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Investigation of Mango Flesh Disorder Using Near-Infrared Spectroscopy (NIRS)
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Export quality of ‘Nam Dok Mai Sithong” mango has been reduced due to internal disorders
that are undetectable by visual inspection. These flaws lead to loss of export value and importer’s
trust. Therefore, this research aimed to investigate the feasibility of using NIRS and advanced
chemometrics to detect internal disorders of the mangoes. A total of 38 fruits of ‘Nam Dok Mai Sithong’
mango, aged 115-120 days after flowering were harvested. Different areas of fruit peel were designated
into different categories for near-infrared (NIRS) spectra measurement, consisting of 100 normal flesh
spots, 100 internal breakdown spots, and 97 spongy tissue spots. Interactance measurement was used
in wavenumbers of 4,000-12,500 cm™. Classification models were developed using Self-Organizing Map
(SOM) and classification accuracies were evaluated. Results from Principal Component Analysis (PCA)
were unable to distinguish among the 3 different characteristics of mango flesh. On the other hand,
classification models of SOM with 25,000 iterations were able to classify mango flesh into 2 classes
(normal and disorder) and 3 classes (normal, internal breakdown, and spongy tissue), providing correct
classification rates (%CC) of 83.1 and 82.4%, respectively. Therefore, application of near-infrared
spectroscopy using SOM model provided more than 80% classification accuracy for classifying mango

flesh into normal, internal breakdown, and spongy tissue symptoms.
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Table 1 Classification results for self-organizing map (SOM) using mean centering as a data

preprocessing, exhibiting percentages of predictive ability (%PA), model stability (%MS),

and correctly classified rate (%CC) with 3 and 2 groups classification

Self-Organizing Percentage of Percentage of Percentage correctly

Map (SOM)* predictive ability (%PA)  model stability (%oMS) classified rate (%CC)
Training set  Testing set  Training set Testing set Training set Testing set

3 groups 81.04 80.68 87.84 88.30 82.43 82.43

2 groups 81.50 81.04 90.13 89.05 83.79 83.11

SOM classification results were averaged from 50 rounds of map size 15x20 with 25,000 iterations.
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Figure 1 Images of cut-open in mango with of normal flesh (A), internal breakdown (B), and spongy
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Figure 2 PCA of NIR spectra preprocessed by mean centering; PCA labeled based on 3 groups (A), PCA

labeled based on 2 groups (B), PCA labeled based on 3 groups without outlier (C), and PCA

labeled based on 2 groups without outlier (D)
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Figure 3 SOM visualization of NIR spectra with mean centering as a data preprocessing, illustrating
U-matrix 15x20 with 25,000 iterations for classifying 3 groups (A) and 2 groups (B)

of mango flesh
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Figure 4 SOM visualization of NIR spectra using mean centering as a data preprocessing, illustrating
supervised-color shading 15x20 with 25,000 iterations for classifying 3 groups (A)

and 2 groups (B) of mango flesh
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