

# การตรวจหาความสัมพันธ์ของ เชื้อสแตฟฟิโลโคคัส ออเรียส ที่สร้างสารพิษ ในอาหารกับที่พบริบุคคลกับอาหาร

จริยา ชนาวนินทร์ Ph.D. \*

ครุณ โภคินันต์สาณิชย์ วท.ม. \*

อรุณรัตน์ รั่นพฤกษ์ วท.ม. \*\*

\*ภาควิชาจุลชีววิทยา คณะแพทยศาสตร์

มหาวิทยาลัยขอนแก่น

\*\*ภาควิชาภูมิคุ้มกันวิทยาคลินิก

คณะเทคนิคการแพทย์ มหาวิทยาลัยขอนแก่น

## Study on the correlation between the enterotoxin-producing *Staphylococcus aureus* isolated from prepared food and the cooks

\*Chariya Chomvarin Ph.D.

\*Daroon Kotimanusvanij M.Sc.

\*\*Arunrat Romphruk M.Sc.

\*Department of Microbiology,

Faculty of Medicine, KKU.

\*\*Department of Clinical Immunology,

Faculty of Associated Medical Sciences, KKU.

## บทคัดย่อ

เชื้อสแตฟฟิโลโคคัส ออเรียส ได้รับการศึกษาอย่างกว้างขวาง เมื่อจากมีคุณสมบัติที่สามารถสร้างสารพิษ ซึ่งทนความร้อนได้ดีในอาหาร(1) และเนื่องจากอาหารส่วนใหญ่เป็นอาหารที่ว่างขายในเขตจังหวัดขอนแก่น เพื่อตรวจหาสารพิษที่พบริบุคคลกับอาหารและในจมูกและมือผู้ประกอบอาหารว่าเป็นสารพิษชนิดใดและมีความสัมพันธ์กันเพียงใด และอาหารประเภทใดเมื่อยั่งอาหารเสี่ยงต่อโรคอาหารเป็นพิษจากเชื้อนี้ได้มาก เพื่อเป็นข้อมูลทางระบาดวิทยาและเป็นแนวทางในการควบคุมโรคอาหารเป็นพิษได้ดียิ่งขึ้น

จากการศึกษาอาหารที่ว่างขายในจังหวัดขอนแก่นจำนวน 193 ตัวอย่าง ส่วนใหญ่พบว่าจำนวนแบคทีเรียทั้งหมดอยู่ระหว่าง  $10^6$  –  $10^7$  เชลล์ต่อกรัมอาหาร เชื้อ *Staphylococcus* พบร้อยละท่วง  $10^5$  –  $10^6$  เชลล์ต่อกรัมอาหาร เชื้อ *S.aureus* พบร้อยละท่วง  $10^3$  –  $10^4$  เชลล์ต่อกรัมอาหาร เชื้อ *Staphylococcus coagulase positive* พบร้อยละท่วง  $10^2$  –  $10^4$  เชลล์ต่อกรัมอาหาร

ตัวอย่างอาหารที่พบเชื้อสร้างสารพิษส่วนใหญ่พบว่าจำนวนแบคทีเรียทั้งหมด จำนวนเชื้อ *staphylococcus* และ *S. aureus* พบร่วมกันอย่างสูง ยกตัวเชื้อ *Staphylococcus coagulase positive* พบร่วมสร้างสารพิษมากที่สุดเมื่อเชื้อจำนวน  $10^2$  -  $10^3$  เชลล์ต่อกรัมอาหาร อาหารที่พบสารพิษและมีเชื้อ *Staphylococcus coagulase positive* มากกว่า  $10^5$  เชลล์ต่อกรัมอาหารพบอยู่ 4 ตัวอย่าง (11.76%) ของอาหารที่พบสารพิษหรือ 2.07% ของตัวอย่างอาหารทั้งหมด

จากจำนวนตัวอย่างอาหาร 193 ตัวอย่างพบอาหารที่มีเชื้อ *Staphylococcus coagulase positive* อยู่ 97 ตัวอย่าง (50.26%) พบอาหารที่มีเชื้อสร้างสารพิษอยู่ 34 ตัวอย่าง (17.62%) ชนิดของสารพิษที่พบมากที่สุดคือ ชนิด ABCD (25.64%) รองลงมาคือชนิด A (23.08%) ชนิด C (20.5%) ชนิด ABD (15.31%) ชนิด D,ACD (5.13%) และชนิด AD,BD (2.56%) ตามลำดับ อาหารพื้นเมืองอีสานประเพกษาและยำลับ พนจำนวนตัวอย่างที่พบเชื้อสร้างสารพิษอยู่จำนวนมากและร้านอาหารที่พบเชื้อสร้างสารพิษในอาหารพบจำนวน 28 ร้านใน 98 ร้าน (28.57%)

จากการตรวจเชื้อจากจมูกและมือผู้ประกอบอาหารจำนวน 182 คน พบร่วมกับเชื้อ *Staphylococcus coagulase positive* อยู่ 47.3% พบร่วมที่สร้างสารพิษอยู่ 14.5% ชนิดของสารพิษที่พบมากที่สุดคือ A (29.6%) และจากมือพบเชื้อ *Staphylococcus coagulase positive* อยู่ 18.7% พบร่วมที่สร้างสารพิษอยู่ 4.4% ชนิดของสารพิษที่พบมากที่สุดคือ A และ ABCD (25%) แต่ไม่พบความสัมพันธ์ของสารพิษจากจมูกและมือของผู้ประกอบอาหารคนเดียวกัน จากอาหารและมือ/หรือจากอาหารและจมูกของผู้ประกอบอาหารในร้านเดียวกันพบเชื้อที่สร้างสารพิษชนิดเดียวกันเพียง 2.04% จากผลการทดลองนี้ที่ให้เห็นว่าการแพร่กระจายของเชื้อ *Staphylococcus aureus* ในอาหาร น่าจะมาจากปัจจัยอื่นมากกว่าที่จะมาจากการแพร่กระจายของเชื้อ *S. aureus* ในอาหาร ภายนอกอาหาร โดยเฉพาะอาหารที่ปรุงร้อนๆ หรือกระบวนการขยายน้ำที่ต้องการที่จะให้เชื้อ *S. aureus* ได้เจริญเติบโต เช่น การหุงต้ม การต้ม การต้มน้ำ หรือการต้มน้ำอุ่น ภายนอกอาหารโดยทั่วไป รวมถึงการสูบบุหรี่ หรือการเผาไหม้อาหาร ซึ่งจะช่วยให้เชื้อ *S. aureus* สามารถเจริญเติบโตได้ดี

## Abstract

*Staphylococcus aureus* was widely studied because it is capable of producing heat-stable enterotoxin in the prepared food which is now popular in the general public (1). This study was designed to experimentally survey the prepared foods in Khon Kaen, to identify the toxins therein and microorganisms in the nasal cavities and hands of the cooks, and to find their correlations. The informations to obtain would be beneficial for the prevention of staphylococcal food poisoning and the management aspect of epidemiology.

Our experimental studies on 193 prepared food samples collected in Khon Kaen and on KKU campus revealed that the majority of samples contained  $10^6$  -  $10^7$  bacterial cells per gram of food. The staphylococci were  $10^{5-10^6}$  cells/gm., *S. aureus*  $10^3$ - $10^4$  cells/gm., and staphylococcus coagulase positive  $10^2$ - $10^4$  cells/gm. of food.

The food samples containing the enterotoxin-producing *S. aureus* were such that the total bacteria, staphylococci, and *S. aureus* were quite high in number except the *Staphylococcus coagulase positive* bacteria where only  $10^2$  -  $10^3$  cells/gm. of food could be found the highest the enterotoxin-producing *S. aureus*.

Four food samples were found to have enterotoxins and staphylococcus coagulase positive more than  $10^5$  cells/gm. of food (11.76% of enterotoxin-producing *S. aureus* food samples or 2.07% of the total food samples)

We have found 97 food samples containing staphylococcus coagulase positive bacteria out of 193 (50.26%). The food samples accommodating enterotoxin-producing *S. aureus* were 34 in number (17.62%). The most frequently found enterotoxin types were ABCD (25.64%); and A (23.08%), C(20.5%), ABD

(15.31%), D,ACD(5.13%), AD,BD(2.56%) were found in the less frequency in that order. The northeast of Thailand prepared foods (i.e. preserved raw pork-nam, papaya salad-- som-tom, minced beef salad-larb) were found to have predominated the number of positive samples. Twenty-eight out of 98 prepared food shops (28.57%) were found to be positive for the enterotoxin-producing *S. aureus*

The swab samples from 182 cooks indicated that the nasal cavity samples yielded 47.3% of the staphylococcus coagulase positive ; and there were 14.48% of them that produced the enterotoxin. The most prevalent toxin was type A (29.63%). The hand swab samples showed 18.7% of the staphylococcus coagulase positive and 4.4% out of this produced enterotoxins. The enterotoxins A and ABCD were most frequently indentified (25%). We have found no significant correlation of enterotoxins between the nasal cavity origin and the hand origin of the same cook. We can conclude from our experiment that the origin of this bacteria may be not from the cook, but rather from the raw material, from the environment while waiting for the buyers especially the food sample without the lids, and while delivering from the kitchen including the people involved.

## Introduction

*Staphylococcus aureus* is one of the main causative agents for food poisoning in different parts of the globe (1). It is so because of its capability to produce 7 types of heat stable-enterotoxins namely A,B,C<sub>1</sub>,C<sub>2</sub>,C<sub>3</sub>,D and E. They can cause food poisoning only 2-6 hrs. after ingestion (1-2).

The *S. aureus* epidemic broke out many times a year in Thailand. Eight out of 12 food poisoning outbreaks were reported in 1991. Regional observation indicates that the northeast of Thailand has the greatest incidence (3). It is interesting to study and find out what kind of enterotoxins are in various dishes. How much relation would there be between enterotoxins from the nose and hands of the cook with that found in prepared food? As is generally known, the nose, hand, wound, and skin are the most frequent sources of contamination (1). We planned to search for the answers to, 1) what kinds of prepared

food are most likely to spread this bacteria? 2) what type of enterotoxins are found? These will be leading to the safer practices in the prevention of food poisoning.

Enterotoxin type A of *S. aureus* were found in most food samples studied elsewhere, the next less frequently found were type D, AD; type B,C, and E were found in very less frequently (4,5). In Thailand, Sumonta et al (6) studied enterotoxins of *S. aureus* from nine samples of food and the patients and identified enterotoxin type A 33.5% (food sold in the market and food known to cause food poisoning). The enterotoxin type D was found 27.2% (frozen meat and the strains isolated from the patients). This group of researchers reported the finding of *S. aureus* coagulase positive in food poisoning samples amounted to  $4.0 \times 10^5 - 4.55 \times 10^5$  cells/gm of food.

The survey of the *S. aureus* in the nasal cavities of the hospital cooks in Barzil revealed the enterotoxin types B,C,AE and ADE (8).

The purpose of this study would be to 1) isolate *S. aureus* in the food sample, Staphylococcus coagulase positive in the food samples, nasal cavities and hands of the cooks, 2) do the typing of enterotoxins, and 3) to find the relationships of enterotoxins and the risky food samples caused by this bacteria including the quantity of the restaurants possessing enterotoxin-producing *S. aureus* bacteria.

## Materials and Methods

### 1. Selection of Prepared Food Venders for Sample Collection

The prepared food samples were fetched from the prepared food venders on KKU campus and in the city of Khon Kaen.

### 2. Type of Prepared Foods

The types of prepared food collected were curry, noodle soup, stir-fried, papaya salad, minced-beef half-cook salad (larb), preserved raw pork (nam), preserved raw pork with rice (nam-cook), bamboo-shoot salad, desserts, ice-cream, pepper and soil-sauce mixes and others.

### 3. Sample Collection

The food samples were kept in the ice cylinders while carrying to the KKU Dept. Microbiol. Laboratory.

### 4. Collection of the Samples from the Cooks

The dry cotton swabs were applied to collect the samples from the nasal cavity and the wet swabs were also used to collect the samples from hand of the cooks in the same persons. The dry and wet samples were put in the transport media and hurried to the laboratory.

### 5. Laboratory Experiment

The standard procedures as published by references 9-13 were followed

5.1 Added 450 ml. of phosphate buffer salt (PBS) pH 7.0 to 50 gm of food sample and diluted the sample to 1:105 Performed the total bacterial count by pour plate method .

5.2 *S. aureus* were cultured on Mannitol salt agar by the spread plate method then examined and counted Staphylococci and *S. aureus*.

5.3 Cultured the sample on Baird Parker medium to isolate the staph. coagulase positive bacteria by the spread plate method. The positive colonies would be shiny black in color surrounding the clear or opaque colonies. The shiny black ones were collected to test for the coagulase enzyme. This was done by the coagulation test with human serum, the presence of the enzyme (coagulase) would cause the coagulation,

5.4 The swabs from the nasal cavity and the hand of the cooks were done as 5.3

5.5 Identification of the enterotoxin was carried out after the published techniques (6,7,12). The staphylococcus coagulase positive were cultured in the brain heart infusion broth and subsequently transferred to the cellophane over agar medium. This was incubated at 37°C for 24 hrs. The cells were then washed by 25 ml. PBS. (0.02M sodium phosphate, pH 7.4, in 0.9% NaCl and 1:104 merthiolate); and then were centrifuged at 4,000 rpm. for 15 minutes. The enterotoxins were in the suspension after centrifugation.

*S. aureus* species producing A,D,E, enterotoxins were kindly supplied by professor Dr. Merlin S. Bergdoll. Strain producing B enterotoxin was obtained from Thailand National Board of Research. Enterotoxin C producing bacteria was obtained from NCTC of the United Kingdom .

5.6 The Reversed Passive Latex Agglutination (RPLA) after Park and Szabo 1986 (14) was employed to indentify the types of enterotoxin.

## Result

We found from 193 prepared food samples that most of the samples contained the bacteria in the range of  $10^6$  to  $10^7$  cells/gm of food. The staphylococci were as densely populated as  $10^5$ - $10^6$  cells/gm. of food; *S. aureus* were  $10^3$  -  $10^4$  and Staph. coagulase positive were  $10^2$ - $10^4$  ( Data not shown)

**Table 1** Correlation between the bacterial number, type of bacteria and the enterotoxin-producing staphylococcus.

| Number of<br>bacteria<br>cells/gm.<br>of food | Positive Samples \$     |         |                         |         |                         |         |                         |         |
|-----------------------------------------------|-------------------------|---------|-------------------------|---------|-------------------------|---------|-------------------------|---------|
|                                               | Total bacteria          |         | Staphylococcus          |         | <i>S. aureus</i>        |         | S. coag +*              |         |
|                                               | Number<br>of<br>samples | Percent | Number<br>of<br>samples | Percent | Number<br>of<br>samples | Percent | Number<br>of<br>samples | Percent |
| $>10^1$ - $10^2$                              | 0                       | 0       | 0                       | 0       | 1                       | 2.94    | 1                       | 2.94    |
| $>10^2$ - $10^3$                              | 0                       | 0       | 3                       | 8.82    | 3                       | 8.82    | 13                      | 38.24   |
| $>10^3$ - $10^4$                              | 3                       | 8.82    | 2                       | 5.88    | 7                       | 20.59   | 9                       | 26.47   |
| $>10^4$ - $10^5$                              | 2                       | 5.88    | 9                       | 26.47   | 10                      | 29.41   | 7                       | 20.59   |
| $>10^5$ - $10^6$                              | 6                       | 17.65   | 10                      | 29.41   | 11                      | 32.35   | 3                       | 8.82    |
| $>10^6$ - $10^7$                              | 7                       | 20.59   | 9                       | 26.47   | 2                       | 5.88    | 1                       | 2.94    |
| $>10^7$                                       | 16                      | 47.06   | 1                       | 2.94    | -                       | -       | -                       | -       |
| Positive<br>Samples                           | 34                      | 17.62   | 34                      | 17.62   | 34                      | 17.62   | 34                      | 17.62   |

\*S. coag. + = Staphylococcus coagulase positive

- = no sample possesses bacteria to the specified number ( $10^7$ ) level.

Total Samples = 193

\$ = producing enterotoxin

Table one shows that the prepared foods readily available to the public have toxin- producing staphylococci about 17.62% (34 out of 193 samples). The samples with enterotoxins usually have total bacterial number greater than  $10^7$  cells/gm of food. The staphylococcus coagulase positive sample with the bacterial number of greater than  $10^5$  cells/gm. could cause food poisoning (6,7), which we found 4 samples (2.07% of total sample) in our series.

**Table 2** Food samples studied, number of *Staphylococcus* coagulase positive samples, toxin-positive samples and types of enterotoxin.

| Types of food sample                           | Number of Samples | Coag. positive sample | Toxin positive samples | Types of enterotoxin |      |      |      |      |       |      |       |
|------------------------------------------------|-------------------|-----------------------|------------------------|----------------------|------|------|------|------|-------|------|-------|
|                                                |                   |                       |                        | A                    | C    | D    | AD   | BD   | ABD   | ACD  | ABCD  |
| 1. O-liang (sweetened black coffee)            | 1                 | 1(100.00)             | 1(100.00)              | -                    | -    | -    | -    | -    | -     | -    | 1     |
| 2. Gaeng (Curry, vegetable soup)               | 38                | 12(31.51)             | 2(5.26)                | 2                    | -    | -    | -    | -    | -     | -    | -     |
| 3. Noodle soup                                 | 14                | 5(35.71)              | 3(21.43)               | -                    | 1    | -    | -    | -    | -     | -    | 2     |
| 4. Stir-fried dishes                           | 43                | 17(39.53)             | 4(9.3)                 | 1                    | 1    | 1    | -    | -    | -     | -    | 1     |
| 5. Papaya salad                                | 29                | 20(68.97)             | 5(17.24)               | 1                    | 1    | -    | -    | 1    | -     | 1    | 2     |
| 6. Larb (minced meat salad)                    | 18                | 13(72.22)             | 6(33.33)               | -                    | 3    | -    | 1    | -    | 2     | -    | 3     |
| 7. Nam (raw pork salad)                        | 18                | 12(66.66)             | 7(38.89)               | 3                    | 1    | 1    | -    | -    | 1     | 1    | -     |
| 8. Pla-rra (preserved raw fish)                | 8                 | 3(37.50)              | 0(0)                   | -                    | -    | -    | -    | -    | -     | -    | -     |
| 9. Bamboo-shoot salad and egg plant salad      | 4                 | 2(50.00)              | 1(25.00)               | 1                    | -    | -    | -    | -    | 1     | -    | 1     |
| 10. Icecream                                   | 7                 | 5(71.43)              | 2(28.57)               | -                    | 1    | -    | -    | -    | -     | -    | 1     |
| 11. Dessert                                    | 7                 | 4(57.14)              | 2(28.57)               | 1                    | -    | -    | -    | -    | -     | -    | -     |
| 12. Green papper source                        | 4                 | 1(25.00)              | 0(0)                   | -                    | -    | -    | -    | -    | -     | -    | -     |
| 13. Mee-ka-ti (noodle mixed with coconut milk) | 2                 | 2(100.00)             | 1(50.00)               | -                    | -    | -    | -    | -    | 1     | -    | -     |
| Total                                          | 193               | 97(50.26)             | 34(17.62)              | 9                    | 8    | 2    | 1    | 1    | 6     | 2    | 10    |
| Percent                                        |                   |                       |                        | 23.08                | 20.5 | 5.13 | 2.56 | 2.56 | 15.38 | 5.13 | 25.64 |

Table 2 indicates that 97 food samples (50.26%) were found to harbour *staphylococcus* coagulase positive. Thirty-four samples (17.26%) possessed enterotoxin and the most frequently found was ABCD type (25.64%). The next frequently detected were A (23.08%), C (20.5%) while the others were found in the successive smaller number. The uncooked samples (nam and salad) were greater in number of containing enterotoxins (38.89%). The minced meat salad (larb) was also found in the next quantity (33.33%), samples of icecream and desserts with entrotoxins made up 28.57% which was also great. O-liang and Mee-kati were so little in number that we can not conclude.

**Table 3** Location of contaminated enterotoxin in food shops and types of enterotoxin

| Location               | Number (shop) | Number of contamination |         | Types and number of enterotoxin |           |             |
|------------------------|---------------|-------------------------|---------|---------------------------------|-----------|-------------|
|                        |               | Number                  | Percent | one type                        | two types | three types |
| on KKU Campus          | 24            | 6                       | (25)    | 6                               | 0         | 0           |
| outside KKU. Campus    | 74            | 22                      | (29.73) | 16                              | 4         | 2           |
| Total Number (percent) | 98            | 28                      | (28.57) | 22                              | 4         | 2           |
|                        |               |                         |         | (78.57)                         | (14.29)   | (7.14)      |

As shown in table 3 there are 28.57% of the shops possessing contaminated enterotoxin producing *S. aureus* in food, and the majority (78.57%) of the contamination has one type of enterotoxin.

**Table 4** *Staphylococcus aureus* from the nasal cavities and hands of the 182 cooks

| Type of <i>S. aureus</i> | Number of Samples |          |        |          |
|--------------------------|-------------------|----------|--------|----------|
|                          | Nasal cavity      |          | Hand   |          |
|                          | Number            | Percent  | Number | Percent  |
| Negative sample          | 8                 | (4.4)    | 12     | (6.6)    |
| Coagulase positive       | 86                | (47.3)   | 34     | (18.7)   |
| Coagulase negative       | 88                | (48.4)   | 136    | (74.7)   |
| Total                    | 182               | (100.00) | 182    | (100.00) |

**Table 5** Contaminated cooks and enterotoxin production

| Enterotoxin production    | Number of samples |          |        |          |
|---------------------------|-------------------|----------|--------|----------|
|                           | Nasal cavity      |          | Hand   |          |
|                           | Number            | Percent  | Number | Percent  |
| Enterotoxin production    | 27                | (14.84)  | 8      | (4.4)    |
| No enterotoxin production | 155               | (85.16)  | 174    | (95.6)   |
| Total                     | 182               | (100.00) | 182    | (100.00) |

We can see in tables 4 and 5 that the *staphylococcus* coagulase positive could be found in 47.3%

**Table 6** Types of enterotoxin isolated from the cooks

| Type of enterotoxin                                  | Number of positive and negative isolates |            |        |           |
|------------------------------------------------------|------------------------------------------|------------|--------|-----------|
|                                                      | Nasal Cavity                             |            | Hand   |           |
|                                                      | Number                                   | Percent    | Number | Percent   |
| <i>S. aureus</i> coagulase + but no-toxin production | 50                                       | 68.6       | 26     | 76.5      |
| <i>S. aureus</i> coagulase + toxin production        | 27                                       | 31.4       | 8      | 23.5      |
| A                                                    | 8                                        | 9.3(29.63) | 2      | 5.9(25.0) |
| B                                                    | 1                                        | 1.2(3.7)   | -      | --        |
| C                                                    | 3                                        | 3.5(11.11) | 1      | 2.9(12.5) |
| AB                                                   | 3                                        | 3.5(11.11) | -      | --        |
| AC                                                   | 1                                        | 1.2(3.7)   | -      | --        |
| AD                                                   | 1                                        | 1.2(3.7)   | -      | --        |
| BC                                                   | 2                                        | 2.3(7.41)  | -      | --        |
| BD                                                   | 1                                        | 1.2(3.7)   | -      | --        |
| ABC                                                  | -                                        | --         | 1      | 2.9(12.5) |
| ABD                                                  | 4                                        | 4.7(14.81) | 1      | 2.9(12.5) |
| ACD                                                  | 1                                        | 1.2(3.7)   | 1      | 2.9(12.5) |
| ABCD                                                 | 2                                        | 2.3(7.4)   | 2      | 5.9(25.0) |
| Total isolates                                       | 86                                       | 100.0      | 34     | 100.0     |

**Note :** The figures in the parentheses are the percentage of the total contaminated isolates.

of the samples from the nasal cavities whereas 18.7% were from the hand samples. And only 14.84% of nasal cavity samples and 4.4% of hand samples produced enterotoxin.

Table 6 indicates that the majority of samples from the nasal cavity contain type A toxin (29.63%) and type ABD is next (14.81%). The samples from the hands contain types A and ABCD at the highest percentage of 25%

There is no correlation between the toxins from the nasal cavity and hand of the same cook, not the same type of toxin were produced.

**Table 7** Relations of enterotoxins isolated from foods and the cooks

| Enterotoxin production | Toxin isolated from food & nasal cavity of the cook |          | Toxin isolated from food and hands of the cook |          |
|------------------------|-----------------------------------------------------|----------|------------------------------------------------|----------|
|                        | Number of shops                                     | Percent  | Number of shops                                | Percent  |
| Same type              | 2                                                   | (2.04)   | 2                                              | (2.04)   |
| Different type         | 44                                                  | (44.91)  | 30                                             | (30.61)  |
| No toxin production    | 52                                                  | (53.06)  | 66                                             | (67.35)  |
| Total                  | 98                                                  | (100.00) | 98                                             | (100.00) |

Table 7 shows that there is so little correlation between the toxins isolated from the food samples and the nasal cavities and hands of the cook because only 2.04% of them produced the same type.

## Discussion and Conclusion

We have found *Staphylococcus coagulase* positive in 97 samples out of 193 (50.26%) and 34 samples containing the enterotoxin producing *S. aureus* (17.62%). The uncooked, prepared food samples were found to have high quantities of the enterotoxin producing *S. aureus* (Nam, Salad, 38.89%). The next is the uncooked meat salad (Larb) amounting to 33.33%. The third rank is icecream and desserts (28.57%). The noodles also contained the enterotoxin-producing bacteria in great quantities. This may be because of the original contamination prior to cooking and the cooking is not long enough to kill these germs. We have discovered the following enterotoxins in the order of great to small, ABCD, A,C, ABD. We

found D, ACD,AD and BD occasionally. The food samples with *staphylococcus coagulase* positive of  $10^5$  cells/gram are capable of producing food poisoning (4,5). This was found in 4 samples (11.76%) out of the toxin positive samples or 2% of 193. Almost of these positive samples were the traditional northeast dishes.

Our findings are different from that of Sumontha et al (6,7) who had done similar studies in Bangkok. The reasons are many, firstly the technique (Reverse passive latex agglutination) is rather sensitive (only 0.75 nanogram/ml of enterotoxin could be detected which allowed us to detect more types of toxins), secondly the food samples were collected from different location and environment which could mean different strains of bacteria. The enterotoxin type A, however, were detected in a high quantity just like in Bangkok. And lastly the difference of prepared foods, the origin of raw material, and the cooking procedure all of which could contribute to the different findings from that of the Bangkok results.

Comparing the findings in the food samples collected on KKU campus and outside, we discovered no significant difference. Concerning the origins of *Staph. coagulase* positive, we detected in more samples from the nasal cavities than from the hands. The toxins originated from the cooks were more of type A. The relationship of enterotoxin-producing *S. aureus*, and those from the hand was as little as 2.04%. This finding suggests that the bacteria in the uncooked samples could be in the raw materials rather than from the hand and nasal cavity. The time lapse between cooking and serving could also contribute to the problem. This could also make the air-borne route of contamination possible because many of the containers had no lids. The source of contamination might as well be from the customers themselves. Considering such variety of sources, one would have only little doubt that the enterotoxins could be so many types. We were not able to identify the cooks who exactly involved in the cooking processes. Many times the cooks and the persons who dished out the foods were not the same. The finding on correlation, therefore, are not satisfactory.

It is concluded that the half-cooked foods are most likely to cause food poisoning due to *S. aureus*. The correlation between the enterotoxins and the cooks could not be confidently stated because we were not able to pinpoint the cooks because many

people lent helping hands as already mentioned. It is therefore, not possible to infer from this study that the contamination originated from the raw materials, transportation, the cooking process, the handling of the prepared food or from the cooks themselves.

Most methods for epidemiological surveillance of Staphylococcal enterotoxins have been based on immunological procedures for the measurement of toxin protein in the culture fluids of suspect strains or in extracts of food contaminated with staphylococcal enterotoxins. These methods are dependent on sufficient amounts of toxin being produced in the absence of interfering bacterial products. That is why we followed this technique in conducting this experiment.

DNA techniques such as DNA hybridization, PCR were introduced to employ as an additional means of analyzing strains that carried the toxin gene. These techniques may be applied for the more accurate study in Epidemiology of *S. aureus*

## Acknowledgement

We sincerely thank Prof. Dr. M.S. Bergdoll, Food Research Institute for his provision of advices and reference bacteria to use in this research. We also thank Achariya Yamwongse, Khon Kaen Municipal Health Official, for her assistance in collecting the samples. We also like to express our sincere thanks to Mrs. Khawchai Cumsuk, Statistician, Epidemiology unit, Medical faculty, KKU. for analyzing the data for us.

We also thank Prof. Dr. Somboon SrungBoonmee for his advices on English

## References

1. Bergdoll MS. Enterotoxins. In : Easmon CSF and Adlam C (ed). *Staphylococci and staphylococcal infections*. New York : Academic Press, 1983. 559-598.
2. Marrack P, Kappler J. The Staphylococcal enterotoxins and their relatives. *Science* 1990; 248: 705-711.
3. "สรุปรายงานการผ้าระหว่างโรค" ปี 2534 กองระบาดวิทยา สำนักงานปลัดกระทรวงสาธารณสุข
4. Petras P, Maskova L. Detection of staphylococcal enterotoxigenicity III. Strains isolated in 1979-1980. *J Hyg Epidemiol Microbiol Immunol.* 1982; 26(1): 95-101.
5. Meloconian AK, Brun Y, Fleurette J. Enterotoxin production phage typing and serotyping of *Staphylococcus aureus* strain isolated from clinical materials and food. *J Hyg* 1983; 91(2):235-238.
6. สุมณฑา วัฒนสินธี, จุไรรัตน์ รุ่งโรจนารักษ์, ชัยลักษณ์ นินบดี. การศึกษา Enterotoxins ของเชื้อ *Staphylococcus aureus* วารสารกรมวิทยาศาสตร์การแพทย์. 2522;21: 257-270.
7. สุมณฑา วัฒนสินธี, จุไรรัตน์ รุ่งโรจนารักษ์, ชัยลักษณ์ นินบดี. การแพร่กระจาย *Staphylococcus aureus*. วารสาร กรมวิทยาศาสตร์การแพทย์. 2523;21:(4)193-207.
8. Castro MV, Laria ST. Enterotoxigenic *Staphylococcus aureus* in the nose of hospital food handlers, Joao Pessoa, Brazil. *Rev. Aude Publica. Sao Paulo*, 1984; 18(3): 235-245.
9. Foods and Drugs Administration, Association of Official Analytical Chemists. *Bacteriological analytical manual for foods*. Washington : 1976.
10. Harrigan WF. *Laboratories methods in food and dairy microbiology*. London:Aca demic Press, 1976.
11. International Commission on Microbiological Specifications for foods (ICMSF). *Microorgan isms in foods: their significance and meth ods of enumeration*. University of Toronto Press, 1978.
12. Thatcher FS, Clark DS. *Microorganism in food:their significance and enumeration*. University of Toronto Press, 1974.
13. Montville TJ. *Food Microbiology Volume II new and emerging technologies*. Roca Raton, Florida : CRC Press, 1986.
14. Park CE, Szabo R. Evaluation of the reversed passive latex agglutination (RPLA) test kits for detection of Staphylococcal enterotoxin A,B,C and D in foods. *Can J microbiol.* 1986;32:723-727.