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	 เป็นที่ยอมรับกันดีว่าโรคอ้วนเป็นหนึ่ งในปัจจัยที่  
สำ�คัญที่สุดในการทำ�ให้เกิดการเปลี่ยนแปลงการทำ�งาน 
ของหัวใจและหลอดเลือด ผู้ที่ เป็นโรคอ้วนมีความทุกข์
ทรมานจากความเสี่ยงต่อการเสียชีวิตจากโรคดังกล่าว ซึ่ง
คาดว่าจะเกี่ยวเนื่องกับการทำ�งานลดลงของระบบประสาท 
พาราซิมพาเทติก และ/หรือการกระตุ้นการทำ�งานของระบบ
ประสาทซิมพาเทติก ในปัจจุบันมีวิธีการประเมินการทำ�งาน
ของระบบประสาทอัตโนมัติที่ควบคุมการทำ�งานของหัวใจ
ด้วยการวัดค่าความแปรปรวนของการเต้นของหัวใจ (heart 
rate variability, HRV) ซึ่งเป็นวิธีการที่ง่าย ไม่เป็นอันตราย
และมีประสิทธิภาพในการประเมินปัจจัยทางสรีรวิทยาที่มี
อิทธิพลต่อจังหวะการเต้นของหัวใจ HRV ที่สูงขึ้นจะเป็น
สัญญาณที่ดีของการปรับตัวและเป็นเครื่องหมายของผู้ที่มี 
สขุภาพดซีึง่หมายถงึมกีารทำ�งานของระบบประสาทอตัโนมตัทิีด่ี 
และมปีระสทิธภิาพ ในขณะทีก่ารม ีHRV ตํา่ลงมกัจะแสดงถงึ 
การทำ�งานของระบบดังกล่าวที่ผิดปกติและการปรับตัวที่ 
ไม่มีประสิทธิภาพ ส่งผลทำ�ให้การทำ�งานทางสรีรวิทยาของ
ผู้ป่วยเลวลง บทความนี้กล่าวถึงกลไกของ HRV การกระตุ้น 
ระบบประสาทซิมพาเทติก และปัจจัยต่างๆ ที่มีผลต่อ 
ความดันเลือดในเด็กและวัยรุ่นที่เป็นโรคอ้วน

	 It is established that one of the most important 
characteristics of obesity is cardiovascular alterations. 
Obese individual suffers from an increased mortality 
risk supposedly due to cardiovascular disorders related 
to either continuously lowered parasympathetic and/or  
sympathetic activation. Presently, heart rate variability 
(HRV) is one of the ways to assess cardiac autonomic 
function. It is recognized as non-invasive and powerful 
means for evaluating physiological factors influencing 
the normal rhythm of the heart. Higher HRV is a signal 
of good adaptation and characterizes a healthy person 
with efficient autonomic mechanisms, while lower HRV 
is frequently an indicator of abnormal and insufficient 
adaptation of the autonomic nervous system (ANS),  
provoking poor patient’s physiological function. In this 
paper, we have discussed mechanisms of HRV, the 
sympathetic nervous system activation in human obesity 
and various factors modulating blood pressure in obese 
children and adolescents.
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Introduction
	 Obesity is considered a serious health crisis.1 
The consequences of this condition include arterial 
hypertension, atherosclerosis, dyslipidemia, diabetes, 
obstructive sleep apnea, musculoskeletal abnormalities, 
depression and a poorer quality of life.2, 3 Numerous 
studies have also demonstrated that obesity produces 
abnormalities in the function of the autonomic nervous 
system (ANS) in children and adolescents.4, 5 Heart rate 
variability (HRV) is one of the ways to assess autonomic  
behaviour. It is a simple and non-invasive tool for  
detecting and studying autonomic heart dysfunction in 
various conditions, including obesity.6 Analyses of HRV 
indices in the frequency domain suggest that obese 
children exhibit higher sympathetic activity and lower 
parasympathetic activity in comparison to children 
within the normal weight range. 4, 7-10 On the other hand, 
reductions in both sympathetic and parasympathetic  
activities are also reported in obese children.11, 12 
Besides, using functional autonomic tests, normal 
sympathetic activity and parasympathetic hypoactivity 
are demonstrated.13 An increase in ratio between the 
sympathetic and parasympathetic elements of the ANS 
(low frequency power/high frequency power, LF/HF 
ratio) and a reduction in the parasympathetic activity on 
the heart (HF index) in obese children when compared  
to children within the normal weight range have also 
been shown.4 Recently, we found that children and 
adolescents with overweight or obesity demonstrated  
comparable HRV parameters in either supine or upright 
positions compared to healthy normal weight peers  
indicating no modulation in the ANS function by  
obesity.14 Nonetheless, investigating the sino-aortic 
baroreceptor heart rate reflex upon a postural change,  
a lying position (supine) to standing (upright) position, has 
shown a lower heart rate increase in obese adolescents  
compared to normal counterparts although there were 
no changes in HRV parameters (unpublished data). 
We suggest that obesity may induce impairment of 
baroreflex sensitivity. 

Definition and mechanisms of HRV
	 HRV is a non-invasive electrocardiographic marker 
indicating the activity of the sympathetic and vagal 
components of the ANS on the sinus node of the heart.  
It expresses the total amount of variations of both  
instantaneous HR and  RR (or NN) intervals  (intervals   
between QRS   complexes   of   normal   sinus  
depolarisations)15 so that the tonic baseline autonomic 
function is analysed. In a normal heart with an integer 
ANS, there are continuous physiological variations of 
the sinus cycles reflecting a balanced sympthovagal 
state and normal HRV.16 In a damaged heart suffered 
from myocardial necrosis, the changes in activity in the  
afferent and efferent fibers of the ANS and in the  
local neural regulation contribute to the resulting  
sympathovagal imbalance reflected by a diminished HRV. 

Measurements of HRV
	 HRV can be assessed in two ways: by calculation  
of indices17 based on statistical operations on NN 
intervals (time domain analysis) or by spectral  
(frequency domain analysis) of an array of NN intervals.18 
Both methods involve accurate timing of R waves. The 
analysis can be performed on short electrocardiogram 
(ECG) segments (lasting from 0.5 to 5 minutes) or on 
24-hour ECG recordings. 

Time domain analysis 
	 The HRV time domain analysis expressed in unit 
time (milliseconds), every normal NN intervals (sinus 
beats) is quantified during a determined time interval 
and, it is calculated the translator indices of fluctuations 
during the cardiac cycles.19 Indices in the time domain, 
corresponding to any point in time (Table 1), are20-22

	 a) 	 SDNN - Standard deviation of all normal NN 
intervals recorded in a time interval;
	 b)	 SDANN – Represents the standard deviation 
of the normal NN intervals means, every 5 minutes in  
a time interval;
	 c) 	 SDNNi – It is the mean of the standard deviation 
of normal NN intervals every 5 minutes;
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	 d) 	RMSSD - is the root-mean square of differences 
between adjacent normal NN intervals in a time interval;
	 e) 	 pNN50 - Represents the percentage of adjacent 
NN intervals with a difference of duration greater than 
50 ms.
	 The SDNN, SDANN and SDNNi obtained from 
long term records represent the sum of sympathetic 
and parasympathetic activities. They are not useful 
for distinguishing when changes in HRV are due to 
increased sympathetic tone or the withdrawal of vagal 
tone.23 The RMSSD and pNN50 indices represent the 
parasympathetic activity20, 21 as they are found from the 
analysis of adjacent NN intervals.24

Frequency domain analysis
	 This analysis decomposes the HRV in fundamental 
oscillatory components (Table 2), whereas the main 
ones are19:

	 a) 	 High frequency component (High Frequency - HF),  
ranging from 0.15 to 0.4 Hz, which corresponds to the 
respiratory modulation and is an indicator of the vagal 
activity on the heart;
	 b) 	Low frequency component (Low Frequency - LF),  
ranging between 0.04 and 0.15 Hz, which is due to both 
the vagal and sympathetic activiy on the heart, with a 
majority of the sympathetic ones;
	 c) 	 Components of very low frequency (Very Low 
Frequency - VLF) and ultra-low frequency (Ultra Low  
Frequency - ULF) - Indices less used whose physiological  
explanation is not well established and seems to be 
related to the renin-angiotensin-aldosterone system, 
thermoregulation and the peripheral vasomotor tone. 
	 The LF/HF ratio reflects the absolute and relative 
changes between the sympathetic and parasympathetic  
components of the ANS, by characterizing the  
sympathetic vagal balance on the heart.

Table 1  Time domain parameters22

Variable Units Description

SDNN ms standard deviation of all NN intervals

SDANN ms standard deviation of averages of NN intervals in all 5-minute segments of the entire recording

SD (or SDSD) ms standard deviation of differences between adjacent NN interval

RMSSD ms square root of the mean of the sum of the squares of differences between adjacent NN interval

pNN50 % percent of difference between adjacent NN intervals that are greater than 50 ms

Table 2  Frequency domain parameters22

Variable Units Description Frequency range

Total power ms2 variance of all NN intervals <0.4 Hz

ULF ms2 ultra low frequency <0.003 Hz

VLF ms2 very low frequency <0.003-0.04 Hz

LF ms2 low frequency power 0.04-0.15 Hz

HF ms2 high frequency power 0.15-0.4 Hz

LF/HF ratio ratio of low-high frequency power



Srinagarind  Med  J  2011:  26(2)ศรีนครินทร์เวชสาร 2554; 26(2) 139

Wilaiwan Khrisanapant, et al.วิไลวรรณ กฤษณะพันธ์ และคณะ

The sympathetic nervous system activation in human 
obesity 
	 In obese people with normal blood pressure, the 
sympathetic outflows to the kidneys and skeletal muscle 
vasculature are augmented, often 2- to 3-folds, and the 
sympathetic outflow to skin and the hepato-mesenteric 
circulation and the adrenal medullary secretion of  
epinephrine are normal, whereas the sympathetic outflow  
to the heart is reduced, with cardiac norepinephrine 
spillover being only 40% to 50% of that found in healthy, 
lean people.25, 26 The sympathetic nervous system 
is activated in human obesity and in the analogous  
experimental obesity produced by overfeeding leading 
to hypertension. The causes remain doubtful and may 
be multiple (Figure 1).27

	 In obesity, adipocytes and other cells of adipose 
tissue synthesize and release a number of bioactive  
signaling molecules, namely adipokines. These 
comprise adiponectin and leptin, resistin and other 
inflammatory cytokines (secreted predominantly by 
stromal macrophages in adipose tissue), including 
tumour necrosis factor-α (TNF-α) and interleukin-6 
(IL-6).28, 29 The production of several adipokines appears 
to be dysregulated in individuals with obesity; such 
anomalies potentially provide a direct link between 
obesity, inflammation and an insulin-resistant state 
(Figure 1).29-31 Plasma levels of leptin are elevated in 
individuals with raised blood pressure.32 We found 
similar findings in overweight and obese children and 
adolescents (unpublished data). Moreover, studies in 
rats demonstrate that the infusion of leptin induces an 
increase in arterial blood pressure (potentially mediated  
through the sympathetic nervous system)33, 34, impaired 
endothelial function35 and an increase in oxidative 
stress.36 By contrast, others have found that leptin exerts 
a vasodilatory effect, which appears to be mediated 
through an increase in the production of NO.37, 38 The 
discrepancy in rats studies could be due to chronic 
infusion performed in conscious rats33, 34 and bolus 
infusion in anesthetized rats.37, 38 The expression 
of these cytokines in adipose tissue may act to  
exacerbate the inflammatory responses associated with  
atherosclerosis28, 30, and may equally contribute to 

the development of insulin resistance.39 Recently, we 
demonstrated increases in C-reactive protein (CRP), 
leptin, insulin and oxidative stress levels but decreases  
in nitrate/nitrite, redox ratio (GSH/GSSG ratio) in  
obese adolescents compared to normal weight ones 
(unpublished data).40 
	 The increased activity of the renin–angiotensin  
system in obese patients may enhance vasoconstriction,  
as a result, leading to an increase in blood pressure  
(Figure 1).41-43 Enhanced signalling through the 
vasoconstrictor angiotensin (Ang) II44 and a direct 
stimulation due to expansion of fat mass42 subsequently 
increased insulin resistance. Furthermore, Ang II may 
suppress adiponectin protein expression leading to 
development of insulin resistance and type 2 diabetes.44 
Chronic activation of the sympathetic nervous system 
in obese individuals may contribute to hypertension 
through sympathetic modulation of cardiac output, fluid 
retention and vascular resistance.43, 45 Such a potentially 
harmful response may be mediated through leptin  
signalling33, or through increased levels of free fatty 
acids46, modifications in insulin sensitivity or a combination 
of these factors. Finally, obesity-related structural and 
functional changes in the kidney may further magnify 
the hypertensive effects of obesity through increased 
sodium and fluid retention, and these changes have also 
been linked to activation of the sympathetic nervous  
system and to enhanced renin–angiotensin signaling.47

	 Visceral obesity promotes an increase in the  
availability of free fatty acids, potentially mediated 
through the hydrolysis of stored adipocyte triglyceride 
by a range of lipases, including triglyceride lipase,  
lipoprotein lipase, hormone-sensitive lipase and  
endothelial lipase in adipose tissue.48-50 Such increases 
in circulating free fatty acids lead to triglyceride  
accumulation in muscle and liver (in the form of hepatic 
steatosis), and to hypertriglyceridaemia subsequent to 
enhanced hepatic production of VLDL.51-53 As free fatty 
acids may also compete with glucose for cellular uptake 
and metabolism, their action can potentiate a reduction 
in insulin sensitivity.54 Increments in blood pressure may 
also be due to enhanced release of free fatty acids from 
adipose tissue in obese patients through a variety of 
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mechanisms including activation of α1-adrenoceptor-
mediated vasoconstriction, attenuation of endothelial 
production of NO with induction of oxidative stress 
and inhibition of insulin-mediated vasodilation.53, 55 
Abundance of evidence supporting a role of free fatty 
acids as a direct cause of elevated blood pressure in 
obesity has been reviewed by Sarafidis and Bakris.53 
	 OSA is, in fact, one causal mechanism of sympathetic  
activation in obesity.56 It should be added that there are, 
however, 2 points of disagreement. The first is that no 
mechanism has yet been proposed by which nocturnal 
sympathetic stimulation during apneic episodes can be 
generalized to round-the clock sympathetic activation. 
The second is that the reversal of OSA with continuous  
positive airway pressure therapy does not lower  
sympathetic nervous system activity.57

	 Additionally, the rate of NO production in the central 
nervous system plays an important role in modulating 
the sympathetic/parasympathetic regulation of blood 
pressure.58, 59 Existing evidence suggests that the NO 
pathway is central to mediating the vasodilatory action  
of insulin, an important determinant of glucose  
uptake that has been shown to be blunted in insulin- 

resistant patients.60 Indeed, NO signalling may be 
dysfunctional in individuals with insulin resistance and 
hyperglycaemia.61-63 Clearly, defective NO signalling 
may represent a key mechanism in promoting  
hypertension in insulin-resistant patients. Similarly,  
insulin resistance leads to activation of the renin- 
angiotensin system while, as discussed above, elevated 
levels of Ang II can further promote insulin resistance, 
perpetuating this response.44 Thus, it appears that 
on balance, the vasodilatory actions of insulin are  
blunted in insulin-resistant states, while the activity of 
vasoconstrictor systems is enhanced.
	 Insulin resistance and hyperinsulinaemia are  
associated with over-activity of the sympathetic nervous 
system not only in animal models64, 65, but also in both 
normotensive and hypertensive individuals66, 67; such 
hyperactivity may be responsible in part for elevations 
in blood pressure. Although the precise mechanisms 
involved in this response remain to be elucidated, 
enhanced sympathetic activity and hypertension in 
response to hyperinsulinaemia may be mediated by 
changes in baroreflex activity68, 69 and by the action of 
insulin on the central nervous system.64

Figure 1	 Possible pathophysiological mechanisms which may be responsible for obesity-induced hypertension. 
Mechanisms and interrelationships between the variables are discussed in the text. NEFA, nonesterified 
fatty acids; RAAS, renin–angiotensin–aldosterone system; SNS, sympathetic nervous system; BRS, 
baroreflex sensitivity; NO, nitric oxide; OSA, obstructive sleep apnea (modified from Esler M, et al.).27
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Conclusions
	 HRV has gained importance today as a technique 
to explore the ANS, which has an important role in  
maintaining homeostasis. The widest possible use, the 
cost-effectiveness in the application of the technique 
and ease of data makes the HRV an interesting option 
for interpretation of the functioning of the ANS and a  
promising clinical tool to assess and identify impairments  
on health. Obesity in children and adolescents  
demonstrates decreased HRV which has been shown 
to be a strong predictor of increased cardiac and/
or arrhythmic mortality. Several pathophysiological 
mechanisms may contribute to higher blood pressure 
in children and adolescents with obesity which may turn 
into hypertension in adulthood.
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