

Available online at www.ptat.thaigov.net

Diversity of *Blastocystis* Subtypes in Humans

Supaluk Popruk¹, Ai-rada Pintong¹, Prayong Radomyos²

¹Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Bangkok, 10400, Thailand

²Faculty of Medicine, Mahasarakham University, Maha Sarakham, 44000, Thailand

Abstract

Blastocystis is a widespread parasite which is highly prevalent in humans and many animal hosts in developing countries. It is transmitted mainly by a fecal-oral route. Blastocystis infections are more common in low-income communities, crowded conditions, and places with poor hygiene and sanitation. Currently, 13 or more subtypes (STs) have been identified in humans and animals based on characterization of the small-subunit ribosomal RNA (SSU rRNA) gene. Nine of these subtypes, ST1-ST9, have been detected in humans, with ST1-ST4 being most common. Several studies have revealed that some subtypes of Blastocystis isolated from humans can be observed in animals as well, suggesting that animal-to human or zoonotic transmission of Blastocystis can occur. Differences in subtype distribution of Blastocystis spp. depends on different reservoir hosts, geographical areas, and sources of infection, however, ST3 is the predominant subtype distributed worldwide. Most people with Blastocystis infection are carriers, and the clinical manifestations of symptomatic blastocystosis include gastrointestinal complaints, anorexia, joint pain, skin rash and diarrhea. The pathogenicity of this organism remains unclear and further studies are required for better understanding.

Keywords: *Blastocystis*, humans, subtypes, fecal-oral route

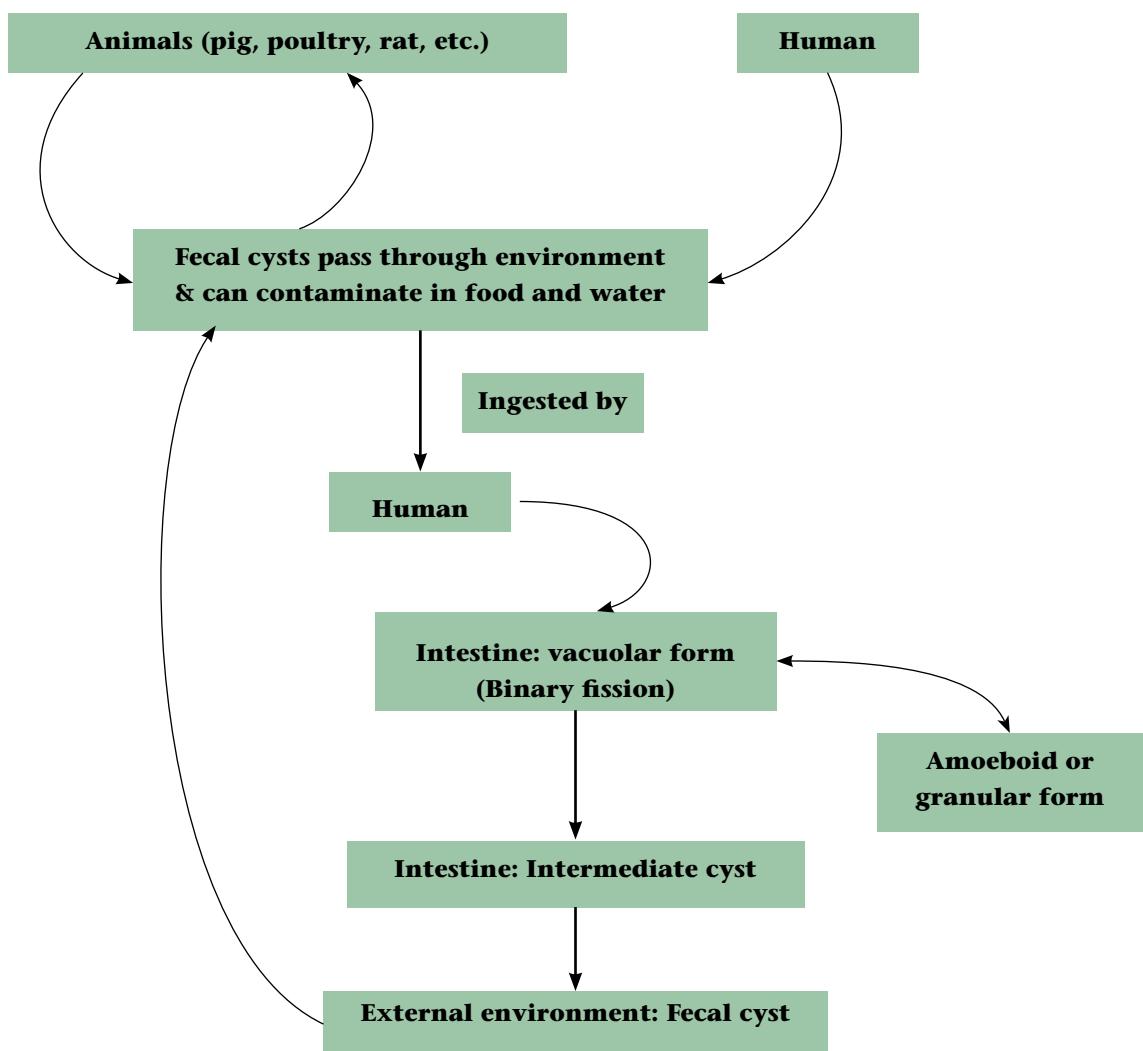
Introduction

Blastocystis is an enteric protozoan parasite commonly found in humans and a wide range of animals including pigs, cattle, poultry, and insects. It is a unicellular and ubiquitous intestinal parasite and one of the most common protozoa found in stool samples [1-3]. *Blastocystis* was first described in intestinal tracts of humans in 1912 and was named *Blastocystis hominis*, but the name was later changed to *Blastocystis* spp. due to an

indistinguishable difference between those found in humans and in other animals. It belongs to the phylum Stramenopila, a group of unicellular and multicellular eukaryotes, such as water mold, brown algae, and slime nets [4]. The genetic diversity of this parasite population is determined by small-subunit ribosomal RNA (SSU rRNA) gene analysis, showing 13 subtypes (STs) [5]. *Blastocystis* is globally distributed, especially in developing countries [6,7]. In Thailand, the prevalence of parasitic infections has been continuously studied, including *Blastocystis* which has prevalence as high as 45% [8-11]. The parasite inhabits the gastrointestinal tract of hosts and can trigger clinical manifestations such as gastrointestinal complaints, anorexia, joint pain, skin rash and diarrhea [12-14].

*Corresponding author:

Dr. Supaluk Popruk,
Phone: +66 (0) 23549100-4
Fax: +66 (0) 2643 5601
email supaluk.pop@mahidol.ac.th


Morphology

Blastocystis is an organism with various morphological forms including vacuolar, granular, amoeboid, cyst, multivacuolar and avacuolar forms. All forms can be found in stool samples [7,15-20].

- Vacuolar form: has a central vacuole which occupies 70-90% of the whole cell volume. The size varies from 2-200 μm and contains 1-4 nuclei in each cell.
- Granular form: contains granules within the central vacuole. The size varies from 6.5-8 μm , and also contains 1-4 nuclei in each cell.
- Multivacuolar form: is rarely seen in stool

and the size varies from 5-8 μm . Vacuoles can be present or absent in this form. Each cell contains 1-2 nuclei.

- Avacuolar form: also rarely seen in stool. It has no vacuole and the size is approximately 5 μm . This form is also found in the intestine.
- Amoeboid form: this form is rarely reported. Its size varies from 3-8 μm . It has a central vacuole and contains 1-2 nuclei. This form is associated with pathogenicity.
- Cyst form: this form is rarely found in culture. Its size varies from 3-10 μm . It has no central vacuole and can contain 1-4 nuclei. This form is infectious and can survive outside the host

Fig1 The life cycle of *Blastocystis* spp. in humans and many animal hosts

for more than 1 or 2 months in water at 25 °C or 4 °C, respectively.

Life Cycle and Transmission

The life cycle of *Blastocystis* is still not completely understood [2]. Hosts are infected from cysts via a fecal-oral route, such as consumption of contaminated food and water or from practicing poor hygiene. After ingestion, the cyst develops into a vacuolar form, which can asexually reproduce by binary fission, or may change to an amoeboid or granular form, or may form a cyst in the host's intestinal lumen. Information on the transitions from the amoeboid to vacuolar form, and from vacuolar to cyst form is however, not clearly understood [21]. A cyst which is formed in the intestine is surrounded by a thick fibrillar layer, which is subsequently expelled when passing to an external environment, as shown in Figure 1. The excreted cyst is resistant to environmental exposure, and can thus contaminate water or food, causing subsequent *Blastocystis* infection via fecal-oral route [22-24]. Transmission can occur from human to human, human to animal or animal to human.

Epidemiology

Blastocystis is a common parasite in the gastrointestinal tract of humans and its geographic distribution has been reported globally (Table 1). Its prevalence varies from country to country, as well as in different areas within the same country. Prevalence is higher in developing countries (30-50%), such as Brazil and Egypt, than in developed countries (1.5-10%), such as Singapore and Japan [25-27]. This may be due to poor hygiene, exposure to animals, or consumption of contaminated food and water in developing countries. In addition, the wide range of prevalence may be due to the difference in sensitivity of diagnostic techniques, such as molecular methods, culture and microscopy examination.

In Thailand, the prevalence of *Blastocystis* varies from 10-45% in different communities [9-11]. High prevalence has been observed in army bases, orphanages, and among migrant

workers from Myanmar. *Blastocystis* infections in orphanages for young children or in homes for girls in Bangkok may be due to direct person-to-person transmission [8]. Sexual activity is also another primary mode of transmission resulting in a high prevalence of enteric parasitic infections in male homosexuals. This includes the high prevalence of *Blastocystis* infection in Australian men who have sex with other men (MSM). There is a significant difference in detection of *Blastocystis* between MSM and non-MSM [28], and infection is continually increasing despite public health campaigns.

Subtypes

It is believed that different subtypes have different reservoir hosts, geographical distribution, and routes of transmission. Therefore, subtyping *Blastocystis* is important for epidemiological studies because it helps to identify potential sources and routes of transmission of a specific subtype in a particular area [43]. However, there is no information of *Blastocystis* subtypes in certain geographical areas, thereby limiting our knowledge of the distribution of *Blastocystis* subtypes. Table 2 shows the distribution of *Blastocystis* subtypes in different geographic regions. Based on gene analysis of small-subunit ribosomal RNA (SSU rRNA), at least 13 STs have been identified in mammalian and avian hosts. ST1-ST9 were found in human stool samples [44,45], with ST1-ST4 being the most common subtypes in humans. *Blastocystis* isolated from humans belong to the same subtypes seen in animals, suggesting that animals may act as reservoirs for *Blastocystis* and may be linked to zoonotic transmission [46-48].

ST1 is found in humans and several kinds of animals such as pigs, monkeys, cattle, birds, and rodents [46,49,50]. Some studies report that ST1 is related to zoonotic transmission from farm animals [2,51]. In Libya, ST1 was the predominant subtype and it was suggested that the Libyan population may be exposed to animal feces, which could be the source of *Blastocystis* infection. In Thailand, Leelayoova et al. (2008) found that ST1 was the most prevalent subtype, followed by ST2,

Table 1 The prevalence of *Blastocystis* infection in various geographical distributions.

Countries/ communities	Prevalence (%)	Methods
Brazil	41	Microscopy [29]
China, Shanghai district	1.9	STS primers ^a [30]
China, Eryuan county	18.4	STS primers [30]
China, Menghai county	32.6	STS primers [30]
Egypt	33	Culture [31]
France	3	Microscopy [32]
India, children in rural /urban areas	14.7/18	Microscopy [33]
Indonesia	60	Microscopy [34]
Nepal	26.1	STS primers [35]
Thailand, army base (Chonburi Province)	36.9	Culture [36]
Thailand, immunocompromised host	10.9	Microscopy [37]
Thailand, Myanmar migrant workers	41.5	Culture [38]
Thailand, orphanage (age less than 5 years)	17.3	Culture [8]
Thailand, orphanage (age 5-15 years)	10	Microscopy [39]
Thailand, orphanage (age 10-82 months)	45.5	Culture [11]
Thailand, primary school (age 7-13 years)	13.5	Culture [40]
UK (United Kingdom)	3.9	Culture [41]
USA (United State of American)	23	Microscopy [42]

^a polymerase chain reaction using sequence-tagged site primers

in schoolchildren due to water-born transmission [50]. Furthermore, Thathaisong et al. (2013) reported that ST1 was the most common subtype, followed by ST6 and ST2, due to person-to-person transmission in a home for Thai girls [43].

ST2 is rare and has a detection rate of about 7% in Africa, Australia, and East Asia [52]. In Ireland, ST2 was the most frequently detected subtype in humans, followed by ST3 [53]. ST2 was also found in children and local rhesus monkeys in Kathmandu (Nepal), suggesting that the rhesus monkey was a possible source of *Blastocystis* spp. infection in that area [54]. This subtype can be isolated from primates and pigs [2].

ST3 is the most common subtype found in humans, and appears to have a cosmopolitan distribution as shown in Japan, Singapore, Egypt, Germany, Oregon USA and Turkey [55]. This subtype is also isolated from non-human primates (NHPs) and other mammals such as pigs, dogs, cattle, and rodents [56]. Jantermotor et al. (2013) reported that ST3 was predominant in asymptomatic and symptomatic patients admitted

to major hospitals in the northeastern part of Thailand [55]. However, the route of transmission could not be explained because patients came from different geographical areas.

ST4 is the second most common subtype in the UK and may be restricted to Europe and North America [52]. It is rarely detected in the Far East, South America and North Africa. It was noted that ST4 has been found in rodents as well as NHPs [56].

ST5 and ST9 are rarely found in human stool [57]. Surprisingly, ST6 and ST7 which are avian subtypes were isolated from Thais for the first time by Jantermotor et al. [55]. However, these subtypes are rarely reported in Asia. At present, there have not been any reports about ST10-ST13 isolated from humans.

Pathogenicity

Most people that are infected with *Blastocystis* show neither signs nor symptoms of infection, and it was previously believed that it was a non-pathogenic intestinal protozoa. However, several

Table 2 Distribution of *Blastocystis* subtypes in different geographic regions.

Country/region (no. of samples)	Predominant subtyping (%)	Methods
Bangladesh (26)	3 (92.3)	STS primers ^a [58]
China, Eryuan county (407)	2 (50.7)	STS primers [30]
China, Shanghai district (1,505)	3 (58.6)	STS primers [30]
Denmark (116)	4 (37.5)	Sequencing [3]
Egypt (20)	3 (61.9)	STS primers [45]
France (40)	3 (33.9)	Sequencing [59]
Germany (12)	3 (41.7)	STS primers [58]
Greece (45)	3 (60)	SSCP ^c [60]
Ireland (14)	2 (42.9)	Sequencing [61]
Italy (30)	3 (53.3)	Sequencing [62]
Japan (50)	3 (52)	STS primers [58]
Nepal (82)	3 (60)	STS primers [54]
Nepal (241)	4 (84.1)	STS primers [35]
Pakistan (157)	3 (53)	STS primers [58]
Singapore (276)	3 (77.8)	PCR-RFLP [63]
Spain (51)	4 (94.1)	PCR-RFLP [64]
Sweden (63)	3 (47.6)	Sequencing [65]
Thailand (675)	1 (77.9)	Sequencing [50]
Thailand (370)	1 (94.8)	Sequencing [43]
Thailand (562)	3 (57.1)	STS primers [55]
Turkey (66)	3 (68.2)	STS primers [66]

^a polymerase chain reaction using sequence-tagged site primers

^b polymerase chain reaction with restriction fragment length polymorphism

^c single strand conformational polymorphism

reports have revealed that its pathogenicity [67-69] depends on subtypes, intensity of infection, and host immunity. This parasite is believed to cause irritable bowel syndrome (IBS) in humans, as well as a wide variety of intestinal disorders including nausea, vomiting, abdominal pain, anorexia, flatulence, and acute or chronic diarrhea. *Blastocystis* is difficult to differentiate from other intestinal parasites because there are no specific signs and symptoms. Extraintestinal symptoms, including joint pain and skin rash have also been reported [12,13]. Non-specificity and the variety of symptoms of *Blastocystis* have led to a lack of understanding of its potential pathogenicity [14]. In addition, immunocompromised hosts are more susceptible to this organism than immunocompetent hosts [28,70]; *Blastocystis* infection is frequent in HIV/AIDS and cancer

patients with gastrointestinal symptoms [71].

Research has been conducted on rats, mice, and chickens in order to study the pathogenesis of different *Blastocystis* subtypes [72], however, these specimens may not be suitable because they are not typical hosts of some *Blastocystis* subtypes which cause disease in humans. Currently, studies of clinical relevance and *Blastocystis* subtypes are used to find relationships among them. The success of these studies depends on several factors such as the method for detection and type of study group (healthy with/without other diseases, symptomatic, etc.). Scanlan suggested that studies about the clinical relevance of different *Blastocystis* subtypes, their virulence, and the zoonotic potential within and between humans and animals can fill the gaps of incomplete knowledge about pathogenicity of *Blastocystis* [73].

Diagnosis

Microscopy

As described earlier in the morphologic section, *Blastocystis* spp. can be present in polymorphic forms and can vary in size from 2 μm to >200 μm . These variations make microscopic diagnosis detection difficult and inconsistent. The vacuolated form is the most common form found in feces, with an average size of 8-10 μm in diameter and round in shape. In normal saline fecal smear, a large central vacuole containing 1-4 nuclei with peripheral cytoplasm can be observed. When iodine solution is inside the central vacuole, the cytoplasm is a yellowish peripheral area with small peripheral nuclei. When *Blastocystis* is stained with trichrome, the central vacuole may be red and peripheral nuclei stained purple. However, this method has poor sensitivity and can present false-negative results, as shown by the underestimation of the real prevalence of *Blastocystis* in Turkey [74,75].

Culture

Direct cultivation of *Blastocystis* spp. from fecal samples was performed using Jones medium supplemented with 10% horse serum, incubated at 37 °C for 48 h [76]. The sedimentation was examined by light microscopy. Several reports have shown that culture is more sensitive than microscopic methods for the detection of *Blastocystis* parasites in stool samples [76-78]. The culture method is the gold standard for detection of this parasite, but is time consuming (2-3 days) and is not routinely done in many laboratories. In addition, results from the culture can be biased because the growth of one subtype of *Blastocystis* can overcome another subtype.

Polymerase chain reaction (PCR)

PCR detection of small-subunit ribosomal RNA (SSU rRNA) gene is a powerful tool for analyzing subtypes of *Blastocystis* from stool specimens [58], and is becoming more widely used for the detection of enteric parasites in both humans and animals [79]. The PCR protocol provides not only high sensitivity when compared

with microscopic examinations and the culture method, but also high specificity for the detection of the organism's DNA. The majority of the primer target, the SSU rRNA gene, contains highly variable regions that allow phylogenetic analysis of *Blastocystis*. In many countries, PCR with subtype-specific sequence-tagged-site primers (STS) method has been developed and used in several studies to detect genetic variations of *Blastocystis* [80,81].

Treatment and prevention

The pathogenic role of *Blastocystis* is still unclear as the parasite produces non-specific symptoms (asymptomatic to symptomatic), thereby making it difficult to use clinical manifestations for indicating their true cause. In symptomatic patients, metronidazole is the drug of choice for treatment; however, this infection may be self-limiting [82]. The majority of *Blastocystis* infection is transmitted by fecal-oral route; therefore, prevention should involve improved personal and community hygiene and sanitation conditions. In addition, health education and health promotion are important tools in parasitic prevention.

Conclusion

Blastocystis spp. is a common worldwide intestinal parasite. Its pathogenicity is still debatable and its pathogenesis remains unclear. Further investigations and research regarding the pathogenicity of this protozoan are essential to better understand blastocystosis. In addition, proper health education and increased sanitary conditions are recommended to reduce the prevalence of *Blastocystis* spp.

Acknowledgements

Thanks to Glad Rotaru and Lorna Hon for editing the English language of the manuscript.

References

1. Abe N, Nagoshi M, Takami K, Sawano Y, Yoshikawa H. A survey of *Blastocystis* sp. in livestock, pets and zoo animals in Japan. *Vet Parasitol*. 2002; 106: 203-12.

2. Tan KS. New insights on classification, identification, and clinical relevance of *Blastocystis* spp. *Clin Microbiol Rev.* 2008; 21: 639-65.
3. Stensvold CR, Nielsen HV, Mølbak K, Smith HV. Pursuing the clinical significance of *Blastocystis*-diagnostic limitations. *Trends Parasitol.* 2009; 25: 23-9.
4. Silberman JD, Sogin ML, Leipe DD, Clark CG. Human parasite finds taxonomic home. *Nature London.* 1996; 4: 380-98.
5. Santín M, Gómez-Muñoz MT, Solano-Aguilar G, Fayer R. Development of a new protocol to detect and subtype *Blastocystis* spp. from humans and animals. *Parasitol Res.* 2011; 109: 205-12.
6. Zuel-Fakkar NM, Abdel Hameed DM, Hassanint OM. Study of *Blastocystis hominis* isolates in urticaria: a case-control study. *Clin Exp Dermatol.* 2011; 36: 908-10.
7. Stenzel DJ, Boreham PF. *Blastocystis hominis* revisited. *Clin Microbiol Rev.* 1996; 9: 563-84.
8. Pipatsatitpong D, Rangsin R, Leelayoova S, Naaglor T, Mungthin M. Parasite Incidence and risk factors of *Blastocystis* infection in an orphanage in Bangkok, Thailand. *Parasit Vectors.* 2012; 14: 5-37. doi: 10.1186/1756-3305-5-37.
9. Taamasri P, Leelayoova S, Rangsin R, Naaglor T, Ketupanya A, Mungthin M. Prevalence of *Blastocystis hominis* carriage in Thai army personnel based in Chonburi, Thailand. *Mil Med.* 2002; 167: 643-6.
10. Mungthin M, Suwannasaeng R, Naaglor T, Areekul W, Leelayoova S. Asymptomatic intestinal microsporidiosis in Thai orphans and child-care workers. *Trans R Soc Trop Med Hyg.* 2001; 95: 304-6.
11. Saksirisampant W, Nuchprayoon S, Wiwanitkit V, Yenthakam S, Ampavasiri A. Intestinal parasitic infestations among children in an orphanage in Pathum Thani province. *J Med Assoc Thai.* 2003; 86: 263-70.
12. Pasqui AL, Savini E, Saletti M, Guzzo C, Puccetti L, Auteri A. Chronic urticaria and *Blastocystis hominis* infection: a case report. *Eur Rev Med Pharmacol Sci.* 2004; 8: 117-20.
13. Cassano N, Scoppio BM, Loviglio MC, Vena GA. Remission of delayed pressure urticaria after eradication of *Blastocystis hominis*. *Acta Derm Venereol.* 2005; 85: 357-8.
14. Jones MS, Whipp CM, Ganac RD, Hudson NR, Boroom K. Association of *Blastocystis* subtype 3 and 1 with patients from an Oregon community presenting with chronic gastrointestinal illness. *Parasitol Res.* 2009; 104:341-5.
15. MacPherson DW, MacQueen WM. Morphological diversity of *Blastocystis hominis* in sodium acetate-acetic acid-formalin-preserved stool samples stained with iron hematoxylin. *J Clin Microbiol.* 1994; 32: 267-8
16. Stenzel DJ, Boreham PF, McDougall R. Ultrastructure of *Blastocystis hominis* in human stool samples. *Int J Parasitol.* 1991; 21: 807-12.
17. Tan TC, Suresh KG. Predominance of amoeboid forms of *Blastocystis hominis* in isolates from symptomatic patients. *Parasitol Res.* 2006; 98:189-93.
18. Katsarou-Katsari A, Vassalos CM, Tzanetou K, Spanakos G, Papadopoulou C, Vakalis N. Acute urticaria associated with amoeboid forms of *Blastocystis* sp. subtype 3. *Acta Derm Venereol.* 2008; 88: 80-1. doi: 10.2340/00015555-0338.
19. Zaman V. The differential identification of *Blastocystis hominis* cysts. *Ann Trop Med Parasitol.* 1998; 92: 233-5.
20. Yoshikawa H, Yoshida K, Nakajima A, Yamanari K, Iwatani S, Kimata I. Fecal-oral transmission of the cyst form of *Blastocystis hominis* in rats. *Parasitol Res.* 2004; 94: 391-6.
21. Tan KS. *Blastocystis* in humans and animals: new insights using modern methodologies. *Vet Parasitol.* 2004; 126: 121-44.
22. Singh M, Suresh K, Ho LC, Ng GC, Yap EH. Elucidation of the life cycle of the intestinal protozoan *Blastocystis hominis*. *Parasitol Res.* 1995; 81: 446-50.
23. Moe KT, Singh M, Howe J, Ho LC, Tan SW, Chen XQ, et al. Experimental *Blastocystis hominis* infection in laboratory mice. *Parasitol Res.* 1997; 83:319-25.

24. Hotez P. The other intestinal protozoa: enteric infections caused by *Blastocystis hominis*, *Entamoeba coli*, and *Dientamoeba fragilis*. *Semin Pediatr Infect Dis*. 2000; 11: 178-81.

25. Horiki N, Maruyama M, Fujita Y, Yonekura T, Minato S, Keneda Y. Epidemiologic survey of *Blastocystis hominis* infection in Japan. *Am J Trop Med Hyg*. 1997; 56: 370-4.

26. Hirata T, Nakamura H, Kinjo N, Hokama A, Kinjo F, Yamane N, et al. Prevalence of *Blastocystis hominis* and *Strongyloides stercoralis* infection in Okinawa, Japan. *Parasitol Res*. 2007; 101: 1717-9.

27. Wong KH, Ng GC, Lin RT, Yoshikawa H, Taylor MB, Tan KS. Predominance of subtype 3 about *Blastocystis* isolates from a major hospital in Singapore. *Parasitol Res*. 2008; 102: 663-70.

28. Stark D, Fotedar R, van Hal S, Beebe N, Marriot D, Ellis JT, et al. Prevalence of enteric protozoa in human immunodeficiency virus (HIV)-positive and (HIV) negative men who have sex with men from Sydney, Australia. *Am J Trop Med Hyg*. 2007; 76: 549-52.

29. Aguiar JI, Goncalves AQ, Sodré FC, Pereira Sdos R, Bóia MN, de Lemos ER, et al. Intestinal protozoa and helminths among Terena Indians in the State of Mato Grosso do Sul: high prevalence of *Blastocystis hominis*. *Rev Soc Bras Med Trop*. 2007; 40: 631-4.

30. Li LH, Zhang XP, Lv S, Zhang L, Yoshikawa H, Wu Z, et al. Cross-sectional surveys and subtype classification of human *Blastocystis* isolates from four epidemiological settings in China. *Parasitol Res*. 2007; 102: 83-90.

31. Rayan HZ, Ismail OA, El Gayer EK. Prevalence and clinical features of *Dientamoeba fragilis* infections in patients suspected to have intestinal parasitic infection. *J Egypt Soc Parasitol*. 2007; 37: 599-608.

32. Pinel C, Réjasse C, Picot S, Brenier-Pinchart MP, Grillot R, Ambroise-Thomas P. *Blastocystis hominis*: epidemiological and clinical remarks from more than 3,500 stool examination. *Ann Bio Clin (Paris)*. 1999; 57: 601-4.

33. Rayan P, Verghese S, McDonnell PA. Geographical location and age affects the incidence of parasitic infestations in school children. *Indian J Pathol Microbiol*. 2010; 53: 498-502.

34. Pegelow K, Gross R, Pietrzik K, Lukito W, Richards AL, Fryauff DJ. Parasitological and nutritional situation of school children in the Sukaraja district, West Java, Indonesia. *Southeast Asian J Trop Med Public Health*. 1997; 28: 173-90.

35. Lee IL, Tan TC, Tan PC, Nanthiney DR, Biraj MK, Surendra KM, et al. Predominance of *Blastocystis* sp. subtype 4 in rural communities, Nepal. *Parasitol Res*. 2012; 110: 1553-62.

36. Leelayoova S, Rangsin R, Taamasri P, Naaglor T, Thatthaisong U, Mungthin M. Evidence of waterborne transmission of *Blastocystis hominis*. *Am J Trop Med Hyg*. 2004; 70: 658-62.

37. Viriyavejakul P, Nintasen R, Punsawad C, Chaisri U, Punpoowong B, Riganti M. High prevalence of *Microsporidium* infection in HIV-infected patients. *Southeast Asian J Trop Med Public Health*. 2009; 40: 223-8.

38. Nuchprayoon S, Sanprasert V, Kaewzaithim S, Saksirisampant W. Screening for intestinal parasitic infections among Myanmar migrant workers in Thai food industry: a high-risk transmission. *J Immigr Minor Health*. 2009; 11: 115-21.

39. Popruk S, Thima K, Udonsom R, Rattaprasert P, Sukthana Y. Does silent *Giardia* infection need any attention? *The Open Tropical Medicine Journal*. 2011; 4: 26-32.

40. Yaicharoen R, Ngrenngarmlert W, Wongjindanon N, SriPOCHANG S, Kiatfuengfoo R. Infection of *Blastocystis hominis* in primary schoolchildren from Nakhon Pathom province, Thailand. *Trop Biomed*. 2006; 23: 117-22.

41. Suresh K, Smith H. Comparison of methods for detecting for *Blastocystis hominis*. *Eur J Clin Microbiol Infect Dis*. 2004; 23: 509-11.

42. Amin OM. Seasonal prevalence of intestinal parasites in the United States during 2000. *Am J Trop Med Hyg*. 2002; 66: 799-803.

43. Thatthaisong U, Siripattanapipong S, Mungthin M, Pipatsatitpong D, Tan-ariya P, Naaglor T, et al. Identification of *Blastocystis* subtype

1 variants in the home for girls, Bangkok, Thailand. *Am J Trop Med Hyg.* 2013; 88: 352-8.

44. Stensvold CR, Arendrup MC, Jespersgaard C, Mølbak K, Nielsen HV. Detecting *Blastocystis* using parasitologic and DNA-based methods: a comparative study. *Diagn Microbiol Infect Dis.* 2007; 59: 303-7.

45. Souppart L, Moussa H, Cian A, Sanciu G, Poirier P, El Alaoui H, *et al.* Subtype analysis of *Blastocystis* isolates from symptomatic patients in Egypt. *Parasitol Res.* 2010; 106: 505-11.

46. Yoshikawa H, Abe N, Wu Z. PCR-based identification of zoonotic isolates of *Blastocystis* from mammals and birds. *Microbiology.* 2004; 150; 1147-51.

47. Abe N, Wu Z, Yoshikawa H. Molecular characterization of *Blastocystis* isolates from primates. *Vet Parasitol.* 2003; 113: 321-5.

48. Arisue N, Hashimoto T, Yoshikawa H. Sequence heterogeneity of the small subunit ribosomal RNA genes among *Blastocystis* isolates. *Parasitology.* 2003; 126: 1-9.

49. Thathaisong U, Worapong J, Mungthin M, Tan-ariya P, Viputtigul K, Sudatis A, *et al.* *Blastocystis* isolates from a pig and a horse are closely related to *Blastocystis hominis*. *J Clin Microbiol.* 2003; 41: 967-75.

50. Leelayoova S, Siripattanapipong S, Thathaisong U, Naaglor T, Taamasri P, Piyaraj P, *et al.* Drinking water: a possible source of *Blastocystis* spp. subtype 1 infection in schoolchildren of a rural community in central Thailand. *Am J Trop Med Hyg.* 2008; 79: 401-6.

51. Noël C, Dufernez F, Gerbod D, Edgcomb VP, Delgado-Viscogliosi P, Ho LC, *et al.* Molecular phylogenies of *Blastocystis* isolates from different hosts: implications for genetic diversity, identification of species, and zoonosis. *J Clin Microbiol.* 2005; 43: 348-55.

52. Alfellani MA, Stensvold CR, Vidal-Lapiedra A, Onuoha ES, Fagbenro-Beyioku AF, Clark CG. Variable geographic distribution of *Blastocystis* subtypes and its potential implications. *Acta Trop.* 2013; 126: 11-8. doi:10.1016/j.actatropica.2012.12.011.

53. Scanlan PD, Marchesi JR. Micro-eukaryotic diversity of the human distal gut microbiota: quantitative assessment using culture-dependent and -independent analysis of faeces. *ISME J.* 2008; 2: 1183-93.

54. Yoshikawa H, Wu Z, Pandey D, Pandey BD, Sherchand JB, Yanagi T, *et al.* Molecular characterization of *Blastocystis* isolates from children and rhesus monkeys in Kathmandu, Nepal. *Vet Parasitol.* 2009; 160: 295-300.

55. Jantermtor S, Pinlaor P, Sawadpanich K, Pinlaor S, Sangka A, Wilailuckana C, *et al.* Subtype identification of *Blastocystis* spp. isolated from patients in a major hospital in northeastern Thailand. *Parasitol Res.* 2013; 112: 1781-86.

56. Stensvold CR, Alfellani M, Clark CG. Levels of genetic diversity vary dramatically between *Blastocystis* subtypes. *Infect Genet Evol.* 2012; 12: 263-73.

57. Stensvold CR, Lewis HC, Hammerum AM, Porsbo LJ, Nielsen SS, Olsen KE, *et al.* *Blastocystis*: unravelling potential risk factors and clinical significance of a common but neglected parasite. *Epidemiol Infect.* 2009; 137: 1655-63.

58. Yoshikawa H, Wu Z, Kimata I, Iseki M, Ali IK, Hossain MB, *et al.* Polymerase chain reaction-based genotype classification among human *Blastocystis hominis* populations isolated from different countries. *Parasitol Res.* 2004; 92: 22-9.

59. Souppart L, Sanciu G, Cian A, Wawrzyniak I, Delbac F, Capron M, *et al.* Molecular epidemiology of human *Blastocystis* isolates in France. *Parasitol Res.* 2009; 105: 413-21.

60. Menounos PG, Spanakos G, Tegos N, Vassalos CM, Papadopoulou C, Yakalis NC. Direct detection of *Blastocystis* sp. in human faecal samples and subtype assignment using single strand conformational polymorphism and sequencing. *Mol Cell Probes.* 2008; 22: 24-9.

61. Scanlan PD and Marchesi JR. Micro-eukaryotic diversity of the human distal gut microbiota: quantitative assessment using culture dependent and -independent analysis of faeces. *ISME J.* 2008; 2: 1183-93.

62. Meloni D, Sanciu G, Poirier P, El Alaoui

H, Chabé M, Delhaes L, *et al.* Molecular subtyping of *Blastocystis* sp. isolates from symptomatic patients in Italy. *Parasitol Res.* 2011; 109: 613-19.

63. Wong KH, Ng GC, Lin RT, Yoshikawa H, Taylor MB, Tan KS. Predominance of subtype 3 about *Blastocystis* isolates from a major hospital in Singapore. *Parasitol Res.* 2008; 102: 663-70.

64. Domínguez-Márquez MV, Guna R, Muñoz C, Gómez-Muñoz MT, Borrás R. High prevalence of subtype 4 among isolates of *Blastocystis hominis* from symptomatic patients of a health district of Valencia (Spain). *Parasitol Res.* 2009; 105: 949-55.

65. Forsell J, Granlund M, Stensvold CR, Clark CG, Evengård B. Subtype analysis of *Blastocystis* isolates in Swedish patients. *Eur J Clin Microbiol Infect Dis.* 2012; 31: 1689-96.

66. Dogruman-AI F, Yoshikawa H, Kustimur S, Balaban N. PCR-based subtyping of *Blastocystis* isolates from symptomatic and asymptomatic individuals in a major hospital in Ankara, Turkey. *Parasitol Res.* 2009; 106: 263-8.

67. Dinleyici EC, Eren M, Dogan N, Reyhanioglu S, Yargic ZA, Vandenplas Y. Clinical efficacy of *Saccharomyces boulardii* or metronidazole in symptomatic children with *Blastocystis hominis* infection. *Parasitol Res.* 2011; 108: 541-5.

68. Idris NS, Dwipoerwantoro PG, Kurniawan A, Said M. Intestinal parasitic infection of immunocompromised children with diarrhea: clinical profile and therapeutic response. *J Infect Dev Ctries.* 2010; 4: 309-17.

69. Vogelberg C, Stensvold CR, Monecke S, Ditzel A, Stopsack K, Heinrich-Gräfe U, *et al.* *Blastocystis* sp. subtype 2 detection during recurrence of gastrointestinal and urticarial symptoms. *Parasitol Int.* 2010; 59: 469-71.

70. Hussein EM, Hussein AM, Eida MM, Atwa MM. Pathophysiological variability of different genotypes of human *Blastocystis hominis* Egyptian isolates in experimentally infected rats. *Parasitol Res.* 2008; 102: 853-60.

71. Tan TC, Ong SC, Suresh KG. Genetic variability of *Blastocystis* sp. isolated obtained from cancer and HIV/AIDS patients. *Parasitol Res.* 2009; 105: 1283-6.

72. Tan KS, Mirza H, Teo JD, Wu B, Macary PA. Current Views on the Clinical Relevance of *Blastocystis* spp. *Curr Infect Dis Rep.* 2010; 12: 28-35.

73. Scanlan PD. *Blastocystis*: past pitfalls and future perspectives. *Trends Parasitol.* 2012; 28: 327-34.

74. Aykan B, Caglar K, Kustimur S. Evaluation of the protozoa found in fecal samples using the trichrome staining method. *Turkiye Parazitol Derg.* 2005; 29: 34-8.

75. Celik T, Daldal N, Karaman U, Aycan OM, Atambay M. Incidence of intestinal parasites among primary school children in Malatya. *Turkiye Parazitol Derg.* 2006; 30: 35-8.

76. Termmathurapoj S, Leelayoova S, Aimpun P, Thatthaisong U, Nimmanon T, Taamasri P, *et al.* The usefulness of short-term in vitro cultivation for the detection and molecular study of *Blastocystis hominis* in stool specimens. *Parasitol Res.* 2004; 9: 445-7.

77. Leelayoova S, Taamasri P, Rangsin R, Naaglor T, Thatthaisong U, Munghin M. In-vitro cultivation: a sensitive method for detecting of *Blastocystis hominis*. *Ann Trop Med Parasitol.* 2002; 96: 803-7.

78. Yakoob J, Jafri W, Beg MA, Abbas Z, Naz S, Islam M, *et al.* Irritable bowel syndrome: is it associated with genotypes of *Blastocystis hominis*. *Parasitol Res.* 2010; 106: 1033-8.

79. Roberts T, Barratt J, Harkness J, Ellis J, Stark D. Comparison of microscopy, culture, and conventional polymerase chain reaction for detection of *Blastocystis* sp. in clinical stool samples. *Am J Trop Med Hyg.* 2011; 84: 308-12.

80. Rivera WL, Tan MA. Molecular characterization of *Blastocystis* isolates in the Philippines by riboprinting. *Parasitol Res.* 2005; 96: 253-7.

81. Dogruman-AI F, Dagci H, Yoshikawa H, Kurt O, Demirel M. A possible link between subtype 2 and asymptomatic infections of *Blastocystis hominis*. *Parasitol Res.* 2008; 103: 685-9.

82. Sukthana Y, Sukthana Y. Is *Blastocystis hominis* a Human Pathogenic Protozoan? *J Trop Med Parasitol.* 2001; 24: 16-22.