

บทความวิจัย

SOME IDENTITIES OF (P,Q) - FIBONACCI NUMBERS BY MATRIX METHODS

Alongkot Suvarnamani

Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi (RMUTT), Pathumthani, 12110

E-mail: kotmaster2@rmutt.ac.th

ABSTRACT

In this paper, we consider the generalized Fibonacci sequence which is (p,q) - Fibonacci sequence. We used the matrix methods to show some properties of (p,q) - Fibonacci number. We get some generalized identities of (p,q) - Fibonacci number.

Keywords: (p,q) - Fibonacci sequence, (p,q) - Fibonacci number, matrix methods

INTRODUCTION

The Fibonacci numbers cover a wide range of interest in modern mathematics as they appear in the comprehensive works of Koshy (2001) and Vajda (1989). The Fibonacci numbers F_n are the terms of the sequence where each term is the sum of the two previous terms beginning with the initial values $F_0 = 0$, $F_1 = 1$ and $F_{n+1} = F_n + F_{n-1}$ for $n \geq 1$.

Falcon & Plaza (2007) introduced the k - Fibonacci sequence $\{F_{k,n}\}$ which is defined as $F_{k,0} = 0$, $F_{k,1} = 1$ and $F_{k,n+1} = kF_{k,n} + F_{k,n-1}$ for $n \geq 1$, $k \geq 1$. If $k = 1$, we get the classical Fibonacci sequence $\{0,1,1,2,3,5,8,13,\dots\}$. If $k = 2$, we get the Pell sequence $\{0,1,2,5,12,29,70,\dots\}$.

The well-known Binet's formulas for k - Fibonacci numbers (Falcon & Plaza, 2007) are given by $F_{k,n} = \frac{r_1^n - r_2^n}{r_1 - r_2}$ where $r_1 = \frac{k + \sqrt{k^2 + 4}}{2}$ and $r_2 = \frac{k - \sqrt{k^2 + 4}}{2}$ are roots of the characteristic equation $r^2 - kr - 1 = 0$.

Falco & Plaza (2007) studied the k - Fibonacci sequence and the Pascal 2 - triangle. Next, they considered the 3- dimensional k - Fibonacci spiral in [3]. Next, Suvarnamani & Tatong (2015) showed some properties of (p,q) - Fibonacci numbers by using the Binet's formula. Then Suvarnamani (2016) proved some properties of (p,q) - Lucas numbers by using the Binet's formula. And Suvarnamani (2016) study on the odd and even terms of (p,q) - Fibonacci number and (p,q) - Lucas number by using the Binet's formulas.

In this paper, we find some properties of the (p,q) - Fibonacci numbers by using matrix methods.

The (p,q) - Fibonacci Number

The (p,q) - Fibonacci sequence $\{F_{p,q,n}\}$ is defined as $F_{p,q,0} = 0, F_{p,q,1} = 1$ and $F_{p,q,n} = pF_{p,q,n-1} + qF_{p,q,n-2}$ for $p \geq 1, q \geq 1$ and $n \geq 2$. The Binet's formula for (p,q) - Fibonacci numbers are given by $F_{p,q,n} = \frac{r_1^n - r_2^n}{r_1 - r_2}$ where $r_1 = \frac{p + \sqrt{p^2 + 4q}}{2}$ and $r_2 = \frac{p - \sqrt{p^2 + 4q}}{2}$ are roots of the characteristic equation $r^2 - pr - q = 0$. We note that $r_1 + r_2 = p$, $r_1 r_2 = -q$ and $r_1 - r_2 = \sqrt{p^2 + 4q}$.

RESULTS

In this section, we establish some identities for (p,q) - Fibonacci numbers by using matrix methods.

Lemma 3.1. Let p and q be positive integers. If $A = \begin{bmatrix} p & q \\ 1 & 0 \end{bmatrix}$ then $A^n = \begin{bmatrix} F_{p,q,n+1} & qF_{p,q,n} \\ F_{p,q,n} & qF_{p,q,n-1} \end{bmatrix}$ where n is a positive integer.

Proof. We will prove this theorem by mathematical induction.

$$\text{Let } P(n) : A^n = \begin{bmatrix} F_{p,q,n+1} & qF_{p,q,n} \\ F_{p,q,n} & qF_{p,q,n-1} \end{bmatrix}$$

For $n = 1$, we get

$$\begin{aligned} A^1 = A &= \begin{bmatrix} p & q \\ 1 & 0 \end{bmatrix} \\ &= \begin{bmatrix} p & q(1) \\ 1 & q(0) \end{bmatrix} \\ &= \begin{bmatrix} F_{p,q,2} & qF_{p,q,1} \\ F_{p,q,1} & qF_{p,q,0} \end{bmatrix} \\ &= \begin{bmatrix} F_{p,q,1+1} & qF_{p,q,1} \\ F_{p,q,1} & qF_{p,q,1-1} \end{bmatrix}. \end{aligned}$$

So, $P(1)$ is true.

Next, we will show that if $P(k)$ is true then $P(k+1)$ is true.

Suppose that $P(k)$ is true, i.e.,

$$A^k = \begin{bmatrix} F_{p,q,k+1} & qF_{p,q,k} \\ F_{p,q,k} & qF_{p,q,k-1} \end{bmatrix}.$$

Then $A^{k+1} = A^k A$

$$\begin{aligned} &= \begin{bmatrix} F_{p,q,k+1} & qF_{p,q,k} \\ F_{p,q,k} & qF_{p,q,k-1} \end{bmatrix} \begin{bmatrix} p & q \\ 1 & 0 \end{bmatrix} \\ &= \begin{bmatrix} pF_{p,q,k+1} + qF_{p,q,k} & qF_{p,q,k+1} \\ pF_{p,q,k} + qF_{p,q,k-1} & qF_{p,q,k} \end{bmatrix} \\ &= \begin{bmatrix} F_{p,q,k+2} & qF_{p,q,k+1} \\ F_{p,q,k+1} & qF_{p,q,k} \end{bmatrix} \end{aligned}$$

$$= \begin{bmatrix} F_{p,q,(k+1)+1} & qF_{p,q,k+1} \\ F_{p,q,k+1} & qF_{p,q,(k+1)-1} \end{bmatrix}.$$

So, $P(k+1)$ is true.

Hence $A^n = \begin{bmatrix} F_{p,q,n+1} & qF_{p,q,n} \\ F_{p,q,n} & qF_{p,q,n-1} \end{bmatrix}$ where n is a positive integer.

Next, let us define the matrix A as in the following Lemma and by using this matrix, we obtain some identities for (p,q) -Fibonacci numbers.

Theorem 3.2. Let p, q and n be positive integers. Then $F_{p,q,n+1}F_{p,q,n-1} - F_{p,q,n}^2 = (-1)^n q^{n-1}$.

Proof. Let p, q and n be positive integers.

We have $|A| = \begin{vmatrix} p & q \\ 1 & 0 \end{vmatrix} = -q$. Then $|A^n| = |A|^n = (-q)^n$.

Moreover, we have

$$\begin{aligned} |A^n| &= \begin{vmatrix} F_{p,q,n+1} & qF_{p,q,n} \\ F_{p,q,n} & qF_{p,q,n-1} \end{vmatrix} \\ &= F_{p,q,n+1}(qF_{p,q,n-1}) - qF_{p,q,n}(F_{p,q,n}) \\ &= q(F_{p,q,n+1}F_{p,q,n-1} - (F_{p,q,n})^2) \end{aligned}$$

$$\text{So, } q(F_{p,q,n+1}F_{p,q,n-1} - (F_{p,q,n})^2) = (-q)^n$$

$$F_{p,q,n+1}F_{p,q,n-1} - (F_{p,q,n})^2 = (-1)^n q^{n-1}.$$

□

Remark 3.3. From Theorem 3.2, if $p=1$ and $q=1$ then the Cassini's identity is obtained,

i.e., $F_{1,1,n+1}F_{1,1,n-1} - F_{1,1,n}^2 = (-1)^n$. It is similarly as $F_{n+1}F_{n-1} - F_n^2 = (-1)^n$.

Theorem 3.4. Let p, q and n be positive integers. Then $F_{p,q,n-2}F_{p,q,n+1} - F_{p,q,n-1}F_{p,q,n} = (-1)^{n-1} pq^{n-2}$.

Proof. Let p, q and n be positive integers.

We have $|A| = \begin{vmatrix} p & q \\ 1 & 0 \end{vmatrix} = -q$. Then $|A^{n-1}| = |A|^{n-1} = (-q)^{n-1}$.

$$\begin{aligned} F_{p,q,n-2}F_{p,q,n+1} - F_{p,q,n-1}F_{p,q,n} &= F_{p,q,n-2}(pF_{p,q,n} + qF_{p,q,n-1}) - F_{p,q,n-1}(pF_{p,q,n-1} + qF_{p,q,n-2}) \\ &= pF_{p,q,n-2}F_{p,q,n} + qF_{p,q,n-2}F_{p,q,n-1} - pF_{p,q,n-1}F_{p,q,n-1} - qF_{p,q,n-1}F_{p,q,n-2} \\ &= pF_{p,q,n-2}F_{p,q,n} - pF_{p,q,n-1}F_{p,q,n-1} \\ &= p(F_{p,q,n-2}F_{p,q,n} - F_{p,q,n-1}F_{p,q,n-1}) \\ &= \frac{p}{q}(qF_{p,q,n-2}F_{p,q,n} - qF_{p,q,n-1}F_{p,q,n-1}) \\ &= \frac{p}{q} \begin{vmatrix} F_{p,q,n} & qF_{p,q,n-1} \\ qF_{p,q,n-1} & qF_{p,q,n-2} \end{vmatrix} \\ &= \frac{p}{q} |A^{n-1}| \\ &= \frac{p}{q} (-q)^{n-1} \\ &= (-1)^{n-1} pq^{n-2}. \end{aligned}$$

□

Remark 3.5. From Theorem 3.4, if $p=1$ and $q=1$ then we get

$$F_{l,l,n-2}F_{l,l,n+1} - F_{l,l,n-1}F_{l,l,n} = (-1)^{n-1}. \text{ It is similarly as } F_{n-2}F_{n+1} - F_{n-1}F_n = (-1)^{n-1}.$$

Theorem 3.6. Let p, q, m and n be positive integers. Then $F_{p,q,m+n} = F_{p,q,m}F_{p,q,n+1} + qF_{p,q,m-1}F_{p,q,n}$.

Proof. Let p, q and n be positive integers. We have

$$A^{m+n} = \begin{bmatrix} F_{p,q,m+n+1} & qF_{p,q,m+n} \\ F_{p,q,m+n} & qF_{p,q,m+n-1} \end{bmatrix}$$

and

$$\begin{aligned} A^{m+n} &= A^m A^n \\ &= \begin{bmatrix} F_{p,q,m+1} & qF_{p,q,m} \\ F_{p,q,m} & qF_{p,q,m-1} \end{bmatrix} \begin{bmatrix} F_{p,q,n+1} & qF_{p,q,n} \\ F_{p,q,n} & qF_{p,q,n-1} \end{bmatrix} \\ &= \begin{bmatrix} F_{p,q,m+1}F_{p,q,n+1} + qF_{p,q,m}F_{p,q,n} & qF_{p,q,m+1}F_{p,q,n} + q^2F_{p,q,m}F_{p,q,n-1} \\ F_{p,q,m}F_{p,q,n+1} + qF_{p,q,m-1}F_{p,q,n} & qF_{p,q,m}F_{p,q,n} + q^2F_{p,q,m-1}F_{p,q,n-1} \end{bmatrix} \end{aligned}$$

So, we get $F_{p,q,m+n} = F_{p,q,m}F_{p,q,n+1} + qF_{p,q,m-1}F_{p,q,n}$.

□

Remark 3.7. From Theorem 3.6, if $p=1$ and $q=1$ then the shifting property is obtained,

$$\text{i.e., } F_{l,l,m+n} = F_{l,l,m}F_{l,l,n+1} + F_{l,l,m-1}F_{l,l,n}. \text{ It is similarly as } F_{m+n} = F_m F_{n+1} + F_{m-1}F_n.$$

APPLICATIONS

In this section we give the solutions of some Diophantine equations by applying Theorem 3.2 and Theorem 3.4.

Theorem 4.1. If p, q and n are positive integers then $(x, y, z) = (F_{p,q,n+1}, F_{p,q,n-1}, F_{p,q,n})$ and $(x, y, z) = (F_{p,q,n-1}, F_{p,q,n+1}, F_{p,q,n})$ are solutions of Diophantine equation $xy - z^2 = (-1)^n q^{n-1}$.

Proof. The result follows immediately from Theorem 3.2.

□

Theorem 4.2. Let p, q and n are positive integers. If $(w, x, y, z) \in A \cup B$ then (w, x, y, z) is the solution of Diophantine equation $wx - yz = (-1)^{n-1} pq^{n-2}$ where $A = \{(F_{p,q,n-2}, F_{p,q,n+1}, F_{p,q,n-1}, F_{p,q,n}), (F_{p,q,n-2}, F_{p,q,n+1}, F_{p,q,n}, F_{p,q,n-1})\}$ and $B = \{(F_{p,q,n+1}, F_{p,q,n-2}, F_{p,q,n-1}, F_{p,q,n}), (F_{p,q,n+1}, F_{p,q,n-2}, F_{p,q,n}, F_{p,q,n-1})\}$

Proof. The result follows immediately from Theorem 3.4.

□

CONCLUSIONS

In this paper, some identities for (p,q) Fibonacci numbers are established by using matrix methods and the solutions of some Diophantine equations are presented by applying these identities.

ACKNOWLEDGEMENT

This research was partly supported by Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi (RMUTT), Pathum Thani, THAILAND. (RMUTT Annual Government Statement of Expenditure in 2017)

REFERENCES

Falcon, S. & Plaza, A. (2007). On the Fibonacci k-numbers. *Chaos, Solitons and Fractals*. 32, 1615 - 1624.

Falcon, S. & Plaza, A. (2007). The k-Fibonacci Sequence and the Pascal 2-Triangle, *Chaos, Solitons and Fractals*. 33, 38 - 49.

Falcon, S. & Plaza, A. (2008). On the 3-Dimensional k-Fibonacci Spiral. *Chaos, Solitons and Fractals*. 38, 993 - 1003.

Koshy, T. (2001). *Fibonacci and Lucas Number with Applications*. New York: Wiley-Interscience

Suvarnamani, A. & Tatong, M. (2015). Some Properties of (p,q) - Fibonacci Numbers. *Science and Technology RMUTT Journal*. 5(2), 17 - 21.

Suvarnamani, A. (2016). Some Properties of (p,q) - Lucas Number. *Kyungpook Mathematical Journal*. 56, 367 - 370.

Suvarnamani, A. (2016). On the Odd and Even Terms of (p,q) - Fibonacci Number and (p,q) - Lucas Number. *NSRU Science and Technology Journal*. 8(8), 73 - 78.

Vajda, S. (1989). *Fibonacci and Lucas Number and the Golden Section*. Chichester, UK: Ellis horwood.