

***Typhlodromus (Anthoseius) bagdasarjani* Wainstein & Arutunjan (Acari: Phytoseiidae) as Dominant Species of Predatory Mite with an Introduction to Tydeoid Mites in Karaj**

S.H.R. Forghani^{1,*}, S.A. Forghani² and M. Dorri¹

¹ Seed and Plant Certification and Registration Institute Karaj, Iran

² Faculty of Agriculture and natural resources Islamic Azad University of Karaj, Iran

* Corresponding author: forghani51@gmail.com

Submission: 17 October 2018 Revised: 21 July 2019 Accepted: 31 July 2019

ABSTRACT

Karaj is considered as one of the most important area containing of many crop fields and orchards. There was a necessity to identify mites Fauna as a first step of the IPM strategy. This, study conducted in the significant parts of this area during 2014–2015. The samples were collected from ten regions of Karaj over 25 species of plants by beating, shaking shoots or foliage of various plants over a white tray. Mites were observed under a stereo microscope, preserved into 70% ethanol vials and finally mounted on microscope slides using Hoyer's medium. The most dominant species were: (i) the Phytoseiidae species: *Typhlodromus (Anthoseius) bagdasarjani* Wainstein and Arutunjan (ii) the family of lolinidae consisted of one species including (*Neopronematus rapidus* (Kuznetzov) and three species of the family Tydeidae (*Pronematus* spp., *Tydeus* spp. and *Brachytydeus* spp.) are reported in Alborz Province (Karaj, Iran). Simultaneously, the families lolinidae, Tetranychidae and Phytoseiidae were populated respectively as the furthest to lowest frequency of occurrence in this region.

Keywords: Phytoseiidae, tydeoid mites, density, Karaj, Iran

Thai J. Agric. Sci. (2019) Vol. 52(3): 152–160

INTRODUCTION

Predators of the family phytoseiidae are largely considered for the biological control of mite and small insect pests in diverse cropping systems (Chant and McMurtry, 1994; McMurtry and Croft, 1997). This family has received considerable attention in the last 50 years for their role as biological control agents (Gnanvossou *et al.*, 2003). Species of the mentioned family feed on Tetranychidae and Eriophyidae (Acari: Prostigmata) (Karg *et al.*, 1987; Sabelis, 1996; Ferragut *et al.*, 2008; Momen, 2010) with a well-known capacity to control mites mainly tetranychids (Easterbrook *et al.*, 2001; Colfer *et al.*, 2004). Phytoseiid species are reported from Iran (Khalil-Manesh, 1973; Sepasgozarian, 1977; Kamali

et al., 2001; Rahmani *et al.*, 2006; Faraji *et al.*, 2007; Ueckermann *et al.*, 2009; Asali-Fayaz *et al.*, 2010; Arbabi *et al.*, 2011; Hajizadeh and Nazari, 2012; Ostovan *et al.*, 2012) and it is consisted of more than 70 species (Rahmani *et al.*, 2010). For instance, Asali-Fayaz *et al.* (2012) reported and re-described some species of the family Phytoseiidae with newly recorded *Typhlodromus (Anthoseius) tamaricis* (Kolodochka) in Ardebil. It has been collected 21 species from six genera in the western and north western of Iran by Asali-Fayaz and Khanjani (2012) moreover, by Panahi-Laeen *et al.* (2014) with five genera in fruit orchards from Razavi-Khorasan Province. Tydeoidea a super-family of Prostigmata is widespread all over the world. These mites are considered as omnivorous and feed on pollen, plants,

nematodes, eggs of arachnids, fungus and other mites (Walter, 1987). *Tydeus caudatus* (Dugès) may control the grape eriophyid mite, *Colomerus vitis* (Pagenstecher) (Gerson et al., 2003). Also, *Tydeus caryae* Khanjani and Ueckermann was observed feeding on *Aceria tristriata* (Nalepa) (Khanjani and Ueckermann, 2003). Furthermore, the other important species such as *Brachytydeus* Thor from Serbia, Spain (two species) and Poland (three species) has been detected (Kazmierski, 2008; 2009) as well, three species: *Typhlodromus*, *Tydeus* and *Pronematus* on cotton fields from Gorgan, Iran has been reported (Forghani, 2005). Therefore, identification, distribution with knowledge of the mites (tydeoid/phytoseiid) role in different agricultural ecosystems may help us to a better management of insects and arachnids. So, this preliminary study aimed at investigating the occurrence and species diversity of the most important plant-inhabiting mites which may be considered in the IPM processes.

MATERIALS AND METHODS

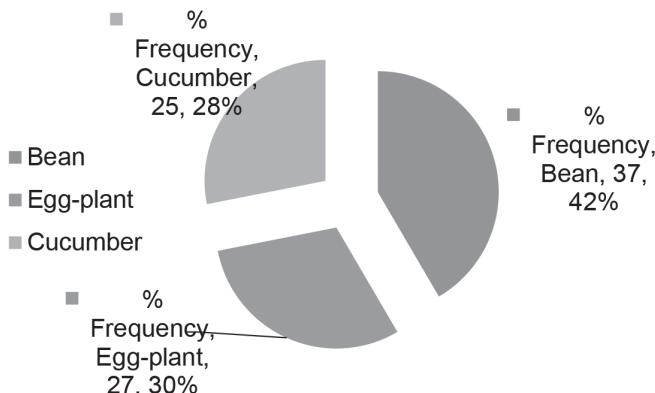
Karaj is located in 51°0'30" longitude and 35°48'45" latitude that altitude and the mean of annual rainfall are 1297 m.a.s.l. and 243 mm respectively. Moreover, the mean of annual temperature is 14.1°C. The study carried out during two years

(2014–2015) and sampling conducted every week from March to November from different regions of Karaj, including Kamal Shahr, Mohammad Shahr, Ziba Dasht, Mahdasht, Kalak, Chaman, Markaz Amozesh-Keshavarzi, Agh-Tappeh, Pour-kashani and Meshkin Dasht. Samples were collected from leaves and foliage in different parts of orchards, crop fields and weeds. In the lab, mites were isolated by beating or shaking shoots or foliage of various plants such as apple (*Malus domestica*), Japanese quince (*Chaenomeles japonica*), grape (*Vitis vinifera*), almond (*Prunus dulcis*), black plum (*Syzygium cumini*), gold drops plum (*Prunus domestica*), peach (*Prunus persica*), apricot (*Prunus armeniaca*), mulberry (*Morus nigra*), cherry (*Prunus avium*), fig (*Ficus carica*), greengage (*Prunus domestica*), walnut (*Juglans regia*), plane tree (*Platanus* sp.), strawberry (*Fragaria ananassa*), safflower (*Carthamus tinctorius*), rose (*Rosa* sp.), cucumber (*Cucumis sativus*), cucurbit plant (*Cucurbita* sp.), pepper (*Piper nigrum*), goosefoot (*Chenopodium* sp.) and creeping thistle (*Cirsium arvense*) over a white tray. The mites were checked under a stereomicroscope, preserved in 70% ethanol and finally mounted on microscope slides using Hoyer's medium (Krantz and Walter, 2009). Almost 1,500 mounted slides were prepared for identification using reliable identification keys.

Table 1 Density of mites species collected in Karaj, Iran

Group	Family	Mean ± SE	Mean ± SE	Mean ± SD	% Total density
		2014*	2015*	Average**	
Prostigmata	Iolinidae	51.55 ± 3.41 ^a	46.33 ± 3.42 ^a	48.94 ± 10.31 ^A	84.25
Prostigmata	Tydeidae	2.88 ± 0.53 ^d	2.00 ± 0.53 ^d	2.44 ± 1.61 ^D	3.32
Prostigmata	Tetranychidae	20.77 ± 2.25 ^b	17.33 ± 2.25 ^b	19.05 ± 6.79 ^B	34.03
Mesostigmata	Phytoseiidae	5.77 ± 0.46 ^c	5.33 ± 0.46 ^c	5.55 ± 1.38 ^C	9.29
Prostigmata	Tenuipalpidae	2.33 ± 0.32 ^d	2.22 ± 0.32 ^d	2.27 ± 0.95 ^D	3.71
Prostigmata	Cheyletidae	1.55 ± 0.30 ^e	1.11 ± 0.30 ^e	1.33 ± 0.90 ^E	2.43
Mesostigmata	Ameroseiidae	0.66 ± 0.20 ^f	0.55 ± 0.20 ^f	0.61 ± 0.60 ^F	0.92
Prostigmata	Coligonellidae	0.22 ± 0.14 ^f	0.22 ± 0.14 ^f	0.22 ± 0.42 ^F	0.23
Prostigmata	Tarsonemidae	0.11 ± 0.11 ^f	0.11 ± 0.11 ^f	0.11 ± 0.32 ^F	0.11
Prostigmata	Stigmeidae	0.11 ± 0.11 ^f	0.11 ± 0.11 ^f	0.11 ± 0.32 ^F	0.11
Prostigmata	Camerobiidae	0.11 ± 0.11 ^f	0.11 ± 0.11 ^f	0.11 ± 0.32 ^F	0.11
Prostigmata	Erythraeidae	0.11 ± 0.11 ^f	0.11 ± 0.11 ^f	0.11 ± 0.32 ^F	0.11
Oribatida	Oribatidae	0.11 ± 0.11 ^f	0.11 ± 0.11 ^f	0.11 ± 0.32 ^F	0.11

Note: Means followed by different letters within a column are significantly different at the 0.05 level (LSD test). (* : N = 9), (** : N = 18)


RESULTS AND DISCUSSION

In a total of 13 families of mites were collected in Karaj region, among them the lolinidae clarified the utmost population (Table 1). The family Tetranychidae had the high frequency of occurrence on three subsequent hosts: bean, egg-plant and cucumber, which were found in Markaz Amozesh-Keshavarzi area with the most population (Figure 1). The mean family of Phytoseiidae population for the two years showed that *Typhlodromus (Athoseius) bagdasarjani* was the dominant Phytoseiid species (45.5%) in this region in comparison with the other ones: *Neoseiulus bicaudus* (Wainstein) (2%), *Paraseiulus talbii* (Athias-Henriot) (0.5%) and

Typhlodromus spp. (2%) (Table 2). It was determined entirely clear populations on *Neopronematus rapidus* (Kuznetzov 1972) (lolinidae) and Tydeidae with three species of *Pronematus* spp., *Tydeus* spp. and *Brachytydeus* spp. The consequences assigned *N. rapidus* is the abundant species in this group (Table 3). In addition, the species *Pronematus* spp. was detected on Gourd to a high degree of the density, whereas *N. rapidus* was collected from tomato at the top abundance of population. On the whole, the super-family Tydoidae (lolianidae and Tydeidae) clarified utmost density on walnut in Markaz Amozesh- Keshavarzi. The distribution of host plants and the density of tydeoid mites are shown in Table 3.

Table 2 List of phytoseiid species with their density, distributions and host plants in Karaj, Iran

Year	Species	density%	Areas	Hosts
2014	<i>Typhlodromus (A.) bagdasarjani</i>	46	Ziba-dasht, Markaze Amoozesh Keshavarzi, Pourkashani, Meshkin dasht	apple, Japanese quince, grapes, almonds, black plum, gold drops plum, peach, apricot, berry, sweet-cherry, fig, greengage, walnut, plane tree, strawberry, safflower, rose, cucumber, cucurbit plant, pepper, goosefoot, pear,
	<i>Neoseiulus bicaudus</i>	2		
	<i>Paraseiulus talbii</i>	1		
	<i>Typhlodromus</i> spp.	3		
2015	<i>T. (A.) bagdasarjani</i>	45		
	<i>Neoseiulus bicaudus</i>	2		
	<i>Typhlodromus</i> spp.	1		

Figure 1 Most density of the species of Tetranychidae on different hosts in Markaz Amoozesh-Keshavarzi, Karaj, Iran

The study shows a large number of plant-inhabiting mites (Acari: Mesostigmata, Prostigmata, Oribatida) which at least some species may consider as an important necessity in crop management. In general, mite species may feeds on different hosts with changes of range population. At this work was presented some families of three groups of mites (Table 1) and among them, three families revealed the most population. The family lolinidae (among total collected mites) demonstrated the highest density and the destructive mites were mainly related to the family Tetranychidae showed the second position. Species of this family further were associated with bean, egg-plant and cucumber plants subsequently. In this regard, number of Phytoseiidae mites were assigned averagely and had the third level. Probably, a close relation between Tetranychidae (prey and destructive mites) with Phytoseiidae (predatory mites) may be presumed. Similar consequences emphasize this matter. On one hand, the phytoseiid mites had a good distribution in various parts of Iran (Asali-Fayaz *et al.*, 2010; Arbabi *et al.*, 2011; Asali-Fayaz and Khanjani, 2012; Asali-Fayaz *et al.*, 2012), on the other hand reasonable population for Tetranychidae has been adapted with the phytoseiid mite predators (Brandenburg and Kennedy, 1987; Forghani, 2005; Demirel and Kabuk, 2008). On the whole, the scope of current work includes complementary identification of phytoseiid and Tydeoid mites. Our results, clarified *N. rapidus* was

populated on different plants especially tomato by more frequency despite the fact that *Pronematus* spp. *Tydeus* spp. and *Brachytydeus* spp. showed less populations at the same area (Table 3). It seems that condition for *N. rapidus* had suitable adaptation to this area as it was mentioned by Jeppson *et al.* (1975). Concerning *Tydeus calabrus* (Castagnoli, 1984) was recorded in Razavi Khorasan (Iran) also, *Neopronematus sepasgosariani* Sadeghi, Łaniecka and Kaźmierski, *N. lundqvisti* Sadeghi, Łaniecka and Kaźmierski and *Tydeus darekiwani* Sadeghi, Łaniecka and Kaźmierski were reported as the other collections subsequently (Sadeghi *et al.*, 2012). Furthermore, Darbemamieh *et al.* (2015) recorded *Neopronematus kamalii* Darbemamieh and Hajiqanbar on apricot with the other species *N. solani* (Łaniecka and Kazmierski, 2013) on potato and *N. rapidus* (Kuznetzov, 1972), *N. sepasgosariani* (Sadeghi *et al.*, 2012), *N. lundqvisti* (Sadeghi *et al.*, 2012) and *N. neglectus* (Kuznetzov, 1972) from Kermanshah in Iran. In the Phytoseiidae family, we assumed *Typhlodromus (Athoseius) bagdasarjani* with remarkable occurrence and distribution on different hosts in Karaj, while *N. bicaudus*, *P. talbii* and *Typhlodromus* spp. were perceived at low values. Respect to this, Asali-Fayaz *et al.* (2013) referred *T. bagdasarjani* is very common on crops in western and south western of Iran and on apple and almond orchards (Asali-Fayaz *et al.*, 2011).

Table 3 List of tydeoid species with their densities, host plants and distributions in Karaj, Iran

Year	Species	Mean \pm SE	Hosts	Area
*2014	<i>Neopronematus rapidus</i>	25.44 \pm 2.04 ^a	Tomato, Mallow, Melon, Green-bean, Walnut,	Ziba-dasht, Markaze Amoozesh Keshavarzi, Pourkashani, Mohammad Shahr, Chaman,Mahdasht
2014	<i>Pronematus</i> spp.	23.33 \pm 1.55 ^b	Gourd, Rose, Almond, Apricot, Berry, Grap, Blach-berry, Walnut	Ziba-dasht, Markaze Amoozesh Keshavarzi, Pourkashani, Meshkin dasht,Mohammad Shahr

Table 3 Continue

Year	Species	Mean \pm SE	Hosts	Area
2014	<i>Tydeus</i> spp.	1.55 \pm 0.38 ^c	Sunflower, cedar, Black-berry, Black-prune, Mallow, Rose, Gourd, Pepper, Egg-plant, Fig	Markaze Amoozesh Keshavarzi, Mohammad Shahr, Chaman,Mahdasht,Kalak
2014	<i>Brachytydeus</i> spp.	0.44 \pm 0.20 ^d	Mallow, Egg-plant, Spearmint,	Ziba-dasht, Markaze Amoozesh Keshavarzi, Chaman
*2015	<i>Neopronematus rapidus</i>	22.77 \pm 2.04 ^a		
2015	<i>Pronematus</i> spp.	23.11 \pm 1.55 ^b		
2015	<i>Tydeus</i> spp.	2.22 \pm 0.38 ^c		
2015	<i>Brachytydeus</i> spp.	0.66 \pm 0.20 ^d		
**2014–2015	<i>Neopronematus rapidus</i>	24.11 \pm 6.04 ^A		
2014–2015	<i>Pronematus</i> spp.	23.16 \pm 4.52 ^B		
2014–2015	<i>Tydeus</i> spp.	1.89 \pm 1.18 ^c		
2014–2015	<i>Brachytydeus</i> spp.	0.55 \pm 0.61 ^D		

Note: Means followed by different letters within a column are significantly different at the 0.05 level (LSD test). * : N = 9, ** : N = 18; Mean \pm SD

The other species of Phytoseiidae were found in different places or /and distinctive circumstances may affect on their appearances and frequencies (Asali-Fayaz *et al.*, 2010; Rahmani *et al.*, 2010; Jafari *et al.*, 2011; Panahi Laeen *et al.*, 2014) even all over the world (Tixier *et al.*, 2010; Denmark and Evans, 2011; Hernandes *et al.*, 2011). This family is considered as one of the most important groups of natural enemies throughout the world especially, in Iran in as much as some literatures have pointed their frequencies on various insect or

mite pests (Khanjani and Haddad-Irani-Nejad, 2006; Khanjani *et al.*, 2010). As a result, the current study was the first to estimate and identify tydeoid and phytoseiid mites in this area. It provides direction for future researches on partial of evaluating the performance of Tydeoidea and the efficiency of Phytoseiidae as natural enemies of pests in fields and orchards in Karaj under variable environmental conditions. These results may be considered as initially process to manage crop system.

CONCLUSION

Therefore, Iolinidae family had the most population mites. Family of Tetranychidae showed the high abundance on bean, egg-plant and cucumber in Markaz Amozesh-Keshavarzi. *Typhlodromus (Anthosieus) bagdasarjani* was dominant phytoseiid species in different parts of Karaj. There were four species of *Neopronematus rapidus* (Iolinidae), *Pronematus* sp., *Tydeus* sp. and *Brachytydeus* sp. (Tydeidae). The superfamily Tydeoidea clarified utmost density on walnut in Markaz Amozesh-Keshavarzi.

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to Prof. E.A. Ueckermann (Plant Protection Institute, South Africa) for identification of tydeid mites in this study, Dr. Bahman Asali-Fayaz (Bualisina University of Hamadan, Iran) and Mr. Seyed Hassan Mossavi (Deputy for Husbandry of Tehran Province) for their co-operation.

REFERENCES

Arbabi, M., H. Daneshvar, D. Shirdel and P. Baradaran. 2011. Results of half century investigation on of phytoseiid mite species in agricultural crops of Iran. *In: Proceedings of 2nd Iranian Pest Management Conference (IPMC)*. pp 250–258. 14 and 15 September 2011, Kerman.

Asali-Fayaz, B. and M. Khanjani. 2012. Phytoseiid mites (Acari: Mesostigmata: Phytoseiidae) in some regions of western and north western Iran. *J. Crop Protection*. 1(2): 161–172.

Asali-Fayaz, B., M. Khanjani and J. Hajizadeh. 2010. Determination dominate species of phytoseiid mite in alfalfa fields from western provinces of Iran. *In: Proceedings of 19th Iranian plant protection congress*. p. 396, 30 July – 2 August 2010. Tehran.

Asali-Fayaz, B., M. Khanjani and M.S. Tixier. 2013. Re-description of six species of the genus *Typhlodromus* Scheut (Acari: Phytoseiidae: Typhlodrominae) recorded from some regions of Western and North–Western Iran. *Persian J. Acarology*. 2(3): 369–387.

Asali-Fayaz, B., M. Khanjani, F. Molavi and E.A. Ueckermann. 2011. Phytoseiid mites (Acari: Phytoseiidae) of apple and almond trees in regions of western and south-western Iran. *Acarologia*. 51(3): 371–379.

Asali-Fayaz, B., M. Khanjani, J. Hajizadeh and E.A. Ueckermann. 2012. A re-description of *Typhlodromus (Anthosieus) Tamaricis* (Kolodochka) (Mesostigmata: Phytoseiidae), a first record for Iran. *Acarologia*. 52(4): 425–431.

Brandenburg, R.L. and G.G. Kennedy. 1987. Ecological and agricultural consideration in the management of two spotted spider mite (*Tetranychus urticae* Koch). *Agric. Zool. Rev.* 2: 185–236.

Castagnoli, M. 1984. Contributo alla conoscenza dei Tideidi (Acarina: Tydeidae) delle piante coltivate in Italia. *Redia*. 67: 307–322.

Chant, D.A. and J.A. McMurtry. 1994. A review of the subfamilies Phytoseiinae and Typhlodrominae (Acari: Phytoseiidae). *Int. J. Acarol.* 20(4): 223–285.

Colfer, R.G., J.A. Rosenheim, L.D. Godfrey and C.L. Hsu. 2004. Evaluation of large-scale releases of western predatory mite for spider mite control in cotton. *Biological Control*. 30: 1–10.

Darbemamieh, M., H. Hajiqanbar, M. Khanjani and A. Kaźmierski. 2015. New species and records of *Neopronematus* (Acari: Iolinidae) from Iran with a key to world species. *Zootaxa*. 3990(2): 235–246.

Demirel, N. and F. Kabuk. 2008. Population trends of two spotted spider mite *Tetranychus urticae* Koch (Acari: Tetranychidae) on cotton nearby soil and asphalt roads. *J. Entomol.* 5(2): 122–127.

Denmark, H.A. and G.A. Evans. 2011. *Phytoseiidae of North America and Hawaii* (Acari: Mesostigmata). 451 p. Indira Publishing House, West Bloomfield, Michigan, USA.

Easterbrook, M.A., J.D. Fitzgerald and M.G. Solomon. 2001. Biological control of strawberry tarsonemid mite *Phytonemus pallidus* and two-spotted spider mite *Tetranychus urticae* on strawberry in the UK using species of *Neoseiulus (Amblyseius)* (Acari: Phytoseiidae). *Exp. Appl. Acarol.* 25: 25–36.

Faraji, F., J. Hajizadeh, E.A. Ueckermann, K. Kamali and J.A. McMurtry. 2007. Two new records for Iranian phytoseiid mites with synonymy and keys to the species of *Typhloseiulus* Chant and McMurtry and Phytoseiidae in Iran (Acari: Mesostigmata). *Int. J. Acarol.* 33(3): 231–239.

Ferragut, F., A. Gallardo, R. Ocete and M.A. Lopez. 2008. Natural predatory enemies of the erineum strain of *Clomerus vitis* (Paggenesteller) (Acari: Eriophyidae) found on wild grapevine population from southern Spain (Andalusia). *Vitis*. 47: 51–54.

Forghani, S.H.R. 2005. Study on Biology of Spider Mite *Tetranychus urticae* Complex (Acari: Tetranychidae) on Cotton and Recognition of their Natural Enemies in Golestan Province. MS thesis, Sciences and Research Branch, Islamic Azad University, Tehran, Iran.

Gerson, U., R.L. Smiley and R. Ochoa. 2003. *Mites (Acari) for Pest Control*. Black-well Science Ltd. UK.

Gnanvossou, D., J.S. Yaninek, R. Hanna and M. Dicke. 2003. Effects of prey mite species on life history of the phytoseiid predators *Typhlodromus manihoti* and *T. aripo*. *Exp. Appl. Acarol.* 30: 265–278.

Hajizadeh, J. and M. Nazari. 2012. A checklist and key for the phytoseiid mites (Acari: Phytoseiidae) of citrus orchards in Iran, with a new record for Iranian phytoseiid mites. *Syst. Appl. Acarol.* 17(4): 388–396.

Hernandes, F.A., S. Kreiter and M.S. Tixier. 2011. Bio-geographical analysis within the family Phytoseiidae Berlese (Acari: Mesostigmata): an example from the large sub- genus *Typhlodromus (Anthoseius)* De Leon. *Acarol.* 51(4): 431–448.

Jafari, S., Y. Fathipour and F. Faraji. 2011. Re-descriptions of *Amblyseius meghriensis* (Arutunjan) and *Typhlodromus haiastanius* (Arutunjan) with discussion on using pre-anal pores as a character in the subgenus *Anthoseius* (Mesostigmata: Phytoseiidae). *Int. J. Acarol.* 37(3): 244–254.

Jeppson, L.R., H.H. Keifer and E.W. Baker. 1975. *In: Mites injurious to economic plants*, pp.166, 171–173, University of California press, Berkeley, USA.

Kamali, K., H. Ostovan and A. Atamehr. 2001. A Catalog of Mites and Ticks (Acari) of Iran. Islamic Azad University Scientific Publication Center, Iran.

Karg, W., S. Mack and A. Baier. 1987. Advantages of oligophagous predatory mites for biological control, Bull. SROP/ WPRS. 10(2): 66–73.

Kazmierski, A. 2008. Three new Tydeid species of the genus *Brachytydeus* Thor, 1931 sensu Andre 2005 (Acari: Actinedida: Tydeidae) from Siberia. Annal Zool. 58(2): 347–355.

Kazmierski, A. 2009. Three new Tydeinae species (Acari: Actinedida: Tydeidae) from Poland. Annal Zool. 59(1): 107–117.

Khalil-Manesh, B. 1973. Phytophagous mites fauna of Iran. Appl. Entomol. Phytopathol. 35: 30–38 (in Persian with English summary).

Khanjani, M. and E.A. Ueckermann. 2003. Four new Tydeid species from Iran (Acari: Prostigmata). Zootaxa. 182: 1–11.

Khanjani, M. and K. Haddad-Irani Nejad. 2006. Injurious mites of agricultural crops in Iran. 536p. 2nd Edition. Bu Ali-Sina University. Hamedan, Iran.

Khanjani, M., J. Khalghani and M.J. Soleymani-Pari. 2010. Principal of Diseases and Pests Control. Payame Noor University. press, 6th edition, Tehran, Iran.

Krantz, G.W. and D.E. Walter. 2009. A Manual of Acarology. 3rd Edition. Texs Tech University Press. Available Source<<http://www.ttup.ttu.edu/Book pages/9780896726208. html>>.

Kuznetzov, N.N. 1972. Mites of the genus *Pronematus Canestrini* (Acarina: Tydeidae) from Crimea. Nauchnye Doklady Wysshey Shkoly. Biologicheskye Nauki. 5: 11–16. (in Russian)

McMurtry, J.A. and B.A. Craft. 1997. Life styles of phytoseiid mites and their roles in biological control. Annu. Rev. Entomol. 42: 291–312.

Momen, F.M. 2010. Intra and inter specific predation by *Neoseiulus barkeri* and *Typhlodromus negevi* (Acari: Phytoseiidae) on different life stages: predation rate and Juvenil development. Acarina. 18(1): 81–88.

Ostovan, H., F. Faraji, F. Kamyab and F. Khadempour. 2012. Notes on *Neoseiulus paspalivorus* (Deleon) and *Proprioseiopsis messor* (Wainstein) (Acari: Phytoseiidae) collected in Iran. Acarol. 52(1): 51–58.

Panahi Laeen, H., A.R. Askarianzadeh and M. Jalaeian. 2014. Phytoseiid mites (Acari: Phytoseiidae) of fruit orchards in cold regions of Razavi Khorasan province (northeast Iran), with re-description of two species. Persian J. Acarol. 3(1): 27–40.

Rahmani, H., K. Kamali and F. Faraji. 2010. Predatory mite fauna of Phytoseiidae of northwest Iran (Acari: Mesostigma). Turkish J. Zool. 34: 497–508.

Rahmani, S., A. Saboori, E. Ueckermann and F. Ardestir. 2006. Fauna of phytoseiid mites (Mesostigmata) in orchards of Karaj region, Iran. In: Proceeding of 12th International Congress of Acarology. p 167. Amsterdam, Netherland.

Ripka, G., I. Lanieck and A. Kazmierski. 2013. On the arboreal acarofauna of Hungary: Some new and rare species of prostigmatic mites (Acari: Prostigmata: Tydeidae, Iolinidae and Stigmaeidae), *Zootaxa*. 3702(1): 1–50.

Sabelis, M.W. 1996. Phytoseiidae. *In*: E.E. Lindquist, M.W. Sabelis and J. Bruin (Eds.) *Eriophyoid mites their biology natural enemies and control*. pp. 427–456. Elsevier Science Publishing, Amsterdam, Netherland.

Sadeghi, H., I. Laniecka and A. Kazmierski. 2012. Tydeoid mites (Acari: Triophydeidae), Iolinidae, Tydeidae of Khorasan Province Iran with description of three new species. *Annal. Zool.* 62(1): 99–114.

Sepasgosarian, H. 1977. The 20 years research of acarology in Iran. *ISE*. 56: 40–50.

Tixier, M.S., V. Klaric, S. Kreiter and C. Duso. 2010. Phytoseiid mite species from Croatia, with description of a new species of the genus *Typhlodromus* (*Typhlodromus*). *Ann. Entomol. Soc. Am.* 103(2): 165–180.

Ueckermann, E.A., M. Jalaeian, A. Saboori and H. Seyedoleslami. 2009. Re-description of *Typhlodromus (Anthoseius) khosrovensis*, first record for Iran (Acari: Phytoseiidae). *Acarolo*. 49(1–2): 23–27.

Walter, D.E. 1987. Below-ground arthropods of semiarid grasslands. *In*: *Integrated Pest Management on Rangeland: A Short Grass Prairie*. Edited by J.L. Capinera. Westview, Boulder, Colorado. pp. 271–290.