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ABSTRACT

In soil moisture measuring system, a type of soil moisture sensor was developed using stainless
steel tubes. The electrical contact resistance of stainless steel arose as a result of the dense protective
oxide layer. Generally, the measurement of the soil moisture using advanced analytical instruments is
costly and difficult. In current study, the researchers developed a multiple linear regression model to
predict soil moisture via environmental parameters using analytical instruments through stainless steel
tube sensor. The results showed a low prediction root mean squared error (RMSE) and stable model
performance. This modeling approach contributes to efficient and low-cost for soil moisture estimation
and understanding of the soil moisture based on the environmental parameters.
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Introduction

A key element to understanding the nature of global change is the ability to model the two-way
interaction between land and atmosphere. Perhaps the most important role that the land surface
component performs is the partitioning of incoming radiative energy into sensible and latent heat fluxes.
There have been a number of modeling studies, demonstrated the sensitivity of soil moisture anomalies
to climate[1-2]. Shukla (personal communication) for instance, reports that soil moisture is the second
most important forcing function, second only to the sea surface temperature in the mid-latitudes, and it
becomes the most important forcing function in the summer. The role of soil moisture is equally
important at smaller scales. Recent studies with mesoscale atmospheric models have similarly
demonstrated sensitivity to spatial gradients of soil moisture. For example, Fast and McCorcle[3] have
shown that moisture gradients can induce thermally induced circulations similar to sea breezes. Chang
and Wetzel[4] have concluded that the spatial variations of vegetation and soil moisture affect the
surface baroclinic structures through differential heating which in turn indicate the location and intensity
of surface dynamic and thermodynamic discontinuities necessary to develop severe storms. In yet
another study, Lanicci et.al.[5] have shown that dry soil conditions over the southern Great Plains can
dynamically interact to alter pre-storm conditions and subsequent convective rainfall patterns. More
recently, Betts et al.[6] demonstrated that the initialization of the Global Climate Model Weather Forecast
(GCMWEF) weather predictions with current soil moisture values can lead to improved rainfall predictions.
In addition to the role of soil moisture in the interactions between the land surface and the atmosphere,
soil moisture is a storage of water timewise between rainfall and evaporation that acts as a regulator to
one of the more fundamental hydrologic processes, infiltration and runoff production from rainfall and
which must be accounted for in any water and energy balances. Soil moisture content may be
determined via its effect on dielectric constant by measuring the capacitance between two electrodes
implanted in the soil[7-10]. Where soil moisture is predominantly in the form of free water (e.g., in sandy
soils), the dielectric constant is directly proportional to the moisture content[11-12]. The probe is
normally given a frequency excitation to permit measurement of the dielectric constant. The readout
from the probe is not linear with water content and is influenced by soil type and soil temperature[13].
Therefore, careful calibration is required and long-term stability of the calibration is questionable. In soil
moisture measuring system, type of soil moisture sensor was developed using stainless steel tubes. The
electrical contact resistance of stainless steel arises as the result of the dense protective oxide layer. The
measurement of the soil moisture by advanced analytical instruments is costly and difficult. In current
study, we develop the multiple linear regression models to predict soil moisture via environmental
parameters by analytical instruments through stainless steel tubes sensor. Results here show a low
prediction root mean squared error (RMSE) and stable model performance. This modeling approach
contributes to efficient and low-cost for estimations of soil moisture estimations and understandings of

the soil moisture based on environmental parameters.
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Materials and Methods

Conceptual framework of this research in Figure 1.
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Figure 1 Conceptual framework of this research

The researcher used a prospective framework for adaptive meta-analysis to reduce the bias in the
selection of studies, assessment the risk of bias, definition of results and timing and planned analysis
execution[14-15]. The researcher was modified the following framework from Chrisanthi et al.[16]. The key
principles of adaptive meta-analysis are follows (1) Initiate a systematic literature review process to find
all soil moisture measurement systems included in the analysis; (2) Comprehensive search for published
trials unpublished and eligibled; (3) Working with co-authors to understand the conceptual framework for
adaptive meta- analysis; (4) Reliable prediction of feasibility and duration of meta-analysis; (5)
Interpretation of results taking into account available and unavailable data, and the valuation of
systematic reviews and meta-analysis. For the completeness of the search for soil moisture measurement
systems included in the analysis. Additionally, the researcher did a comprehensive search on soil
moisture measurement systems for analysis, both published in academic databases and official
documents of the Department of Agricultural Extension. In this research, all documents obtained were
cataloged and analyzed. Summarizing the finding from this relatively large dataset requires documenting
the organization of Gaber's seven criteria[17] to make it easier to refer to the material, which are different
from the most meta-analytic techniques using an extensive number of criteria to organize documents. For
example, Rosentahl[18] use more than 70 criteria to analyze documents in his meta-analysis. Therefore,
the seven criteria used in this research provided an easy way to refer documents to free up their time,
the researchers closely analyzed each document received. Then, gathered data, according to seven
criteria, to find confluence by comparing findings from papers and research papers gleaned from the
narrative and vote counting process to achieve a holistic understanding[19]. The seven criteria used to
summarize the data for each document are shown in Table 1.
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Table 1 Criteria for abstracting reviewed assessments[19]

Criteria Purpose

Author Name, address, and phone number; so, they can be contacted
for additional questions

Title Title of document and ID number if applicable

Date To see how the findings in the report compare to earlier or

later reports on the same topic

Methods Identification of the research strategy used to obtain
information

Data Type of data (qualitative/quantitative) generated from the
research

Findings Identification of primary research results

Recommendations Short description of primary policy recommendations

Most soil moisture problems, based on environmental factors, are multivariate. Therefore, an
invariant approach to research analysis is often flawed and may produce inaccurate prediction coefficients
quantitatively or qualitatively, and an inaccurate conclusion with inference testing[20-21] often requires a
multivariate approach.

Multiple linear regression is a useful technique for simulating many phenomena in soil moisture
based on environmental parameter research[22-24]. For data sets that meet the necessary assumptions, It
has a well-developed layout that can often be fixed for sure, yielding estimates of the predictor variable
coefficients and standard error or uncertainty[25-26]. This can lead to a better understanding of the
associated effects and the significance of the compelling predictors, and allows the investigator to predict
the outcome of future data. Applications in soil moisture based on environmental parameters include
modeling to consider, it an effective technique for collecting spatial data relevant to irrigation system
design. The multiple linear regression models are built on the same simple linear regression, and the four
fundamental assumptions made with simple linear regression must also be true for multiple linear
regression[27-29]. However, in addition to the concepts discussed so far for simple linear regression, which
is remain applicable, a new concepts set has to be introduced. This discussion will focus on situation
where there are two predictor and one outcome variable. With all three variables, three-dimensional
figure can be used to visualize data. Models with more predictive variables follow the same principle, but
difficult to visualize. The equation for the regression model now represents the plane. Let the multiple
linear regression model (MLR Model). We consider multiple regression and linear relation as follows,

Y=XB+V )
in which,
B2 Lox, xp, Xim b, &
Y= Vs Y= 1 ox, xy, Xom B= b, = &
yn 1 xnl xn2 xnm bm gm
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We develop a multiple linear regression model to predict soil moisture via environmental
parameters from an analytical instrument through stainless pipe sensor using linear regression with natural
logarithmic transformation (LRNLT Model). Start by considering the nonlinear regression problem is as
follows,

y=ae"U 2

With the parameters a and b and the multiplication error term U. If we find the natural logarithm

of both sides, this will becomes
In(y)=In(a)+bx +u (3)
in which, u= ln(U).

Development of the LRNLT model was supported by Suchane[30] experimental data to
demonstrate the correlation between accuracy of stainless steel tubes sensor for measurement of soil
moisture content by gravimetric method and environmental parameter that showed in Figure 2 and Table
2-6.

y = 9.5715x + 2.3429 e
E » R2 = 0.9708 :__!____..--
8 v
g =
% - --___‘
E - ".
B P
= . """a
Voltage

Figure 2 Accuracy of stainless steel tubes sensor for measurement of soil moisture content

by eravimetric method.

Table 2 Descriptive statistics of actual of soil moisture content by stainless steel tubes sensor from
measurement of soil moisture content by gravimetric method.

N Minimum  Maximum Mean Std. Deviation
Voltage 10 .04 2.05 1.0920 68999
Soil Moisture

10 4.10 23.06 12.7950 6.70277
Content
Valid N (listwise) 10
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Table 3 Correlations of actual of soil moisture content by stainless steel tubes sensor from measurement

of soil moisture content by gravimetric method.

Voltage Soil Moisture Content
Pearson Correlation 1 985
Voltage Sig. (2-tailed) .000
N 10 10
Pearson Correlation 985 1
Soil Moisture - -
Sig. (2-tailed) .000
Content
10 10

**_ Correlation is significant at the 0.01 level (2-tailed).

Table 4 Descriptive statistics of actual of soil moisture content via environmental parameters in study

area by stainless steel tubes sensor

N Minimum  Maximum Mean Std. Deviation
Soil Moisture

196 10.27 14.38 10.6629 57073
Content
Air temperature 196 21.90 34.40 26.3893 3.59042
Relative Humidity 196 14.90 99.90 78.8026 27.86853
Valid N (listwise) 196

Table 5 Correlations of actual of soil moisture content via environmental parameters in study area by

stainless steel tubes sensor

Soil Moisture Alir Relative
Content temperature  Humidity
Pearson Correlation 1 264 -215"
Soil Moisture - -
Sig. (2-tailed) .000 .002
Content
196 196 196
Pearson Correlation .264** 1 —.901**
Air temperature  Sig. (2-tailed) .000 .000
N 196 196 196
Pearson Correlation 215 —.901** 1
Relative Humidity  Sig. (2-tailed) .002 .000
N 196 196 196

**_ Correlation is significant at the 0.01 level (2-tailed).
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Table 6: Descriptive Statistics creation of the model between MLR and LRNLT predications with actual of
soil moisture content via environmental parameters in study area by stainless steel tubes sensor

N Minimum ~ Maximum Mean Std. Deviation
Actual 196 10.27 14.38 10.6629 57073
MLR 196 10.45 15.67 10.7081 44314
LRNLT 196 10.36 11.07 10.6876 .20250
Air temperature 196 21.90 34.40 26.3893 3.59042
Relative Humidity 196 14.90 99.90 78.8026 27.86853
Valid N (listwise) 196

We then tested the LRNLT model's effectiveness from Eq. (3) Compared to other studies with
experimental and material science experimental data to show that the LRNLT model can be applied
widely.

Results and Discussion

The result of calculation from LRNLT model was supported experimental data by Suchane[30]. We
could find a good agreement in Figure 3 with accuracy creation of the model presented by root mean
square error (RMSE) between MLR and LRNLT predications via environmental parameters.

Soil
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Figure 3 Accuracy creation of the model presented by %RMSE between MLR and LRNLT

predications via environmental parameters

These results show that accuracy creation of LRNLT predication higher than MLR predication
presented by lower prediction root mean square error. Modeling correlations between MLR and LRNLT
predications with actual of soil moisture content via environmental parameters in the study area by
stainless steel tubes sensor are shown in Table 7.
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Table 7 Correlations from creation of the model between MLR and LRNLT predications with actual of soil

moisture content via environmental parameters in study area by stainless steel tubes sensor

Actual MLR LRNLT Air Relative
temperature  Humidity
Pearson Correlation 1 060 372 264 215
Actual Sig. (2-tailed) .401 .000 .000 .002
N 196 196 196 196 196
Pearson Correlation 060 1 233 318 -205
MLR  Sig. (2-tailed) 401 001 000 004
N 196 196 196 196 196
Pearson Correlation 372" 233 1 678 539
LRNLT  Sig. (2-tailed) 000 001 000 000
N 196 196 196 196 196
. Pearson Correlation 264 318 678 1 -901"
Air Sig. (2-tailed) 000 .000 000 000
temperature
196 196 196 196 196
Relative Pearson Correlation 215 -205  -539 -901" 1
Humidity  Sig. (2-tailed) 002 004 000 000
N 196 196 196 196 196

**_ Correlation is significant at the 0.01 level (2-tailed).

The results here show a high correlation coefficient from generating a significantly higher LRNLT

predicate at the 0.01 level. Performance of the proposed LRNLT model in Eq. (3) was evaluated using the

root mean square error (RMSE) and correlation coefficient against other studies with experimental data in both

environmental and material science, respectively. In environmental science, we focus on the study of soil

moisture. The result of calculation from LRNLT model was supported experimental data by Zhiqi et al.[31]

in Figure 4.
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Figure 4 Investigation of the model performance presented by %RMSE in soil moisture prediction via
environmental parameters between MLR and LRNLT predictions at Loess Plateau, China

These results show that the generation accuracy of LRNLT is higher than that of the MLR predicate
presented by the squared error of the lower predictive root mean. However, root mean square error is
greater than 10% on both LRNLT and MLR predication. The reason is standard deviation (S.D.) of soil
moisture content (outcome variable) mean in Table 8 have a very wide range. Because the sample size
used in the analysis was too small.

Table 8 Descriptive statistics actual of soil moisture content via environmental parameters at Loess
Plateau, China

N Minimum  Maximum Mean Std. Deviation
Soil Moisture Content 24 76.60 154.36 128.5908 20.99895
Air temperature 24 9.86 18.59 10.7308 1.67884
Relative Humidity 24 5.44 19.69 8.6138 3.85978
Valid N (listwise) 24

The correlation coefficient between outcome variables and predictor variables in Table 9 were
highly significant at the 0.01 level but one pair less than 0.6. Therefore, the variance of the data is very
large. In material science, we focus on assessed mathematical model identified the eligibility performance
in regression model using support vector machines (SVM) technique.
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Table 9 Correlations actual of soil moisture content via environmental parameters at Loess Plateau, China

Soil
Air Relative
Moisture
temperature Humidity
Content
Pearson Correlation 1 —.443* -.178
Soil Moisture
Sig. (2-tailed) .030 .405
Content
24 24 24
Pearson Correlation —.443* 1 622"
Air temperature  Sig. (2-tailed) .030 .001
N 24 24 24
Pearson Correlation -178 622 1
Relative
o Sig. (2-tailed) 405 .001
Humidity
24 24 24

*Correlation is significant at the 0.05 level (2-tailed).
**Correlation is significant at the 0.01 level (2-tailed).

The results of the study were divided into 3 cases as follows: The first, result of calculation from
LRNLT Model was supported experimental data by Zhang and Xu[32] in Figure 5.
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Figure 5 Investigation of the LRNLT model performance presented by %RMSE in predicting YBCO
superconductor critical temperature from lattice parameters

These results show that accuracy creation of SVM higher than LRNLT and MLR, respectively. The
lowest root mean square error was created by SVM. The reason of high root mean square error create by
LRNLT model was standard deviation (S.D.) of superconducting transition temperature (outcome variable)
mean in Table 10.
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Table 10 Descriptive statistics actual of YBCO superconductor critical temperature from lattice parameters

N Minimum  Maximum Mean Std. Deviation
Superconducting
transition 31 35.00 116.00 85.3045 13.69135
temperature
Lattice paprameters
31 377 3.87 3.8261 .02139
a
Lattice paprameters
5 31 3.74 3.89 3.8624 .03753
Lattice paprameters
31 11.48 11.79 11.6380 .09679
c
Valid N (listwise) 31

The Standard deviation (S.D.) had a very large range compared to lattice parameters a, b and ¢

(predictor variables). Because the sample size used in the analysis was too small. Even though, the

correlation coefficient between outcome variable and predictor variables was significantly higher at the
0.01 level in Table 11, But the correlation coefficient was still low (less than 0.6), indicating that the
variance in the data was large.

The second, result of calculation from LRNLT model was supported experimental data by Zhang

and Xu[33] in Figure 6, the lowest root mean square error was created by SVM.
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Figure 6 Investigation of the LRNLT model performance presented by %RMSE in predicting Fe-based

superconductors critical temperature from lattice parameters
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Table 11 Correlations actual of YBCO superconductor critical temperature from lattice parameters

Superconducting Lattice Lattice Lattice
transition parameters  parameters parameters
temperature a b C
Pearson - -
) 1 -474 197 -.461
Superconducting  Correlation
transition Sig.
) .007 .287 .009
temperature (2-tailed)
N 31 31 31 31
Pearson - - “
-474 1 .589 532
Correlation
Lattice parameters 5
ig.
a g .007 .000 .002
(2-tailed)
N 31 31 31 31
Pearson “
197 .589 1 .348
Correlation
Lattice parameters 5
ig.
b g 287 .000 .055
(2-tailed)
N 31 31 31 31
Pearson - **
-461 532 .348 1
Correlation
Lattice parameters 5
ig.
C g .009 .002 .055
(2-tailed)
N 31 31 31 31

**_Correlation is significant at the 0.01 level (2-tailed).

These results show that accuracy creation of SVM higher than LRNLT and MLR, respectively. In
addition, root mean square error creates by LRNLT Model higher than the first case. The reason of high
root mean square error is very wide range standard deviation (S.D.) of superconducting transition
temperature (outcome variable) mean compared to lattice paprameters a and c (predictor variables) in
Table 12. So that, the sample size used in the analysis was too small. The correlation coefficient between
outcome variables and predictor variables in Table 13 were highly significant at the 0.01 level, there is
only one pair and less than 0.6 so the variance in the data is huge.
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Table 12 Descriptive statistics actual of Fe-based superconductor critical temperature from lattice parameters

N Minimum  Maximum Mean Std. Deviation
Superconducting
transition 32 2.50 38.60 15.6937 10.45198
temperature
Lattice parameters
32 2.88 4.04 3.8150 .21404
a
Lattice parameters
5.18 13.84 9.2188 3.61565
C
Valid N (listwise) 32

Table 13 Correlations actual of Fe-based superconductor critical temperature from lattice parameters

Superconducting Lattice Lattice
transition parameters parameters
temperature a C
Pearson -
) 1 131 471
Superconducting Correlation
transition temperature  Sig. (2-tailed) 476 .007
N 32 32 32
Pearson
131 1 137
Correlation
Lattice parameters a - X
Sig. (2-tailed) 476 .455
N 32 32 32
Pearson “
471 137 1
Correlation
Lattice parameters ¢ - )
Sig. (2-tailed) .007 .455
N 32 32 32

**_ Correlation is significant at the 0.01 level (2-tailed).

The third, result of calculation from LRNLT model was supported experimental data by Zhang
and Xu[34] in Figure 7, the lowest root mean square error was created by LRNLT model.
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Figure 7 Investigation of the LRNLT model performance presented by %RMSE in predicting doped MgB,

superconductor critical temperature from lattice parameters

These results show that accuracy creation of LRNLT higher than SVM and MLR, respectively. The
reason of the lowest root mean square error was a small range standard deviation (S.D.) of
superconducting transition temperature (outcome variable) mean compared to lattice parameters a and ¢
(predictor variables) in Table 14. Furthermore, the standard deviation (S.D.) of the outcome variable mean
in this case was the smallest compared to the previous two cases. The correlation coefficient between
outcome and predictors variables in Table 15 was 0.6 or higher for all pairs of high significance at the 0.01

level. Therefore, the variance of the data was small.

Table 14 Descriptive statistics actual of MgB, superconductor critical temperature from lattice parameters

N Minimum  Maximum Mean Std. Deviation
Superconducting
transition 56 24.00 39.70 37.2018 2.51314
temperature
Lattice parameters
56 3.06 3.52 3.0903 .05896
a
Lattice parameters
56 3.05 3.55 3.5181 .06367
c
Valid N (listwise) 56
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Table 15: Correlations actual of MgB, superconductor critical temperature from lattice parameters

Superconducting Lattice Lattice
transition parameters  parameters
temperature a C
Pearson - -
) 1 -671 .695
Superconducting  Correlation
transition Sig.
) .000 .000
temperature (2-tailed)
N 56 56 56
Pearson - -
-.671 1 -.994
Correlation
Lattice parameters 5
ig.
a s i .000 .000
(2-tailed)
N 56 56 56
Pearson - “
.695 -.994 1
Correlation
Lattice parameters 5
ig.
c ; . .000 .000
(2-tailed)
N 56 56 56

**_ Correlation is significant at the 0.01 level (2-tailed).

Conclusions

In summary, the multiple linear regression models are developed to predict soil moisture by
using stainless steel tube sensors based on environmental parameters. The result of this research showed
that by using LRNLT model depending on the group of the soil moisture data or outcome variable, it had
a low standard deviation (S.D.) and the correlation between soil moisture data and all environmental
parameters data or predictor variables was significant at the 0.01 level (Highest significant). We then tested
the LRNLT Model's effectiveness from Eq. (3) with other studies. The results showed that low prediction
root mean square error and stable model performance suggest that the correlation coefficient between
outcome and predictors variables was 0.6 or higher for all pairs of high significance at the 0.01 level.
Because the variance of the data was small. A small variance indicates that the data points tend to be
very close to the mean. So, the multiple linear regression model for modeling and understanding the
relationship between soil moisture temperature and relative humidity. The modeling exercise might also
contribute to environmental friendly technology.
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