mainly in Asia, West Africa, and South and Central America. Over forty species have been described, and more than ten species have been reported to infect humans. In Thailand, six species of *Paragonimus* have been reported in a variety of mammalian hosts: *P. siamensis*, *P. bangkokensis*, *P. harinasutai*, *P. macrochis*, *P. westermani* and *P. heterotremus* [1]. Among these, *P. westermani* and *P. heterotremus* are infective to humans. Only *P. heterotremus* has been proven to be the main cause of human paragonimiasis in this country [2-5]. Cytological studies of lung flukes have been conducted and reported extensively for various species of parasites, but only a few papers have dealt with Thai *Paragonimus* chromosomes, which have been described by Terasaki in 1989 for *P. heterotremus*, and Komalamisra in 2000 for *P. siamensis* [6-7]. Although the chromosome of *P. heterotremus* has been preliminarily explored, there is still a need for more information. This report aimed to investigate and clarify the chromosomes


of Thai *P. heterotremus*.

Metacercariae of *P. heterotremus* were obtained from waterfall crabs, *Larnaudia beasekoma* Bott, 1970, collected from Pakphli District, Nakhon Nayok Province. After oral inoculation of metacercariae into cats, 60 days later, adult flukes were recovered from the lungs of the cats. The chromosomes were prepared from the gonadal tissues of the flukes according to the air-drying method of Terasaki and stained in 5% Giemsa solution for 10 minutes [8]. Finally, all the prepared slides were used for cytological examination.

Mainly, the chromosome numbers found in the genus *Paragonimus* were $2n = 22$, $n = 11$, except those of *P. pulmonalis* ($3n = 33$) and some strains of *P. westermani* ($3n = 33$, $4n = 44$), which were found in China and Japan [2, 8-14]. This report revealed the chromosome number of *P. heterotremus* to be $2n = 22$, $n = 11$, and could be divided into 3 groups (large, medium, and small) according to their sizes, which resembled other reported species. Based on the chromosome

Fig 1 **A. Chromosomes of *Paragonimus heterotremus* ($n = 11$, $2n = 22$).**
B. Small-chromosome fragment in the diplotene stage (arrow).

Fig 2 **Bar chart showing relative length of *Paragonimus heterotremus* chromosomes.**

nomenclature recommended by Levan [15], it consisted of one pair of large metacentric, four pairs of medium subtelocentric, three small metacentric or submetacentric, and three small submetacentric or subtelocentric [Fig 1]. On the basis of 35 metaphase figures, the length of each chromosome was measured by ImageJ 1.34s (<http://rsb.info.nih.gov/ij/>), and then the percentage relative length of each chromosome was calculated [relative length (%) = (length of each chromosome/total length of all

chromosomes) x 100], resulting in 20.5 ± 0.4 , 12.6 ± 0.2 , 11.2 ± 0.2 , 9.3 ± 0.2 , 8.9 ± 0.2 , 7.8 ± 0.2 , 7.4 ± 0.1 , 6.0 ± 0.1 , 6.0 ± 0.1 , 6.0 ± 0.1 and $4.2 \pm 0.0\%$, respectively; a bar chart was constructed and is shown in Fig 2. This report also revealed chromosome breakage on the small chromosome (No. 8), of which a small chromosome fragment was seen and recognized in the diplotene stage of some cell plates [Fig 1]. A chromosome deletion may occur when the chromosome breaks and a piece is lost. This, of

course, involves loss of genetic information and results in what could be considered "partial monosomy" for that chromosome. Chromosomes are the information manuals of cells. Genes are arranged on chromosomes in a linear fashion, like beads arranged on a string. Genes monitor cells how to make proteins, which perform many vital functions in the body. When chromosomes break, genes are disrupted and do not function correctly. This leads to produce abnormal proteins, resulting in various health problems. For instance, in parasitic diseases, Corcoran *et al* showed that the structural genes for *Plasmodium falciparum* antigen could be lost due to chromosome deletion [16]. Alano *et al* revealed that *Plasmodium falciparum* carrying a subtelomERICALLY deleted chromosome 9 could not form even the earliest form of gametocyte and be detectable with antibodies against gametocyte-specific antigen [17]. Additional information concerning chromosome aberrations of parasites has been reported [18-21]. Although chromosome healing may occur spontaneously when a chromosome is accidentally broken, some problems related to paragonimiasis (*P. heterotremus*) may involve chromosome breakage or partial chromosome loss by the parasite.

References

- Miyazaki I. Lung flukes in the world: morphology and life history. A Symposium on Epidemiology of Parasitic Diseases; 1974; Tokyo, Japan. p.101-35.
- Miyazaki I, Vajrasthira S. Occurrence of the lung fluke *Paragonimus heterotremus* Chen *et al*, 1964, in Thailand. *J Parasitol* 1967;53:207.
- Miyazaki I, Harinasuta T. The first case of human paragonimiasis caused by *Paragonimus heterotremus* Chen *et al*, 1964. *Ann Trop Med Parasitol* 1966;60:509-14.
- Vajrasthira S, Harinasuta C, Maipoom C. Study on helminthic infections in Thailand. 2. The incidence of paragonimiasis in the first recognized endemic area. *Jpn J Exp Med* 1959;29:159-66.
- Vanijanonta S, Radomyos P, Bunnag D, Harinasuta T. Pulmonary paragonimiasis with expectoration of worms: a case report. *Southeast Asian J Trop Med Public Health* 1981;2:104-6.
- Terasaki K, Sugiyama H, Ketudat P. Chromosomes of *Paragonimus heterotremus* in Thailand. In: Kawashima K, editor. *Paragonimus in Asia: biology, genetic variation and speciation*. Fukuoka: School of Health Sciences, Kyushu University; 1989. p. 96-8.
- Komalamisra C. The karyotype of the lung fluke, *Paragonimus siamensis*. *Southeast Asian J Trop Med Public Health* 2000;31 Suppl 1:31-4.
- Terasaki K. Studies on chromosomes of the lung flukes in Japan. *Jpn J Parasitol* 1977;26: 222-9.
- Ho LY, Zhong HI, Gao PZ, Li HH, Xu ZB. Preliminary studies on chromosomes of nine species and subspecies of lung fluke in China. *China Med J* 1982;9:404-8.
- Li S, Zheng Z. Karyotype analysis of the lung fluke, *Paragonimus skrjabini* Chen. *Acta Zool Sinica* 1983;29:310-8.
- Sakaguchi Y, Tada I. A comparative karyotype study of lung flukes, *Paragonimus ohrai* and *P. miyazakii*. *Jpn J Parasitol* 1976;25:5-7.
- Terasaki K. Chromosome analysis on South American lung fluke, *Paragonimus peruvianus*. *Jpn J Parasitol* 1978;27:51-5.
- Terasaki K. Chromosome studies on the karyotypes of *Paragonimus westermani* (s. str.) and *P. pulmonalis*. *Jpn J Parasitol* 1980;29:239-43.
- Terasaki K, Habe S, Ho L, Jian H, Agatsuma T, Shibahara T, *et al*. Tetraploids of the lung fluke *Paragonimus westermani* found in China. *Parasitol Res* 1995;81:627-30.
- Levan A, Fredga K, Sandberg A. Nomenclature for centrometric position on chromosomes. *Hereditas* 1964;52:201-20.
- Corcoran LM, Forsyth KP, Bianco AE, Brown GV, Kemp DJ. Chromosome size polymorphisms in *Plasmodium falciparum* can involve deletions and are frequent in natural parasite populations. *Cell* 1986;44:87-95.
- Alano P, Roca L, Smith D, Read D, Carter R, Day K. *Plasmodium falciparum*: parasites defective in early stages of gametocytogenesis. *Exp Parasitol* 1995;81:227-35.
- McKim KS, Rose AM. Spontaneous duplication

loss and breakage in *Caenorhabditis elegans*. *Genome* 1994;37:595-606.

19. Ilyinskikh EN, Lepyehin AV, Logvinov SV, Ilyinskikh NN. Estimation of the mutagenic potential of the trematode *Opisthorchis felineus* in experimentally infected guinea pigs. *Parasitol Res* 1998;84:570-2.

20. Bachmann-Waldmann C, Jentsch S, Tobler H, Muller F. Chromatin diminution leads to rapid evolutionary changes in the organization of the germ line genomes of the parasitic nematodes *Ascaris suum* and *Parascaris univalens*. *Mol Biochem Parasitol* 2004;34:53-64.

21. Blaszkowska J, Bratkowska W, Lopaczynska D, Strozynski H, Ferenc T. Chromosome aberrations, sister chromatid exchanges (SCE) and cell division kinetics in human lymphocytes exposed *in vitro* to purified trypsin inhibitor from *Ascaris*. *J Appl Genet* 2004;45:265-74.