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ABSTRACT 

	 This article examines the behavior of a piecewise linear map, particularly when initial conditions  

are set along the positive y-axis. Our focus is on the emergence of 4-cycles and an equilibrium point 

within the map. We identify specific regions on the y-axis where the solutions tend to move toward 

these 4-cycles and the equilibrium point. By partitioning the positive y-axis into smaller segments,  

we analyze the solution behavior through a combination of direct calculation and induction methods.  

This approach allows us to demonstrate that the solutions consistently reach a prime period of 4 

and an equilibrium point. Notably, this finding holds true regardless of the application of stability 

theorems, indicating a robust pattern in the solution dynamics. This study looks closely at how these 

solutions change over time, giving a clear picture of their paths. By carefully dividing the positive y-axis 

and studying each part, we find out why the solutions move towards the 4-cycles and the equilibrium 

point. This detailed look shows that the map’s behavior is predictable and follows a certain pattern 

no matter where we start on the positive y-axis. Our research helps us understand piecewise linear 

systems better, and these insights could be useful for other similar systems. Our findings prove that 

periodic behavior and equilibrium are common in these maps, making it easier to predict how they 

will act over a long time.
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Introduction 

	 The Lozi map (Lozi, 1978) is a widely recognized example of a piecewise linear map (PWL), 

representing the most basic form of a piecewise smooth map (PWS). Functioning as a simplified vari-

ant of the Hénon map, the Lozi map displays a peculiar attractor. An example of a piecewise linear 

map involving absolute values is part of this category. It is acknowledged that PWS maps can exhibit 

phenomena such as multistability (Simpson, 2010; Zhusubaliyev et al., 2008) and an abundance of 

coexisting attractors (Simpson, 2014a; Simpson, 2014b). A noteworthy open problem related to a 

piecewise linear system was outlined by Grove et al. (2012) as follows:
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where parameters , ,a b c and d are in{ 1,0,1}−  and the initial condition 2

0 0( , ) .∈x y R  Grove et al. (2012) 

discovered that each solution of a specific instance of the system described in System (1) eventually 

becomes a prime period 3 solution, excluding the unique equilibrium solution. In works by Tikjha  

et al. (2010; 2015; 2017) and Tikjha & Lapiere (2020), various special cases of System (1) were investigated,  

revealing the existence of periodic attractors. Through direct calculations and inductive statements, 

they demonstrated that every solution ultimately converges to either these attractors or the equilibrium  

point. Our objective is to extend the generalization to the parameter b  in the specified case of System  

(1), as outlined below:

1

1

0,1, 2,
| |

,
| | 1

+

+

= − +
= = − +

n n n

n n n

x x y b
n

y x y
K

					           
(2) 

where b is any real number. In their research, Krinket & Tikjha (2015) examined a unique instance of 

System (2) where they set b equal to -1. They observed that solutions, under specific initial conditions 

on the axis, eventually become prime period 4. In their study, Tikjha & Piasu (2020) explored the 

outcomes of an alternate scenario in System (2) where they assigned b  a value of -3:
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They determined that, when the initial condition lies within a specific region in the first quadrant,  

excluding the positive y-axis, the solutions eventually converge to either an equilibrium point or  

exhibit a prime period 4. As a result, we proceed to examine System (3) with the initial condition 

located on the positive y-axis.
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Methods 

	 We intend to employ direct calculations by substituting specific initial conditions into System 

(3). An “iteration” refers to the process of repeatedly applying a function or map to a point or state of 

the system. By verifying the negativity or non-negativity of the system in each iteration, we will utilize 

this property to compute the subsequent iteration. The subsequent definitions (Grove & Ladas, 2005) 

will be applied in this paper. A two-dimensional system of difference equations of the first order is a 

system of the form:  
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where f  and g  are continuous functions which map 2R  into R  and 0n ≥ .  A solution of the system  

of difference equations is a sequence ( ){ } 0
,n n n

x y
∞

=
 which satisfies the system for all 0n ≥ . If we  

prescribe an 2
0 0( , )∈x y R then solutions  1 1 0 0 0 0( , ( ( , ), ( , )))x y g x y f x y= , 2 2 1 1 1 1( , ) ( ( , ), ( , )),x y g x y f x y=  . 

A solution of the system of difference equations which is constant for all 0n ≥  is called an  

equilibrium solution. If ( , ) ( , )n nx y x y=  for all 0n ≥ is an equilibrium solution of the system of  

difference equations, then ( , )x y  is called an equilibrium point, or simply an equilibrium of the  

system of difference equations. A solution ( ){ } 0
,n n n

x y
∞

=
of a system of difference equations is called an 

eventually equilibrium point if there exists an integer 0N >  such that ( ){ } 0
,n n n

x y
∞

=
is the equilibrium 

point ( , )x y ; that is,  ( ) , ), (=n ny x yx  for all n N≥ . A solution ( ){ } 0
,n n n

x y
∞

=
of a System (3) is called 

an eventually periodic with prime period p  or an eventually prime period p  solution (or p -cycle) if 

there exists an integer 0N >  and p  is the smallest positive integer such that ( ){ } 0
,n n n

x y
∞

=
is periodic 

with period p ; that is, ( ), ( , )n p n p n nx y x y+ + =  for all  n N≥ . We denote ( ) ( ) ( ) ( )( ){ }, , , , , , ,a b c d e f g h  

as 4-cycle which consists of 4 consecutive points: ( ), ,a b ( ),c d , ( ),e f and ( ),g h  in xy  plane. It is 

worth noting that a solution is eventually periodic with period p  (a solution is an eventually 4-cycle) 

when orbit (forward iterations) contains a point of the cycle (eventually 4-cycle).

Results and Discussions 

	 We will examine the dynamics of System (3) when the initial condition is situated the positive 

y-axis, that is 1 2l l∪  where   { }2
1 (0, ) | 1= ∈ ≥l y yR  and { }2

2 (0, ) | 0 1= ∈ < <l y yR . We assert that 

System (3) possesses an equilibrium point ( )1, 1− − , determined by solving equations | | 3x x y= − −  
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and | | 1y x y= − + . We also found two prime period 4 solutions (or 4-cycles):  

( ) ( ) ( ) ( )( ){ }4.1 5, 1 , 3, 5 , 5, 1 , 3,5P = − − − −  and ( ) ( ) ( ) ( )( ){ }4.2 1, 1 , 1,1 , 3, 1 , 1, 3P = − − − − −  

of System (3).  We will begin our investigation by calculating the first iteration for ( )0 0 1,x y l∈ :

1 0 0 03 3 0x x y y= − − = − − < 		  and 1 0 0 01 1 0y x y y= − + = − + ≤ 			         (4)

2 02 1 0x y= − > 				    and 2 02 1 0y y= − − < ,				          (5)

3 04 3 0x y= − > 				    and 3 1y = − ,					           (6)

4 04 5x y= − 				    and 4 04 3 0y y= − > 				          (7)

If ( )00, y  is in the region for which 0

5
4

y ≥  then 4 0x ≥  and so 

5 5x = − 					    and 5 1y = −

So, we have the following lemma. 

Lemma 1 Let ( )0 10, y l∈ be an initial condition where 0
5
4

y ≥ . Then the fifth iteration of the solution 

of the system (3) is ( )5, 1− − . 

We will investigate the solution with the initial condition ( )0 0,x y  belonging to the remain 

region of 1l as the following lemma.

Lemma 2 Let ( )0 10, y l∈ be an initial condition where 0
51,
4

y  ∈  
. Then the solution of the system 

(3) is an eventually ( )5, 1− −  or ( )1,1− .  

Proof. If we choose the initial condition with 0 1y = then  ( ) ( ) ( ) ( )1 1 2 2, 4,0 , , 1, 3 ,x y x y= − = −  

( ) ( )3 3, 1, 1x y = −  which is the member of 4.2P . Suppose that 0
51,
4

y  ∈ 
 

. We have a closed form of 

the first four iterations in the form of equations (4) – (7) and  4 04 5 0x y= − < . The following sequences  

are used in the inductive statement of this lemma: 
2

2
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2

n

n na +
=  and 22 1n

nδ = + . Let ( )P n  be the 

following statement: 

“for 0 (1, ),ny a∈
2 1

4 1 02 2 5 0n
n nx y δ+
+ = − + − < 		  and 4 1 1,ny + = −

2 1
4 2 02 2 3 0n

n nx y δ+
+ = − + > 		  and 2 1

4 2 02 2 5 0,n
n ny y δ+
+ = − + − <

2 2
4 3 02 4 5 0n

n nx y δ+
+ = − + > 		  and 4 3 1,ny + = −

2 2
4 4 02 4 3n

n nx y δ+
+ = − + 			   and 2 2

4 4 02 4 5 0.n
n ny y δ+
+ = − + >

If 0 1[ , )n ny a a+∈  then 4 4 0nx + ≥  and so

4 5 5nx + = − 				    and 4 5 1.ny + = −
If 0 1(1, )ny a +∈  then 4 4 0nx + < ”.
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Firstly, we shall show that (1)P  is true. By letting ( )0 11, 1 5
4

,x a  ∈ =  
 

 we have, 
2(1) 1

4(1) 1 5 4 4 0 0 13 8 5 2 2 5 0x x x y y y δ+
+ = = − − = − + = − + − <

4(1) 1 5 4 4 1 1,y y x y+ = = − + = −

2(1) 1
4(1) 2 6 5 5 0 0 13 8 7 2 2 3 0x x x y y y δ+

+ = = − − = − = − + >

2(1) 1
4(1) 2 6 5 5 0 0 11 8 5 2 2 5 0,y y x y y y δ+

+ = = − + = − + = − + − <

2(1) 2
4(1) 3 7 6 6 0 0 13 16 15 2 4 5 0x x x y y y δ+

+ = = − − = − = − + >

4(1) 3 7 6 6 1 1,y y x y+ = = − + = −

2(1) 2
4(1) 4 8 7 7 0 0 13 16 17 2 4 3x x x y y y δ+

+ = = − − = − = − +

2(1) 2
4(1) 4 8 7 7 0 0 11 16 15 2 4 5 0.y y x y y y δ+

+ = = − + = − = − + >

If 0 2 1
17 5[ , ) ,
16 4

y a a  ∈ =  
 then 8 016 17 0x y= − ≥  and so

4(1) 5 9 8 8 3 5x x x y+ = = − − = −  and 4(1) 5 9 8 8 1 1.y y x y+ = = − + = −

If 0 2

17
(1, ) 1,

16
y a∈ =  

 
 

 then 8 016 17 0x y= − < .

Hence (1)P  is true. Now we suppose further that ( )P k  is true for a positive integer k . We have 
2 2

4 4 02 4 3 0k
k kx y δ+
+ = − + < and 2 2

4 4 02 4 5 0k
k ky y δ+
+ = − + >  

for 
2 2

0 1 2 2

2 1(1, ) 1,
2

k

k ky a
+

+ +

 +
∈ =  

 
.     We determine the sign of 4 4kx +  by substituting 1  and 1ka +  into 0y  

of a linear function 4 4kx +  as follow: 
2 2 2 2 2 2 2

4 4 (1) 2 (1) 4(2 1) 3 2 2 4 3 1 0,k k k k
kx + + +
+ = − + + = − − + = − <

2 2 2 2
2 2 2 2 2 2 2

4 4 2 2 2 2

2 1 2 12 4(2 1) 3 2 1 2 4 3 0.
2 2

k k
k k k k

k k kx
+ +

+ + +
+ + +

   + +
= − + + = + − − + =   

   
Thus, we have 4 4 0kx + < . 

From now on, we will determine the sign of solutions by using this method. Then

 2( 1) 1 2( 1) 1
4( 1) 1 4 5 4 4 4 4 0 0 13 2 8 11 2 2 5 0.k k

k k k k k kx x x y y yδ δ+ + + +
+ + + + + += = − − = − + − = − + − <  We note that

	 2 2 3 2 3
18 11 8(2 1) 11 2 8 11 2 3 2 5.k k k

k kδ δ+ +
+− = + − = + − = − = −

2 2 2 2
4( 1) 1 4 5 4 4 4 4 0 01 2 4 3 2 4 5 1 1,k k

k k k k k ky y x y y yδ δ+ +
+ + + + += = − + = − + − + − + = −

2 3
4( 1) 2 4 6 0 12 2 3 0k

k k kx x y δ+
+ + + += = − + >  and 2 3

4( 1) 2 4 6 0 12 2 5 0,k
k k ky y y δ+
+ + + += = − + − <

2 4
4( 1) 3 4 7 0 12 4 5 0k

k k kx x y δ+
+ + + += = − + >  and 4( 1) 3 4 7 1,k ky y+ + += = −

2 4
4( 1) 4 4 8 0 12 4 3k

k k kx x y δ+
+ + + += = − +       and 2 4

4( 1) 4 4 8 0 12 4 5 0.k
k k ky y y δ+
+ + + += = − + >

If 
2 4 2 2

0 2 1 2 4 2 2

2 1 2 1[ , ) ,
2 2

k k

k k k ky a a
+ +

+ + + +

 + +
∈ = 

 
 then 2 4

4 8 0 12 4 3 0k
k kx y δ+
+ += − + ≥  
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and so

4( 1) 5 4 9 5k kx x+ + += = − 			      and 4( 1) 5 4 9 1.k ky y+ + += = −  

Thus 4( 1) 5 4( 1) 5( , ) ( 5, 1).k kx y+ + + + = − −

If 
2 4

0 2 2 4

2 1(1, ) 1,
2

k

k ky a
+

+ +

 +
∈ =  

 
 then 2 4

4 8 0 12 4 3 0.k
k kx y δ+
+ += − + <  Hence ( 1)P k +  is true. By 

the mathematical induction we conclude that ( )P n  is true for every positive integer n . We note that 

lim 1nn
a

→∞
=  and ( 5, 1)− − is a member of 4.1P . By the inductive statement ( )P n , we can conclude that 

the solution is an eventually 4-cycle ( 4.1P  or 4.2P ).	 			 

By the above lemmas, we immediately have the following theorem.

Theorem 1 Let ( )0 10, y l∈ be an initial condition. Then the solution of the system (3)  is eventually 

4-cycle 4.1P or 4.2P .  

Next, we will calculate the first iteration for ( )0 0 2,x y l∈ :

1 0 0 03 3 0x x y y= − − = − − < 	 and 1 0 0 01 1 0y x y y= − + = − + > 				          (8)

2 02 1x y= − 			   and 2 3y = − .						            (9)

If ( )00, y  is in the region for which 0
1
2

y ≤  then 2 0x ≤  and so 

3 02 1 0x y= − + ≤ 		  and 3 02 3 0y y= − < ,			 

4 1x = − 				   and 4 1y = − .	

	 So, we have the following lemma. 

Lemma 3 Let ( )0 20, y l∈ be an initial condition where 0

1
2

y ≤ . Then the fourth iteration of the  

solution of the system (3) is equilibrium point  ( )1, 1− − . 

If ( )00, y  is in the region for which 0

1
1

2
y< ≤  then 2 0x >  and so 

3 02 1 0x y= − > 			   and 3 02 3 0y y= − < ,					         (10)

4 1x = − 				   and 4 04 3y y= − ,					         (11)

If ( )00, y  is in the region for which 0
1 3
2 4

y< ≤  then 4 04 3 0y y= − ≤  and so 

5 04 1 0x y= − + < 		  and 5 04 3 0y y= − ≤ ,			 

6 1x = − 				   and 6 1y = − . So, we have the following lemma. 

Lemma 4 Let ( )0 20, y l∈ be an initial condition where 0
1 3
2 4

y< ≤ . Then the sixth iteration of the 

solution of the system (3) is ( )1, 1− − .
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If ( )00, y  is in the region for which 0
3 1
4

y< ≤  then 4 04 3 0y y= − >  and so 

5 04 1 0x y= − + < 		  and 5 04 3 0y y= − + < ,					         (12)

6 08 7x y= − 			   and 6 08 5 0y y= − + < .					         (13)

If ( )00, y  is in the region for which 0
3 7
4 8

y< ≤  then 6 08 7 0x y= − ≤  and so 

7 1x = − 				   and 7 1y = − . 	 So, we have the following lemma. 

Lemma 5 Let ( )0 20, y l∈ be an initial condition where 0
3 7
4 8

y< ≤ . Then the seventh iteration of the 

solution of the system (3) is ( )1, 1− − . 

We will investigate the solution with the initial condition ( )0 0,x y  belonging to the remain 

region for which 0
7 1
8

y< <  as the following lemma. 

Lemma 6 Let ( )0 20, y l∈ be an initial condition where 0
7 ,1
8

y  ∈ 
 

. Then the solution of the system 

(3) is an eventually equilibrium point ( )1, 1− − .  

Proof. We have a closed form of the first six iterations in the form of equations (8) – (13) but  

6 08 7 0x y= − > . The following sequences are used in the inductive statement of this lemma: 

2 1 2 2

2 1 2 2

2 1 2 1,
2 2

n n

n nn nb c
+ +

+ +

− −
= =  and 2 22 1n

nγ
+= − .   Let ( )Q n  be the following statement: 

“for 0 ( ,1)ny b∈ ,
2 2

4 3 02 n
n nx y γ+
+ = − 		  and 4 3 1.ny + = −

	 If 0 ( , ]n ny b c∈  then 4 3 0nx + ≤  and so 
2 2

04 4 2 2 0n
n

nx y γ+
+ − + − <= 	 and 2 2

04 4 02 nn
ny y γ+
+= − ≤ ,

4 5 1nx + = − 			   and 4 5 1.ny + = −

If 0 ( ,1)ny c∈  then 4 3 0nx + >  and so 
2

4
2

4 2 2 0n
n

nx y γ+
+ −= − < 		 and 4 4

2 2 02 n
n ny y γ+

+ −= > ,
2 3

4 5 02 2 1 0n
n nx y γ+
+ = − + − <  	 and 4 5 1ny + = −

2 3
4 6 02 2 1n

n nx y γ+
+ = − − 		 and 2 3

4 6 02 2 1 0n
n ny y γ+
+ = − + − < .

If 0 1( , ]n ny c b +∈  then 4 6 0nx + ≤  and so

4 7 1nx + = − 			   and 4 7 1.ny + = −

If 0 1( ,1)ny b +∈  then 4 6 0nx + > ”.

The inductive proof for statement ( )Q n  mirrors the methodology applied in proving ( )P n .  

Consequently, the detailed proof for ( )Q n  being true is omitted for brevity. It is noteworthy that 
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selecting an initial condition within 2l , specifically 0y  in the interval 7 ,1
8

 
 
 

, aligns the solution’s 

closed form with that of ( )Q n . As n  increases, the sequences nb  and nc  are observed to converge 

towards 1, indicating that the solution asymptotically approaches the equilibrium point ( )1, 1− − .	

			   By the Lemma 3 – Lemma 6, we immediately have the following theorem.

Theorem 2. Let ( )0 20, y l∈ be an initial condition. Then the solution of the system (3) is eventually 

equilibrium point ( )1, 1− − .  

	 As indicated in the articles by Krisuk et al. (2022) and Tikjha & Piasu (2020), the solution is 

eventually an equilibrium point or a 4-cycle in certain regions of 2R . Proving the global behavior of 

map (3) is challenging, as it requires us to set an initial condition in each region of 2R  and verify that 

the solution converges to certain invariant sets. As we know, the invariant sets of the map (3) consist 

of an equilibrium point ( )1, 1− − and two 4-cycles. We believe that our results will serve as a tool for 

studying this system with other initial conditions in the 2R region. We conjecture that the solution to 

system (3) will be confined to either the equilibrium point or 4-cycles.  

Conclusions 

	 We divide the positive y-axis into two segments, 1l and 2l . For the first segment, 1l , when the 

initial condition belongs to 1l and 0

5

4
y ≥ , the solution is ( 5, 1)− − , which is a member of 4.1P within 5 

iterations. For 0y  in the interval 
5

1,
4

 
 
 

, the solution eventually becomes a 4-cycle ( 4.1P ) by utilizing 

the first inductive statement. Specifically, if 0 1y = , then the solution transitions to a 4-cycle ( 4.2P ) 

within 3 iterations. 

For the second segment, 2l , when the initial condition 0

1

2
y ≤ , the solution converges to 

the equilibrium point within 4 iterations. Selecting 0

1 3

2 4
y< ≤  results in the solution reaching the 

equilibrium point within 6 iterations. Furthermore, for 0

3 7

4 8
y< ≤ , the solution becomes equilibrium 

within 7 iterations. By applying the second inductive statement, we deduce that for 0
7 1
8

y< < , the 

solution eventually reaches an equilibrium point. 
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