

เคอร์คูมินเพิ่มการตอบสนองของหลอดเลือดและลดภาวะเครียดออกซิเดชันในหนูแรทที่เหนี่ยวนำให้เกิดภาวะ贫血ไม่ลัพติกอะนีเมียด้วยสารฟีนิลไอกราซีน

วันจิต อภัยจิต^{1*}, วนิดา ดรปัญหา², ยุพา คุ่งวิริยพันธุ์³

¹คณะแพทยศาสตร์ มหาวิทยาลัยมหาสารคาม, มหาสารคาม 44000

²คณะเทคโนโลยีการแพทย์ มหาวิทยาลัยขอนแก่น, ขอนแก่น 40002

³ภาควิชาสรีรวิทยา คณะแพทยศาสตร์ มหาวิทยาลัยขอนแก่น, ขอนแก่น 40002

Curcumin Increases Vascular Responses and Reduces Oxidative Stress in Phenylhydrazine-induced Hemolytic Anemia in Rats

Kwanjit Apajit^{1*}, Wanida Donpunha², Upa Kukongviriyapan³

¹Faculty of Medicine, Mahasarakham University, Mahasarakham 44000

²Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002

³Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002

หลักการและวัตถุประสงค์: เคอร์คูมินเป็นสารสำคัญในชิมันชัน (*Curcuma longa*) ซึ่งมีฤทธิ์ต้านออกซิเดชันและฤทธิ์ทางเภสัชวิทยาต่างๆ อย่างไรก็ตามผลของเคอร์คูมินต่อภาวะ贫血ไม่ลัพติกอะนีเมียนั้นยังไม่ทราบ ฟีนิลไอกราซีนเป็นสารที่ทำให้เม็ดเลือดแดงแตกง่ายทำให้เกิดภาวะชีดอย่างรุนแรงและรวดเร็ว วัตถุประสงค์ของการศึกษานี้เพื่อตรวจสอบฤทธิ์ของเคอร์คูมินต่อการต้านภาวะ贫血ไม่ลัพติกอะนีเมียที่เหนี่ยวนำด้วยสารฟีนิลไอกราซีนในหนูแรท

วิธีการศึกษา: หนูแรทเพศผู้สายพันธุ์ Sprague-Dawley แบ่งเป็น 6 กลุ่ม กลุ่มละ 8 ตัวถูกฉีดสารฟีนิลไอกราซีนเข้าท่างซ่องท้อง (15 มก./กgr. น้ำหนักตัว/วัน) และได้รับการป้อนสารเคอร์คูมิน (30 หรือ 100 มก./กgr. น้ำหนักตัว/วัน) เป็นเวลา 8 วัน หนูแรทในกลุ่มควบคุมได้รับสารตัวว่างและถ่ายด้วยวิธีเดียวกัน และระยะเวลาเหมือนกันเมื่อสิ้นสุดการทดลองจะทำการวัดพลศาสตร์การไหลเวียนเลือด การตอบสนองของหลอดเลือดและตัวบ่งชี้ภาวะเครียดออกซิเดชันในหนูทดลองทั้งหมด

ผลการศึกษา: หลังจากฉีดสารฟีนิลไอกราซีน หนูแรทจะเกิดภาวะชีดและหลอดเลือดทำงานผิดปกติ โดยพบว่าค่าฮีมาตอcrit ความดันเลือดและความต้านทานของหลอดเลือดส่วนปลายลดลงอย่างมาก เมื่อเปรียบเทียบกับหนูแรทในกลุ่มควบคุม ($p<0.05$) นอกจากนี้การตอบสนองของหลอดเลือดต่อสารที่มีผลกระตุ้นหลอดเลือดก็ลดลงอย่างมาก และเคอร์คูมินตามขนาดความเข้มข้นสามารถปรับการตอบสนองของหลอดเลือด

Background and objective: Curcumin, the main chemical compound of turmeric (*Curcuma longa*), possesses strong antioxidant and various pharmacological activities. However, the effect of curcumin on hemolytic anemic condition is unknown. Phenylhydrazine (PHZ) is a hemolytic agent which causes severe and acute anemia. The aim of this study was to investigate the effect of curcumin against PHZ-induced hemolytic anemia in rats.

Methods: Male Sprague-Dawley rats were divided into six groups of 8 rats each which intraperitoneally injected with PHZ (15 mg/kg b.w./day) and intragastrically administered with curcumin at dose of 30 or 100 mg/kg b.w./day for 8 days. Rats in control groups were received vehicles in the same way over the same period. At the end of the experimental period, hemodynamic status, vascular responsiveness and oxidative stress markers were measured in all rats.

Results: Signs of anemia and vascular dysfunction were present in rats after PHZ injection. A marked decrease in hematocrit, blood pressure and peripheral vascular resistance was found in PHZ-treated rats compared to control rats ($p<0.05$). Moreover, vascular responses to vasoactive agents were dramatically suppressed, and curcumin significantly restored these responses in a dose-dependent manner ($p<0.05$). The restorations of

ให้ดีขึ้นได้อย่างมีนัยสำคัญทางสถิติ ($p<0.05$) การบูรณะพลศาสตร์การให้เลือดที่เปลี่ยนไปในภาวะ贫血ของหลอดเลือดที่ผิดปกติ และสภาวะซีดของหูทุกดalongที่ได้รับสารฟีนิลไฮดรารีนนี้มีความสัมพันธ์กับการลดภาวะเครียดออกซิเดชันโดยพบว่าการฉีดยาปูเบอร์ออกไซด์และบูร์กิริยาออกซิเดชันของลิพิดและโปรตีนมีค่าลดลง

สรุป: ข้อมูลจากการศึกษานี้ชี้แนะนำประโยชน์ของเคอร์คูมินในการต้านภาวะหลอดเลือดผิดปกติและภาวะเครียดออกซิเดชันที่พิบูลในสภาวะ贫血ในลักษณะนี้เมีย

คำสำคัญ: เคอร์คูมิน พีนิลไฮดรารีน ยีมลัคติก oran เมีย

ศรีนกรินทร์เวชสาร 2560; 32(2): 172-80. • Srinagarind Med J 2017; 32(2): 172-80.

Introduction

Phenylhydrazine (PHZ) is a hemolytic and pro-oxidant agent which is widely used in industry and laboratory. This compound is very useful in experimental models studying mechanisms of hemolytic anemia¹. The auto-oxidation of PHZ induces free iron release and generates free radicals such as hydrogen peroxide (H_2O_2) and hydroxyl radicals (OH^\bullet), which initiates the peroxidation of unsaturated fatty acids in endogenous phospholipids of plasma membrane of red blood cells (RBCs) to cause lipid peroxidation and protein oxidation resulting in the destruction of RBCs and hemolytic anemia^{2,3}. Another effect of PHZ is that it induces hypoxia, inflammation, vascular dysfunction and oxidative stress^{4,5}. Previous study reported that rats treated with PHZ (125 mg/kg i. p.) showed a sign of severe hemolytic anemia with a marked reduction of blood hemoglobin (Hb) levels within 48 hours⁶. PHZ also induced hypotension and diminished vascular responsiveness that was associated with increased production of reactive oxygen species (ROS)^{5,7}. Therefore, PHZ can be used as a model of oxidant stress-induced vascular dysfunction and hemolytic anemia.

Curcumin is the major active component of turmeric (*Curcuma longa*), a rhizomatous herbaceous perennial plant of the ginger family, Zingiberaceae. It is widely used in tropical regions of Asia as a spice to give flavor and yellow color to food. Curcumin has been recommended as food supplements for prevention and treatment of various chronic conditions, including autoimmune, cancer, diabetes, hypertension, cardiovascular, pulmonary, inflammatory, neurological, psychological

hemodynamic disturbance, vascular dysfunction and anemic state during PHZ exposure were related to a reduction of oxidative stress by decreasing superoxide production, lipid peroxidation and protein oxidation.

Conclusion: Data of this study suggest the beneficial effect of curcumin against vascular dysfunction and oxidative stress in a hemolytic anemic condition.

Keywords: Curcumin, Phenylhydrazine, Hemolytic anemia

and metabolic diseases⁸⁻¹². Curcumin and its major metabolites, tetrahydrocurcumin also chelate many metal ions such as iron, cadmium, lead and copper¹³⁻¹⁶. Regarding the antioxidant property, curcumin directly scavenges free radicals by using diketone group to react with OH^\bullet and H_2O_2 while the two phenyl methoxy groups of curcumin suppress NF_k^- activation¹⁷⁻¹⁹ and inhibits xanthine oxidase/xanthine dehydrogenase conversion, leading to a decrease in superoxide (O_2^\bullet) generation²⁰. However, data supporting the antioxidant activity of curcumin against oxidative stress and vascular dysfunction in hemolytic anemia is still lacking. Thus, this study aimed to investigate the antioxidant and vascular protective effects of curcumin in an animal model of hemolytic anemia.

Materials and Methods

Chemicals

Curcumin extracted from turmeric (*Curcuma longa*) was generously supplied by the Government Pharmaceutical Organization (Bangkok, Thailand). All chemicals used were of analytical grade quality.

Animals and Treatments

Adult male Sprague-Dawley rats weighing about 200-220 g were obtained from the National Laboratory Animal Center, Mahidol University, Nakhon Pathom, Thailand. Rats were housed at the Northeast Laboratory Animal Center (Khon Kaen University, Thailand) and maintained on a 12-h/light/dark cycle in a controlled temperature environment ($25 \pm 2^\circ C$) with free access to water and standard rat chow (Chareon Pokapan Co.,

Ltd., Thailand). The study protocol was reviewed and approved by the Institutional Animal Ethics Committee of KhonKaen University (AEKU 41/2555).

After an adaptation periods for 7 days, rats were randomly assigned to 6 groups(8 animals each) as follows: Group I - Normal control + vehicle (propylene glycol, PG), Group II - Normal control +curcumin (30 mg/kg), Group III - Normal control +curcumin (100 mg/kg), Group IV- PHZ control + PG, Group V - PHZ + curcumin (30 mg/kg), and Group VI - PHZ + curcumin (100 mg/kg). Hemolytic anemia was induced in PHZ-treated groups by intraperitoneal injection of PHZ at dose of 15 mg/kg for 8 days. Curcumin was intragastrically administered throughout the period of PHZ treatment. The doses of curcumin were based on our previous study in animals-induced endotoxic shock ¹².

Vascular function assessment and samples collection

After 8 days, rats were anesthetized with an intraperitoneal injection of pentobarbital sodium (60 mg/kg). The femoral artery was cannulated with polyethylene tubing connected to a pressure transducer for continuously monitoring of arterial blood pressure and heart rate (HR). Hindlimb blood flow (HBF) was measured by placing electromagnetic flow probes around the abdominal aorta connected to an electromagnetic flowmeter. Hindlimb vascular resistance (HVR) was calculated from the mean arterial pressure (MAP) and mean HBF. After HBF measurements, vascular reactivity was assessed by infusing vasoactive agents through an additional catheter in the femoral vein in a stepwise fashion at 5-min intervals. The vasoactive agents tested were acetylcholine (ACh; 10 nmol/kg),sodium nitroprusside (SNP; 3 nmol/kg), and phenylephrine (Phe; 0.1 nmol/kg). Changes in blood pressure were expressed as percentage of control values obtained immediately before the administration of the test substance. At the end of study, rats were sacrificed with an overdose of the anesthetic drug. Blood samples were collected from the abdominal aorta for determinations of hematocrit, plasma malonaldehyde (MDA), plasma protein carbonyl and plasma nitric oxide metabolites (NOx). The carotid arteries were rapidly excised from the animals and used for analysis of $O_2^{\bullet-}$ production.

Assessment of oxidative stress markers

Vascular $O_2^{\bullet-}$ production was performed in carotid arteries by using the lucigenin-enhanced chemiluminescence technique as previously reported ¹². MDA, a marker of lipid peroxidation, was assessed in plasma, liver, kidney and heart by measuring thiobarbituric acid reactive substances following a previously described method ⁵. Protein oxidation in plasma and tissues (liver, kidney and heart) was assessed by the determination of carbonyl groups based on the reaction with dinitrophenyl hydrazine (DNPH) as previously described ¹². The plasma NOx level, the end product of NO metabolism, were quantified by an enzymatic conversion method with the Griess reaction as previously described²¹.

Statistical Analysis

Data are expressed as mean \pm S.E., and *n* refers to the number of animals used. Data comparisons were carried out using one-way analysis of variance (ANOVA), followed by post-hoc Duncan's multiple range test. Difference with a p-value of less than 0.05 was considered as statistical significance.

Results

Effect of PHZ on hematocrit and hemodynamics

After PHZ injection, the hematocrit levels were significantly declined in PHZ-treated rats compared to normal controls ($p<0.05$, Table 1), suggesting that hemolytic anemia was successfully induced. A marked decrease in arterial blood pressure and HVR and an increase in HBF and HR were observed in the PHZ-treated rats ($p<0.05$, Table 1). Curcumin (30 or 100 mg/kg) in dose-dependent manner improved hemodynamic status and anemia of PHZ-treated rats by increasing blood pressure, HVR and hematocrit levels, but decreasing HR and HBF ($p<0.05$, Table 1). Administration of curcumin did not alter hemodynamics and hematocrit levels in normal control rats (Table 1).

Apart from the induction of hemolytic anemia, PHZ also caused impairment of vascular responsiveness. PHZ significantly blunted the vasodilation to ACh, and SNP and vasoconstriction to Phe ($p<0.05$, Fig. 1). A decrease in vascular responsiveness to Phe, ACh, and

SNP was about 30-40 % compared to those found in normal controls ($p<0.05$, Fig. 1). Interestingly, curcumin,

especially at dose of 100 mg/kg significantly improved vascular reactivity of PHZ-treated rats ($p<0.05$, Fig. 1).

Table 1 Effect of curcumin on hematocrit level and hemodynamic status in all experimental groups.

Parameters	Normal control	Normal control + Curcumin		PHZ control	PHZ + Curcumin	
	vehicle	30 mg/kg	100 mg/kg		30 mg/kg	100 mg/kg
Hematocrit (%)	41.4 ± 1.1	43.6 ± 1.3	44.0 ± 1.8	27.6 ± 2.1 [*]	35.2 ± 0.7 [#]	34.8 ± 0.7 [#]
Systolic blood pressure (mmHg)	126.7 ± 2.4	124.2 ± 2.9	125.1 ± 2.0	84.9 ± 7.4 [*]	106.6 ± 4.3 [#]	119.3 ± 4.6 [#]
Diastolic blood pressure (mmHg)	82.9 ± 1.9	75.8 ± 1.9	79.2 ± 1.0	51.1 ± 4.0 [*]	65.0 ± 3.9 [#]	76.6 ± 3.7 [#]
Mean arterial pressure (mmHg)	101.0 ± 1.9	95.8 ± 1.6	100.1 ± 1.4	68.3 ± 3.0 [*]	81.9 ± 4.6 [#]	91.2 ± 3.8 [#]
Heart rate (beats/min)	396.5 ± 1.1	382.3 ± 9.9	391.1 ± 4.8	436.7 ± 4.4 [*]	412.8 ± 2.8 [#]	400.0 ± 6.6 [#]
Hindlimb blood flow (ml/min/100 g tissue)	10.6 ± 0.7	9.2 ± 0.5	10.4 ± 0.4	17.1 ± 0.8 [*]	13.9 ± 0.7 [#]	10.4 ± 0.8 [#]
Hindlimb vascular resistance (mmHg/ml/min/100 g tissue)	9.9 ± 0.7	10.4 ± 0.5	9.6 ± 0.3	3.8 ± 0.2 [*]	5.5 ± 0.2 [#]	9.2 ± 1.0 [#]

Data are expressed as mean ± S.E. (n=8/group). Rats received PHZ (15 mg/kg, i.p.) alone or combined with curcumin (30 or 100 mg/kg, p.o.) for 8 days. ^{*}p< 0.05 vs. normal control, [#]p< 0.05 vs. PHZ control, [†]p<0.05 vs. PHZ+curcumin 30 mg/kg.

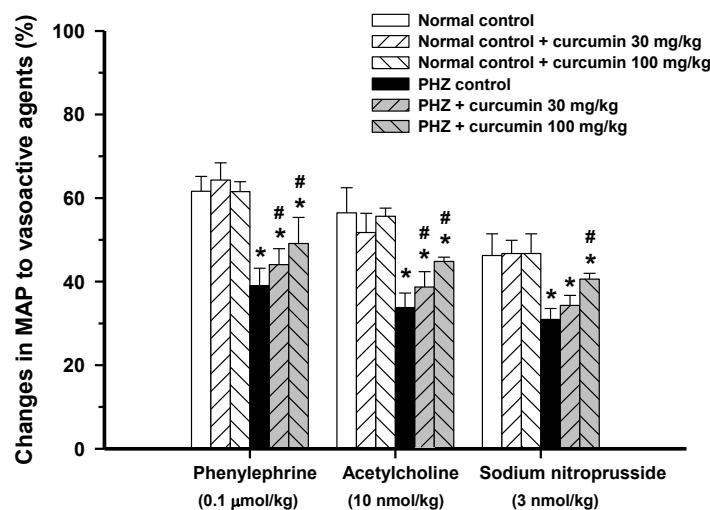
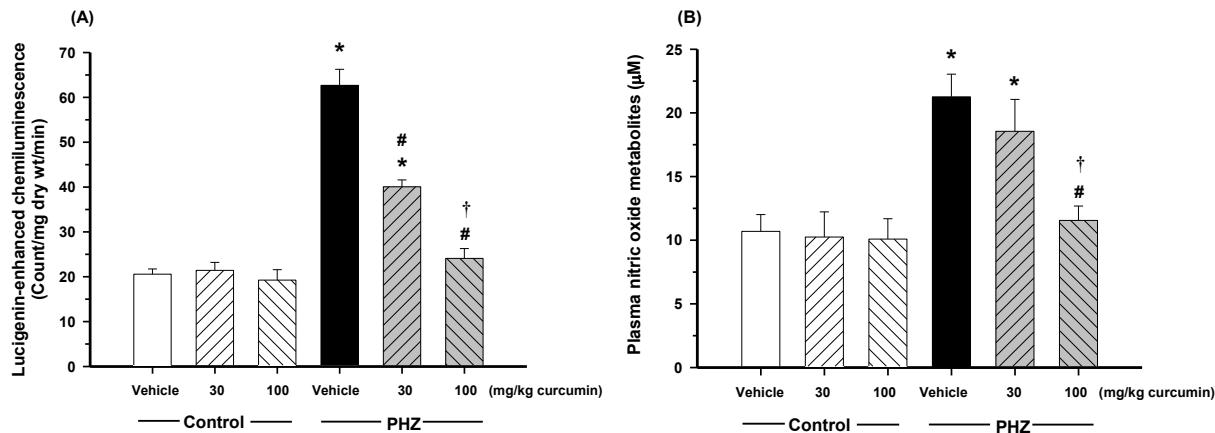
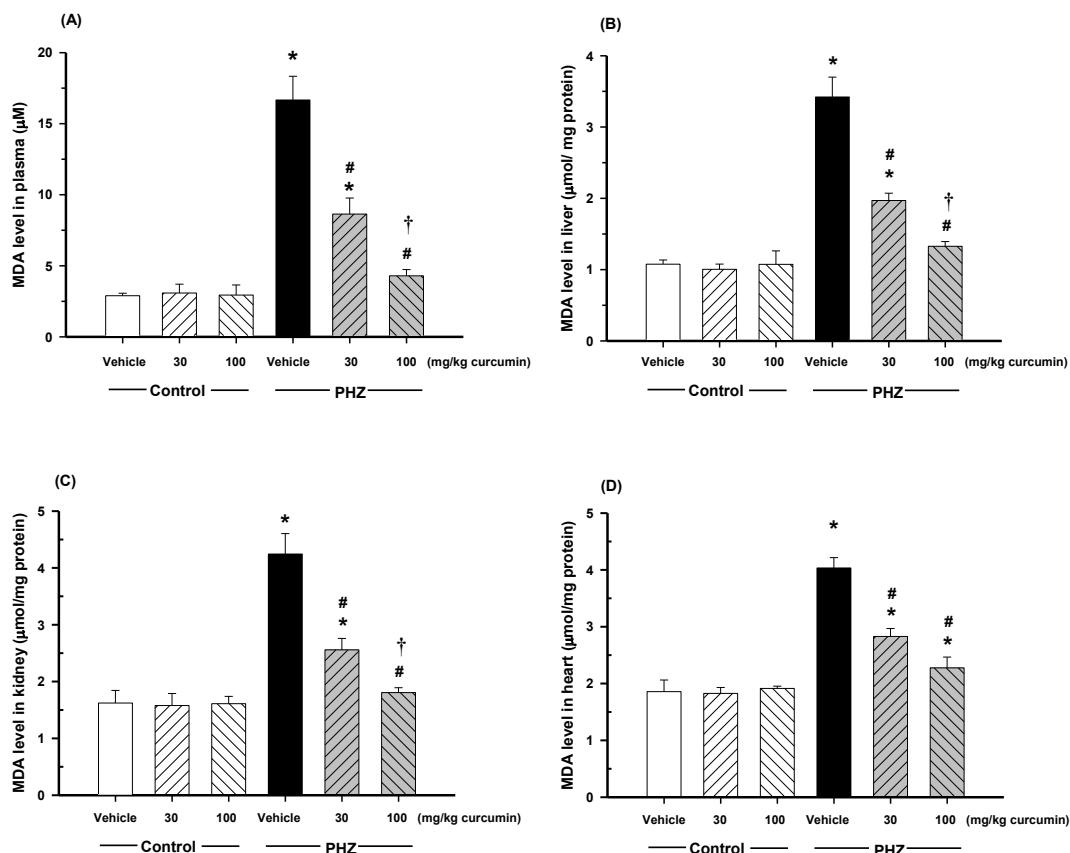


Figure 1 Effect of curcumin on mean arterial pressure responses to various vasoactive agents, including phenylephrine (Phe; 0.1 μ mol/kg), acetylcholine (ACh; 10 nmol/kg), and sodium nitroprusside (SNP; 3 nmol/kg) in all experimental groups. Results are expressed as mean ± S.E., n=8, ^{*}p< 0.05 vs. normal control; [#]p< 0.05 vs. PHZ control.


Effects of PHZ on oxidative stress

A marked increase in O_2^{\bullet} in vascular tissues and plasma NOx were found in PHZ-treated rats ($p<0.05$, Fig. 2A and 2B), suggesting that oxidative and nitrosative stresses were present after PHZ injection. PHZ also increased oxidative damage by elevating MDA and


protein carbonyl levels in plasma and tissues (liver, kidneys, heart) ($p<0.05$, Fig. 3 and Fig. 4). Curcumin, especially at high dose significantly normalized the rate of O_2^{\bullet} and NO productions to near basal values in PHZ-treated rats ($p<0.05$, Fig. 2A and 2B). Moreover, curcumin also alleviated oxidative damage by reducing

lipid peroxidation and protein oxidation in a dose dependent manner ($p<0.05$, Fig. 3 and Fig. 4).

Administration of curcumin at tested doses did not increase oxidative stress in normal control rats (Fig. 2-4).

Figure 2 Effect of curcumin on superoxide production in carotid arteries (A) and plasma nitric oxide metabolites (B) in all experimental groups. Results are expressed as mean \pm S.E., $n=8$, * $p<0.05$ vs. normal control; # $p<0.05$ vs. PHZ control, † $p<0.05$ vs. PHZ+curcumin 30 mg/kg.

Figure 3 Effect of curcumin on MDA level in plasma (A), liver (B), kidney (C) and heart (D) in all experimental groups. Results are expressed as mean \pm S.E., $n=8$, * $p<0.05$ vs. normal control; # $p<0.05$ vs. PHZ control, † $p<0.05$ vs. PHZ+curcumin 30 mg/kg.

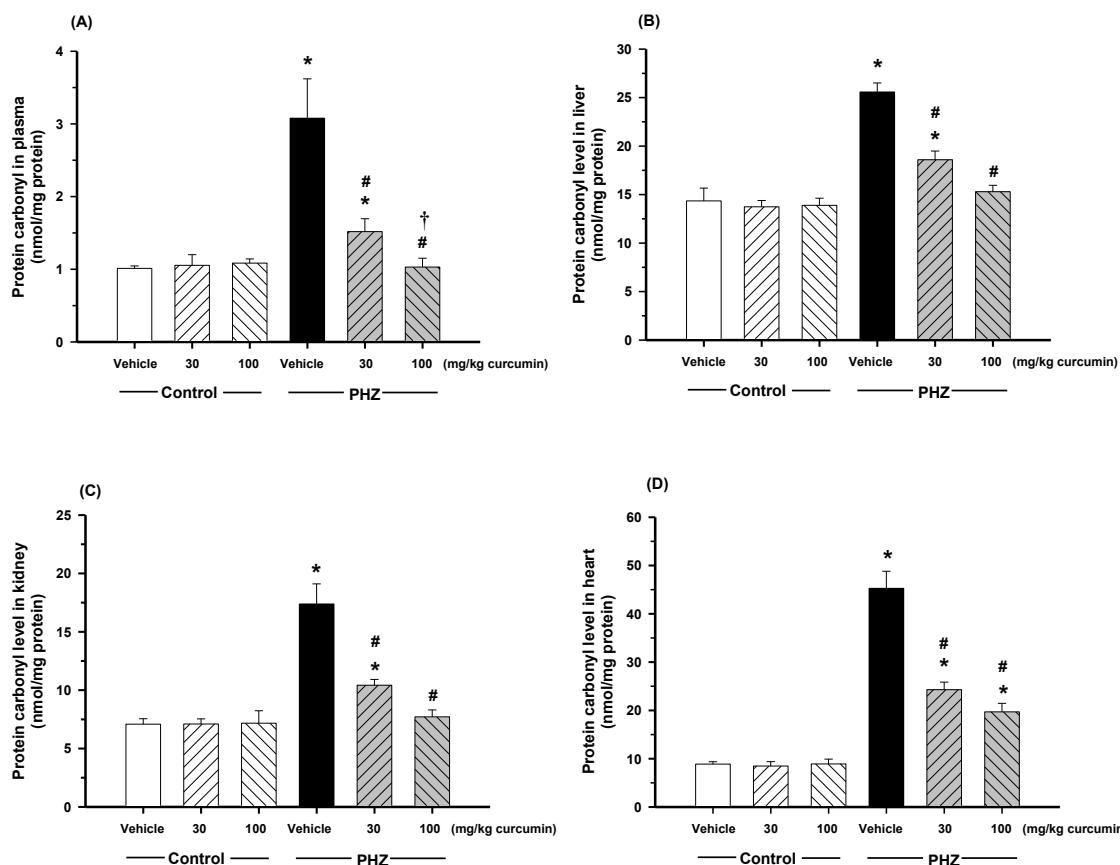


Figure 4 Effect of curcumin on protein carbonyl levels in plasma (A), liver (B), kidney (C) and heart (D) in all experimental groups. Results are expressed as mean \pm S.E., n=8, *p<0.05 vs. normal control; #p<0.05 vs. PHZ control, †p<0.05 vs. PHZ+curcumin 30 mg/kg.

Discussion

The present study demonstrated that intraperitoneal injection of PHZ at dose of 15 mg/kg for eight days induced severe hemolytic anemia and vascular dysfunction, manifested by a reduction of hematocrit, blood pressure, vascular responsiveness to vasoactive agents and HVR while acceleration of HBF and HR. Interestingly, these alterations were associated with increased oxidative stress. Concurrent treatment with curcumin could alleviate hemolytic anemia and vascular dysfunction, as indicated by a restoration of hemodynamic and oxidative stress status and partially increase hematocrit. Overall findings support the idea that antioxidants prevent free radicals-mediated vascular dysfunction in cardiovascular diseases²².

Previous study reported that PHZ induced vascular smooth muscle relaxation by increasing cGMP production through the activation of guanylatecyclase which is mediated via the formation of iron-phenyl heme complexes²³. Therefore, the hypotensive state after PHZ treatment might be due to increased formation of iron-phenyl heme complex. Many studies also suggested that inflammatory response caused by free heme and hemoglobin released from lysed erythrocytes, subsequently induced oxidative stress and inflammation^{24, 25}. Thus, oxidative stress and inflammatory mediators released from inflammatory cells are also involved in hemolytic anemia induced by PHZ⁶. In this study, we found that O_2^- and NO were increased in PHZ-treated rats. Normally, O_2^- and NO rapidly interact and form peroxynitrite anion (ONOO⁻), a highly reactive free

radical²⁶, thereby, ONOO⁻ and inflammatory cytokines released by inflammatory cells might induce vascular dysfunction²⁷. It has been suggested that increased O₂^{•-} production may lead to decreased NO bioactivity for the vascular endothelial cells^{28, 29}, resulting in impairment of vascular reactivity to endothelial-dependent vasodilator, ACh. Regarding the vascular response to SNP, there is a slightly decrease in vasorelaxation, this is in consistent with other study in sickle cell mice³⁰. Interestingly, not only vasodilation was impaired, but also vascular response to a vasoconstrictor, Phewas also blunted. These findings are supported by previous studies, which found an impairment of vasoconstriction in hypovolemic and septic shock conditions^{31, 32}.

It is suggested that curcumin can increase hemoglobin formation, thereby; it may prevent erythroid precursor apoptosis and red blood cell hemolysis^{33, 34}. Therefore, the hemolytic anemia condition of PHZ-treated rats is recovered after curcumin administration.

The present study demonstrated that curcumin decreased O₂^{•-} and NO formation which might be associated with down regulation of NAD(P)H oxidase and iNOS expressions via inhibition of NF- κ B activation and many inflammatory cytokines^{35, 36}. Therefore, curcumin improves vascular function and protects vascular injuries from ROS, reactive nitrogen species (RNS) and other radicals such as PHZ. Moreover, our study revealed that curcumin in a dose-dependent manner alleviated lipid peroxidation and protein oxidation. A marked increase in oxidative stress is well documented to subsequently induce oxidative damage through a destruction of lipid, protein and DNA in the organ systems of animals and humans³⁷. Previous studies demonstrated that curcumin can increase glutathione and restore redox status in oxidative damage condition. Moreover, curcumin also increases γ -glutamyl cysteine ligase, a rate limiting enzyme for GSH synthesis and reduces gene of Nrf2-ARE signaling pathway where curcumin is served as a strong inducer of transcription factor Nrf2 activator³⁸.

Conclusion

In conclusion, data of this study provide the beneficial effects of curcumin in a rat model of PHZ-induced hemolytic anemia and vascular dysfunction. The plausible mechanisms involved with these effects might be due to the capability of curcumin to scavenge peroxy radicals, prevent hemolysis of RBCs and inhibit the generation of free radicals, thereby improved vascular function and vascular reactivity and oxidative stress. Collectively, curcumin supplementation may be useful in hemolytic anemic condition. However, further investigation regarding the mechanisms of curcumin in maintenance of vascular function is still required.

Acknowledgement

This work was supported by a grant from the Faculty of Medicine, Mahasarakham University, Thailand. The authors thank the Northeast Laboratory Animal Center (Khon Kaen University, Thailand) for housing the experimental animals.

References

1. Berger J. Screening of toxic-haemolytic anaemia in laboratory rats: a model of phenylhydrazine-induced haemolysis. *Haematologia (Budap)* 1985; 18: 193-200.
2. Chakrabarti S, Sonaye B, Naik AA, Nadkarni PP. Erythrocyte membrane protein damage by oxidation products of phenylhydrazine. *Biochem Mol Biol Int* 1995; 35: 255-63.
3. Biswas S, Bhattacharyya J, Dutta AG. Oxidant induced injury of erythrocyte-role of green tea leaf and ascorbic acid. *Mol Cell Biochem* 2005; 276: 205-10.
4. Nicolas G, Chauvet C, Viatte L, Danan JL, Bigard X, Devaux I, et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. *J Clin Invest* 2002; 110: 1037-44.
5. Luangaram S, Kukongviriyapan U, Pakdeechote P, Kukongviriyapan V, Pannangpetch P. Protective effects of quercetin against phenylhydrazine-induced vascular dysfunction and oxidative stress in rats. *Food Chem Toxicol* 2007; 45: 448-55.
6. Swann JW, Contrera JF. Depletion of cardiac norepinephrine during two forms of hemolytic anemia in the rat. *Circ Res* 1976; 38: 179-84.

7. Ferrali M, Signorini C, Caciotti B, Sugherini L, Ciccoli L, Giachetti D, et al. Protection against oxidative damage of erythrocyte membrane by the flavonoid quercetin and its relation to iron chelating activity. *FEBS Lett* 1997; 416: 123-9.
8. Sharma RA, Gescher AJ, Steward WP. Curcumin: the story so far. *Eur J Cancer* 2005; 41: 1955-68.
9. Aggarwal BB, Sung B. Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. *Trends Pharmacol Sci* 2009; 30: 85-94.
10. Nakmreong S, Kukongviriyapan U, Pakdeechote P, Donpunha W, Kukongviriyapan V, Kongyinyo B, et al. Antioxidant and vascular protective effects of curcumin and tetrahydrocurcumin in rats with L-NAME-induced hypertension. *Naunyn Schmiedebergs Arch Pharmacol* 2011; 383: 519-29.
11. Garcia-Nino WR, Pedraza-Chaverri J. Protective effect of curcumin against heavy metals-induced liver damage. *Food Chem Toxicol* 2014; 69: 182-201.
12. Sompamit K, Kukongviriyapan U, Nakmreong S, Pannangpetch P, Kukongviriyapan V. Curcumin improves vascular function and alleviates oxidative stress in non-lethal lipopolysaccharide-induced endotoxaemia in mice. *Eur J Pharmacol* 2009; 616: 192-9.
13. Kukongviriyapan U, Apajit K, Kukongviriyapan V. Oxidative Stress and Cardiovascular Dysfunction Associated with Cadmium Exposure: Beneficial Effects of Curcumin and Tetrahydrocurcumin. *Tohoku J Exp Med* 2016; 239: 25-38.
14. Kukongviriyapan U, Pannangpetch P, Kukongviriyapan V, Donpunha W, Sompamit K, Surawattanawan P. Curcumin protects against cadmium-induced vascular dysfunction, hypertension and tissue cadmium accumulation in mice. *Nutrients* 2014; 6: 1194-208.
15. Sangartit W, Kukongviriyapan U, Donpunha W, Pakdeechote P, Kukongviriyapan V, Surawattanawan P, et al. Tetrahydrocurcumin protects against cadmium-induced hypertension, raised arterial stiffness and vascular remodeling in mice. *PLoS One* 2014; 9: e114908.
16. Sangartit W, Pakdeechote P, Kukongviriyapan V, Donpunha W, Shibahara S, Kukongviriyapan U. Tetrahydrocurcumin in combination with deferiprone attenuates hypertension, vascular dysfunction, baroreflex dysfunction, and oxidative stress in iron-overloaded mice. *Vascul Pharmacol* 2016; 87: 199-208.
17. Sandur SK, Pandey MK, Sung B, Ahn KS, Murakami A, Sethi G, et al. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. *Carcinogenesis* 2007; 28: 1765-73.
18. Singh S, Aggarwal BB. Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane) [corrected]. *J Biol Chem* 1995; 270: 24995-5000.
19. Somparn P, Phisalaphong C, Nakornchai S, Unchern S, Morales NP. Comparative antioxidant activities of curcumin and its demethoxy and hydrogenated derivatives. *Biol Pharm Bull* 2007; 30: 74-8.
20. Manikandan P, Sumitra M, Aishwarya S, Manohar BM, Lokaadam B, Puvanakrishnan R. Curcumin modulates free radical quenching in myocardial ischaemia in rats. *Int J Biochem Cell Biol* 2004; 36: 1967-80.
21. Kukongviriyapan V, Somparn N, Senggunpchai L, Prawan A, Kukongviriyapan U, Jetsrisuparb A. Endothelial dysfunction and oxidant status in pediatric patients with hemoglobin E-beta thalassemia. *Pediatr Cardiol* 2008; 29: 130-5.
22. Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. *Circ Res* 2000; 87: 840-4.
23. Vidrio H, Fernandez G, Medina M, Alvarez E, Orallo F. Effects of hydrazine derivatives on vascular smooth muscle contractility, blood pressure and cGMP production in rats: comparison with hydralazine. *Vascul Pharmacol* 2003; 40: 13-21.
24. Jeney V, Balla J, Yachie A, Varga Z, Vercellotti GM, Eaton JW, et al. Pro-oxidant and cytotoxic effects of circulating heme. *Blood* 2002; 100: 879-87.
25. Setty BN, Betal SG, Zhang J, Stuart MJ. Heme induces endothelial tissue factor expression: potential role in hemostatic activation in patients with hemolytic anemia. *J Thromb Haemost* 2008; 6: 2202-9.
26. Miles AM, Bohle DS, Glassbrenner PA, Hansert B, Wink DA, Grisham MB. Modulation of superoxide-dependent oxidation and hydroxylation reactions by nitric oxide. *J Biol Chem* 1996; 271: 40-7.
27. Cuzzocrea S, Mazzon E, Di Paola R, Esposito E, Macarthur H, Matuschak GM, et al. A role for nitric oxide-mediated peroxynitrite formation in a model of endotoxin-induced shock. *J Pharmacol Exp Ther* 2006; 319: 73-81.
28. Cai H. NAD(P) H oxidase-dependent self-propagation of hydrogen peroxide and vascular disease. *Circ Res* 2005; 96: 818-22.
29. Griendling KK, Fitzgerald GA. Oxidative stress and cardiovascular injury: Part II: animal and human studies. *Circulation* 2003; 108: 2034-40.
30. Hsu LL, Champion HC, Campbell-Lee SA, Bivalacqua TJ, Manci EA, Diwan BA, et al. Hemolysis in sickle cell mice causes pulmonary hypertension due to global impairment in nitric oxide bioavailability. *Blood* 2007; 109: 3088-98.

31. Altavilla D, Saitta A, Guarini S, Galeano M, Squadrato G, Santamaria LB, et al. . Nuclear factor-kappaB as a target of cyclosporin in acute hypovolemic hemorrhagic shock. *Cardiovasc Res* 2001; 52: 143-52.
32. Piepot HA, Groeneveld AB, van Lambalgen AA, Sipkema P. The role of inducible nitric oxide synthase in lipopolysaccharide-mediated hyporeactivity to vasoconstrictors differs among isolated rat arteries. *Clin Sci (Lond)* 2002; 102: 297-305.
33. Banerjee A, Kunwar A, Mishra B, Priyadarshini KI. Concentration dependent antioxidant/pro-oxidant activity of curcumin studies from AAPH induced hemolysis of RBCs. *Chem Biol Interact* 2008; 174: 134-9.
34. Thephinlap C, Phisalaphong C, Lailerd N, Chattipakorn N, Winichagoon P, Vadolas J, et al. . Reversal of cardiac iron loading and dysfunction in thalassemic mice by curcuminoids. *Med Chem* 2011; 7: 62-9.
35. Nirmala C, Anand S, Puvanakrishnan R. Curcumin treatment modulates collagen metabolism in isoproterenol induced myocardial necrosis in rats. *Mol Cell Biochem* 1999; 197: 31-7.
36. RalayRanaivo H, Carusio N, Wangensteen R, Ohlmann P, Loichot C, Tesse A, et al. Protection against endotoxic shock as a consequence of reduced nitrosative stress in MLCK210-null mice. *Am J Pathol* 2007; 170: 439-46.
37. Waisberg M, Joseph P, Hale B, Beyersmann D. Molecular and cellular mechanisms of cadmium carcinogenesis. *Toxicology* 2003; 192: 95-117.
38. Thimmulappa RK, Lee H, Rangasamy T, Reddy SP, Yamamoto M, Kensler TW, et al. Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. *J Clin Invest* 2006; 116: 984-95.

