I " AGRICULTURAL SCIENCE SOCIETY OF THAILAND

Prediction of carcass weight using multiple regression, Bayesian
networks and artificial neural networks in Nigerian indigenous chickens
based on earlier expressed phenotypic traits

A.S. Adenaike'*, O0.S. Oloye', M.A. Opoola?, H.O. Emmanuel'’ and C.O.N. lkeobi'

' Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta 111101, Nigeria

2 Department of Biology, College of Arts and Sciences, University of Louisville, Louisville 40292, USA

*Corresponding author: adenaikeas@funaab.edu.ng
Submission: 4 July 2022 Revised: 6 November 2022 Accepted: 10 November 2022

ABSTRACT

The prediction potential of carcass weight (CW) in chicken is an important undertaking that can
help commercial enterprises make better management decisions. The goal of this study was to examine
alternative modeling approaches for predicting CW in meat-type Nigerian indigenous chickens using 19
biometric variables, as well as to discover early expressed traits that may be employed in CW breeding
selection. Using multiple linear regression (MLR) and stepwise regression (SWREG), artificial neural
networks (ANNs), and Bayesian networks (BN), the biometric traits of 320 chickens were modeled to
predict CW. The accuracy of the models was evaluated based on their values of root mean square
error (RMSE), mean square error (MSE), mean absolute error (MAE), mean absolute percentage error
(MAPE), coefficient of determination (R?), and correlation coefficient (r) between the predicted and the
observed values of CW. The results showed that the MLR model was the least capable of predicting
CW (MAE = 0.608, RMSE = 2.020, and MAPE = 93.244), followed by SWREG (MAE = 0.426, RMSE
= 0.855, and MAPE = 77.168) compared to the ANNs and BN models. The estimated values of MAE,
RMSE, and MAPE for the ANN1 model were 0.091, 0.201, and 52.891 respectively while that of ANN3
were 0.081, 0.101, and 36.765 respectively. The estimated values of MAE, RMSE, and MAPE for the
MMHC model were 0.095, 0.129, and 63.551 respectively while that of RSMAX2 were 0.099, 0.132,
and 66.193 respectively. Although it is possible to achieve a higher-performing SWREG model, in this
study the SWREG (R? = 57.84%) cannot be considered an optimum model for predicting CW. Based on
statistical parameters (i.e., R%, MAE, r, and MAPE), the result of the study showed that the BN models
provided a more powerful tool than the regression models and ANNs for predicting CW. The findings of
this study showed that day-old chick weight, hatched weight, live weight, and body weight at 8 weeks
are good predictors of CW. This could be used for management decisions in the chicken industry in the
determination of CW at an earlier age of chickens.
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INTRODUCTION

Carcass weight (CW), which is closely
related to live weight, is a significant trait in meat-
type poultry breeding programs. Live weight is
accumulated from 6 to 10 weeks of age in broiler
chickens; early management decisions such as
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selection cannot be based on it. As a result, predicting
CW using early expressed traits as explanatory
variables could be valuable in production and
breeding systems to aid decision-making. If a
broiler’s anticipated CW potential is poor, it may
be culled sooner. Selective breeding for CW in
poultry broilers based on qualities expressed in



the early weeks of life can result in increased
live body weight, improved carcass composition,
shorter production times, and significantly increased
carcass dressing percentage.

Regression analysis, Bayesian networks
(Bishop, 2006), and artificial neural networks (Hastie
etal., 2009) are some of the methods that can be
used to predict phenotypes. Frequentist regression
approaches have been widely used in scientific
studies involving a variety of livestock species
and attributes for a variety of objectives, including
phenotypic forecasting. Multiple regression analysis
is a well-known technique for predicting a target
variable conditionally on a group of covariates
(explanatory variables) using least squares
regression modeling (Hastie et al., 2009). Various
subsets of the available observable covariates, as
well as interaction terms between them, could be
used to fit a variety of models. However, one of
the difficulties with regression is determining the
optimal collection of covariates, because including
correlated predictors will increase the standard
errors of the regression coefficients, making
predictions more sensitive to model modifications
(Burnham and Anderson, 2002; Adenaike et al.,
2015). Artificial neural networks (ANNs) are
nonlinear statistical modeling methods that offer
a fresh option for multiple regressions. The ability to
implicitly detect complicated nonlinear correlations
between dependent and independent variables,
the ability to detect all conceivable interactions
between predictor variables, and the availability of
different training procedures are all requirements
for neural networks. The ANNs are based on the
biological nervous system of humans and are made
up of layers of interconnected neurons (linear or
nonlinear computing elements; Bishop, 2006).
The neural network’s first layer gathers raw data,
processes it, and sends the processed data to
the hidden layers. The information is transferred
from the concealed layer to the final layer, which
generates the output. Aside from ANNs, Bayesian
networks (BNs) learning methods can be utilized
to study relationships between traits. The BNs are
conditional independencies models that depict the
joint distribution of random variables. Constraint-

based and score-based algorithms are the two
basic types of BNs learning algorithms. The former
uses a series of conditional independence tests
to discover the network of variables, whereas the
later employs a score to compare the fit of many
(preferably all) feasible networks to the empirical
data. Hybrid learning algorithms combine constraint-
based and score-based algorithms to compensate
for each other’s flaws and build dependable network
architectures in a range of settings. The Max-Min
Hill-Climbing method (MMHC) by Tsamardinos et
al. (2006) and the Hybrid HPC (RSMAX2) by Gasse
et al. (2014) are the two most well-known hybrid
learning algorithms, both of which improve on the
sparse candidate algorithm originally proposed by
Friedman et al. (1999). Correa et al. (2009) provide
more information on BNs, whereas Heald et al.
(2000) work provides more information on ANNSs.

The ANNs and BNs have been used
for many purposes in quantitative genetics, for
example, total egg production of European quails
using earlier expressed phenotypic traits (Felipe et
al., 2015) and linkage disequilibrium using single
nucleotide polymorphism markers (Morota et al.,
2012). Furthermore, many studies have investigated
connections among several traits via a BN analysis
incorporating quantitative trait loci and phenotypic
data (Neto et al., 2010; Hageman et al., 2011;
Wang and van Eeuwijk, 2014; Pefiagaricano et
al., 2015). In addition, ANNs have been applied
to the prediction of egg production (Ghazanfari
et al., 2011; Wang et al., 2012; Yakubu et al.,
2018), hatchability (Bolzan et al., 2008), weight and
number of eggs (Semsarian et al., 2013), growth
curves (Ahmad, 2009) and nutritional requirement
estimation (Mehri, 2012) in poultry.

The objective of the present study was to
compare the efficiency of multiple regressions, BN,
and ANNSs to predict CW of Nigerian indigenous
chickens using earlier measured biometric traits.
As a result, we constructed ANNs and compared
them with multiple regressions and BNs as well
as demonstrated the superiority of BNs. As far as
we know, there have been no comparisons of how
well these techniques performed in the prediction
of CW in chickens.
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MATERIALS AND METHODS

Experimental Site and Birds

The experiment was carried out at the Poultry
Breeding Unit of the Directorate of University Farm
(DUFARM) of the Federal University of Agriculture
Abeokuta, Ogun State, Nigeria. The University is
located within latitude 7°10’N and longitude 3°2’E
and lies in the south-western part of Nigeria.

The experimental birds consist of 320
Nigerian indigenous chickens generated from mating
of parent stocks through artificial insemination. The
chicks were brooded in deep litter in an animal
farmhouse. All the chicks were wing-tagged for
proper identification and subjected to the same
management practices throughout the experimental
period of 8 weeks. Individual hatched weight of
chicks was measured immediately after the chicks
were received from the hatchery while the weight
of day-old chick was measured 24 hours after.
Body weight, shank length, keel length, and breast
girth were measured at 2 weeks intervals. At 8
weeks old, the chickens were starved overnight
before slaughtering. The birds were weighed before
slaughtering by severing the carotid artery and
jugular vein and de-feathered before evisceration
according to the method described by Hahn and
Spindler (2002). All weights were measured using
an electronic scale, while breast girth, shank, and
keel lengths were measured using the tape rule.
All the measured traits were hatched weight (HW),
day-old chick weight (DOCW), body weight at 2
(BW2), 4 (BW4), 6 (BW6), and 8 (BW8) weeks old,
breast girth at 2 (BG2), 4 (BG4), 6 (BG6), and 8
(BGB8) weeks old, shank length at 2 (SL2), 4 (SL4),
6 (SL6), and 8 (SL8) weeks old, keel length at 2
(KL2), 4 (KL4), 6 (KL6), and 8 (KL8) weeks old,
live weight before slaughtering (LW), and carcass
weight (CW).

Statistical Analysis

The input data were normalized to
correct variations due to differences in scales of
measurements before analyses. The entire dataset
was randomly divided into two subsets viz, the
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training set (consisting of 70% of the entire dataset)
and the testing set (consisting of 30% of the entire
dataset). Each statistical method used to analyze
the data is explained further below:

Regression method

Standard multivariate linear regression and
stepwise regression models were used to evaluate
the data using R software (R Core Team, 2021).

Y, = Bo + B1Xi1 + Bzxiz + B3Xi3 o + Bpxip + &

where i is the number of observations, y, is the
carcass weight, B is the intercept, Bp is the slope
coefficients for each dependent trait, and ¢;is the
residual error term

Bayesian networks method

A Bayesian network (BN) is a graphic
representation of a joint probability distribution
(or joint density) which can be described by the
structure of a directed acyclic graph. Factorization
of the BN is a chain of products of conditional
probabilities, as one node, given its parents, is
conditionally independent of its non-descendants
(Scutari and Denis, 2015). This is a convenient
representation of the joint probability distribution,
allowing for inference on the desired traits. The
joint probability distribution is defined as:

P (X, X,....X)) = [Ty (X4 |Pa)

where p is the number of variables, i is the counter
of samples, n is the number of observations, and
Pa,is the parent of X

The initial step for BN was carried out to
have an algorithm to learn the basic graph structure
(Scutari, 2010) which followed the learning of the
implicit local distributions for this given structure
(Scutari et al., 2014).

The joint distribution can be represented
as Pr (CW, HW, DOCW, LW, BW2, SL2, KL2, BG2,
BW4, SL4, KL4, BG4, BW6, SL6, KL6, BG6, BW8,
SL8, KL8, BG8) = Pr (HW) Pr (DOCW) Pr (BW2)



Pr (BG8) Pr (BW4|BW2) Pr (BG4|BW4) Pr (BW6|BWA4)
Pr (BW8|BWS6) Pr (CW|BW2:BWS8) Pr (KL4|CW)
Pr (KL6|HW:BW4:KL4:BW8) Pr(LW|CW:KL6)
Pr (KL2|BW2:KL4:KL6) Pr (SL2|HW:BW2:KL2)
Pr (BG6|BW2:SL2:BW4) Pr (KL8|SL2)
Pr (SL6|LW:KL6:KL8:BG8) Pr (BG2|BW2:SL6)
Pr (SL8|BW2:BW6:SL6) Pr (SL4|KL2:BW4:SL8)

where Pr is the probability of the traits.

Two BNs models (MMHC and RSMAX2)
were used. The choice of algorithms was based on
their computational efficiency. Also, the constraint-
based methods do not always provide a structure
with directed edges because of the statistical
equivalence of structures. The models were fitted
using the package “bnlearn” (Scutari, 2010) in R
software (R Core Team, 2021).

Atrtificial neural networks method

For ANN, backpropagation with backtracking
algorithm containing one input layer with 19 nodes,
with varying number of hidden layers, and one output
layer with one node were fitted using “neuralnet”
package in R software (R Core Team, 2021). Two
neural networks were selected from the ANNs based
on good generalization capacity. These were single
hidden-layered artificial neural networks (ANN1);
three hidden-layered artificial neural networks
(ANN3). The backpropagation learning algorithm
can be divided into 2 phases: propagation and
weight update. Each propagation involves forward
propagation of a training pattern input through the
neural network to generate the output activation
of the propagation, along with backpropagation of
this output activation through the neural network,
using the training pattern target to generate the
deltas for all the output and hidden neurons. In
the weight update phase, the output delta of each
synaptic weight is multiplied by the input activation
to obtain the gradient of the weight and bring the
weight in the opposite direction to the gradient by
subtracting a ratio of the gradient of the weight
from the weight (Pal and Mitra, 1992).

The net input function of ANN to the j®
hidden neuron is given as:

YJ.(X) = Z|n=1 W1jiWi + b1j

where w1ji is the weight between the i" node of the
input layer and the j" node of the hidden layer and
b1j is the bias at the j" node of the hidden layer.
The output of the j" hidden node is given as:
Zj(x) = (’] + exp('Yj(X)))'1

For an input vector x, the output, value
O,(x) of the K" node of the output layer is equal
to the sum of the bias of the K" node of the output

layer and weighted outputs of the hidden nodes
and is given as:

Ok(X) = ZWZKJ Z; + b2k

where w2, is the weight between the j node of the
hidden layer and the k™ node of the output layer
and b2, is biasing term at the k™ node of the output
layer. The nodes represent the measured traits.

Predictive ability of models

The results from the BNs and ANNs were
compared with that of the fitted regression models.
Carcass weight estimated by the models was
compared based on performance measurements.
The measurement used to validate the estimation
methods were: i) correlation between the predicted
value and the actual value estimated, which indicates
the degree in which the estimated outputs are
close to the actual outputs. The predictive ability of
the different models was assessed by computing
the correlation (r) between the observed and the
predicted CW, ii) root mean square error (RMSE),
iii) mean absolute error (MAE), iv) mean absolute
percentage error (MAPE), v) mean percentage error
(MPE), vi) mean error (ME), vii) mean square error
(MSE), and viii) coefficient of determination (R?).

RESULTS AND DISCUSSION

The descriptive statistics of carcass weight,
live weight, body weight, breast girth, keel length,
and shank length of chickens in the training and
testing datasets are reported in Table 1. The statistical
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characteristics of the training and testing datasets
were highly similar. The skewness coefficients for
the dependent variables of carcass weight were
low. In general, Table 1 shows satisfactory statistical
characteristics for the training and testing datasets
in terms of mean, standard deviation, coefficient of
variation, and skewness. The observed similarity in
statistical characteristics of the training and testing
datasets led to better performance of the models.

This similarity showed that there is no change in
the data distribution which is known as a data shift
between the training and the testing datasets. Also,
the low values of the skewness coefficient in the
traits improved the performance of the models. In
general, the satisfactory statistical characteristics for
the training and testing datasets in terms of mean,
skewness, and coefficient of variation increased
the performance of the prediction models.

Table 1 Descriptive statistics of measured traits in Nigerian indigenous chickens

Training set Testing set
Traits
Mean SD cv Skewness Mean SD CV  Skewness

HW (g) 35.60 3.88 10.90 10.91 35.33 3.08 8.72 8.72
DOCW (g) 34.43 3.28 9.53 8.34 34.67 3.71  10.70 10.70
BW2 (g) 235.87 17.64 7.48 10.91 242.68 13.12 5.41 5.41
BW4 (g) 524.90 49.21 9.38 11.33 516.85 5599 10.83 10.83
BW6 (g) 838.83 62.45 7.44 28.86 823.37 67.31 8.17 8.17
BWS8 (g)  1,220.06 79.36 6.50 9.62 1,208.14 88.66 7.34 7.34
BG2 (cm) 14.84 1.60 10.78 15.58 15.10 219 14.50 14.50
BG4 (cm) 19.95 217 10.88 11.77 19.02 3.40 17.88 17.88
BG6 (cm) 22.79 2.58 11.32 20.20 21.93 2.15 9.80 9.80
BG8 (cm) 24.39 2.03 8.32 12.71 2543 2.28 8.97 8.97
SL2 (cm) 3.69 0.35 9.49 20.55 4.15 0.42 10.12 10.12
SL4 (cm) 5.04 0.41 8.13 14.70 5.25 0.57 10.86 10.86
SL6 (cm) 6.32 0.77 12.18 9.55 6.55 0.46 7.02 7.02
SL8 (cm) 8.07 1.53 18.96 20.85 8.30 118 14.22 14.22
KL2 (cm) 6.07 1.26 20.76 12.31 7.05 0.97 13.76 13.77
KL4 (cm) 7.80 1.31 16.79 19.04 8.27 1.51 18.26 18.26
KL6 (cm) 10.46 1.63 15.58 14.06 10.17 212  20.85 20.85
KL8 (cm) 14.30 1.68 11.75 10.81 15.36 1.85 12.04 12.04
LW (g) 1,190.60 167.44 14.06 16.83 1,150.16 13345 11.60 11.60
CW (9) 1,133.22 163.53 14.43 14.43 1,050.41 176.41  16.79 16.79

Note: SD = standard deviation, CV = coefficient of variation, HW = hatched weight, DOCW = day-old
chick weight, BW2 = body weight at 2 weeks old, BW4 = body weight at 4 weeks old, BW6 =
body weight at 6 weeks old, BW8 = body weight at 8 weeks old, BG2 = breast girth at 2 weeks
old, BG4 = breast girth at 4 weeks old, BG6 = breast girth at 6 weeks old, BG8 = breast girth at 8
weeks old, SL2 = shank length at 2 weeks old, SL4 = shank length at 4 weeks old, SL6 = shank
length at 6 weeks old, SL8 = shank length at 8 weeks old, KL2 = keel length at 2 weeks old, KL4
= keel length at 4 weeks old, KL6 = keel length at 6 weeks old, KL8 = keel length at 8 weeks old,
LW = live weight before slaughtering, CW = carcass weight
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The evaluation criteria used to determine
the quality of the carcass weight estimation
methodologies used in MLR, ANN and BN models
are shown in Table 2. The MLR had the highest
values for ME (0.425), RMSE (2.020), MAE
(0.608), MPE (55.824), MAPE (93.244), and
MSE (4.082). Correlation coefficient (r) between
the observed and the predicted CW values was
highest in the two models of BN (0.989 in MMHC
and 0.988 in RSMAX2) while the estimated r in
MLR was lowest (0.157). Estimated coefficients
of determination (R?) by models from ANN and
BN were above 95%. The prediction efficiency

of regression-based models depends on the
existence of linear relationships between input
and output variables. Due to their simplicity,
MLR models have been used in many studies
compared to any other modeling techniques in
agricultural sectors (Golkar et al., 2011; Ghoreishi
et al., 2012; Huang et al., 2013; Abdipour et al.,
2016; Adenaike et al., 2018; Basak et al., 2020).
However, the drawbacks of SWREG, such as
bias in parameter estimation and inconsistencies
among model selection algorithms, are well known
(Burnham and Anderson, 2002; Whittingham
et al., 2006).

Table 2 The predictive abilities of each models used to train and test the measured traits

Parameters MLR SWREG ANN1 ANN3 MMHC RSMAX2
ME 0.425 0.178 0.074 0.014 6.87 x 107 1.60 x 107
RMSE 2.020 0.855 0.201 0.101 0.129 0.132
MAE 0.608 0.426 0.091 0.081 0.095 0.099
MPE 55.824 34.543 30.696 23.408 23.323 21.353
MAPE 93.244 77.168 52.891 36.765 63.551 66.193
MSE 4.082 0.731 0.040 0.010 0.017 0.017
R? 0.355 0.578 0.945 0.986 0.977 0.976

r 0.157 0.645 0.957 0.987 0.989 0.988

Note: MLR = multiple linear regression, SWREG = stepwise regression, ANN1 = single hidden-layered
artificial neural network, ANN3 = three hidden-layered artificial neural networks, MMHC = Bayesian
network using Max-Min Hill-Climbing algorithm, RSMAX2 = Bayesian network using Hybrid HPC,
ME = mean error, RMSE = root mean square error, MAE = mean absolute error, MPE = mean
percentage error, MAPE = mean absolute percentage error, MSE = mean square error, R? =
coefficient of determination, r = correlation coefficient

In this study, using a linear model with
the stepwise procedure to predict CW did not
find an optimal set of predictors. Compared to
the regression procedures (MLR and SWREG),
MMHC was approximately 58.1% and 34.4%
respectively more accurate in prediction while
RSMAX2 was approximately 58.0% and 34.3%
more accurate in prediction than MLR and
SWREG respectively. ANN performed better than
regression models for CW prediction, probably
due to the existence of nonlinear relationships
among traits. This result is expected given that

non-linear components and potential interactions
among predictors were not considered in the
linear model. The result is similar to the report
of Yakubu et al. (2018) who worked on modeling
egg production in Sasso chickens and observed
higher predictive performance of ANN models over
both linear and quadratic regression. The authors
attributed better performance of ANN to the degree
of robustness and the ability to tolerant fault
compared to regression models. The predictive
abilities of ANN and BN were closed. However, BNs
can be used either as a pre-selection algorithm
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of input variables or a selection algorithm for CW  were significant and specifically described the

prediction, unlike ANN which can only be used
as a selection algorithm. The regression models

influence of the input variables on the CW. The
regression models are shown below:

Equation 1 (MLR): CW =0.0219 — 0.0126HW — 0.0061DOCW + 0.7473LW —0.0673BW2 + 0.0186SL2
+1.4027KL2 + 0.0201BG2 + 0.0346BW4 + 0.0286SL4 — 0.6236KL4 + 0.0013BG4
—0.0215BW6 —0.0084SL6 — 1.3275KL6 —0.0015BG6 + 0.0352BW8 — 0.0594SL8

—0.0019KL8 + 0.0059BG8

Equation 2 (SWREG): CW = —0.0040 — 0.0359DOCW + 0.7327LW — 0.1210BW2 + 2.7781KL2 +
0.1557SL4 — 3.7065KL6 + 0.1582SL2

The predicted CW value in equations 1
and 2 is a linear combination of the input variables,
such that the sum of the squared deviations of the
measured and predicted CW values is minimal. A
formula model in equations (1 and 2) is useful in
understanding how CW changes with input variables
and what values of these variables are required
to achieve the optimal value of CW. The SWREG
algorithm retained 7 predictor variables for the CW,
each of which was significant at the 5% level. In
this study, ANN models were performed to identify
the relationship between input and output variables
aided by hidden layer nodes, which the nodes clarify
the conformation of the data measured from the
experiment. Figures 1 and 2 show neural networks
using a single hidden layer and four hidden layers.
Although different numbers of hidden layers were
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used in ANNs only single and four hidden layers
showed better results. Each input was synaptically
connected to the output node which comprises bias
and the response variable (CW). The relative error
(0.004) for training the network was nearly the same
with that of testing (0.006). The network structures
obtained, comprising 20 phenotypic traits (CW and
19 covariates) for MMHC and RSMAX2 algorithms
are presented in Figures 3 and 4, respectively.
For the MMHC (Figure 3), results indicate that
CW is directly connected to LW, HW, and DOCW.
The remaining observed traits are not expected
to contribute to predicting the CW in the presence
of (i.e., conditionally on) LW, HW, and DOCW. In
further analysis (graphic not shown), in which LW
was removed from the dataset, BW8, HW and DOCW
became only traits that are directly connected to CW.
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Figure 1 Schematic representation of the three hidden-layered artificial neural networks. Weighted sum
of the inputs (phenotypic traits) and bias term were passed to the activation level through the
transfer function to produce the output (carcass weight). CW = carcass weight, HW = hatched
weight, DOCW = day-old chick weight, LW = live weight before slaughtering, BW2 = body
weight at 2 weeks old, SL2 = shank length at 2 weeks old, KL2 = keel length at 2 weeks old,
BG2 = breast girth at 2 weeks old, BW4 = body weight at 4 weeks old, SL4 = shank length at
4 weeks old, KL4 = keel length at 4 weeks old, BG4 = breast girth at 4 weeks old, BW6 = body
weight at 6 weeks old, SL6 = shank length at 6 weeks old, KL6 = keel length at 6 weeks old,
BG6 = breast girth at 6 weeks old, BW8 = body weight at 8 weeks old, SL8 = shank length
at 8 weeks old, KL8 = keel length at 8 weeks old, BG8 = breast girth at 8 weeks old.
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HW
DOCW
LW
BW2

KL4 ' "*. 5 87052

Figure 2 Schematic representation of the single hidden-layered artificial neural network. Weighted sum
of the inputs (phenotypic traits) and bias term were passed to the activation level through the
transfer function to produce the output (carcass weight). CW = carcass weight, HW = hatched
weight, DOCW = day-old chick weight, LW = live weight before slaughtering, BW2 = body
weight at 2 weeks old, SL2 = shank length at 2 weeks old, KL2 = keel length at 2 weeks old,
BG2 = breast girth at 2 weeks old, BW4 = body weight at 4 weeks old, SL4 = shank length
at 4 weeks old, KL4 = keel length at 4 weeks old, BG4 = breast girth at 4 weeks old, BW6 =
body weight at 6 weeks old, SL6 = shank length at 6 weeks old, KL6 = keel length at 6 weeks
old, BG6 = breast girth at 6 weeks old, BW8 = body weight at 8 weeks old, SL8 = shank
length at 8 weeks old, KL8 = keel length at 8 weeks old, BG8 = breast girth at 8 weeks old.
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Figure 3 Schematic representation of the Bayesian network using MMHC algorithm. CW = carcass
weight, HW = hatched weight, DOCW = day-old chick weight, LW = live weight before
slaughtering, BW2 = body weight at 2 weeks old, SL2 = shank length at 2 weeks old, KL2 =
keel length at 2 weeks old, BG2 = breast girth at 2 weeks old, BW4 = body weight at 4 weeks
old, SL4 = shank length at 4 weeks old, KL4 = keel length at 4 weeks old, BG4 = breast
girth at 4 weeks old, BW6 = body weight at 6 weeks old, SL6 = shank length at 6 weeks old,
KL6 = keel length at 6 weeks old, BG6 = breast girth at 6 weeks old, BW8 = body weight at
8 weeks old, SL8 = shank length at 8 weeks old, KL8 = keel length at 8 weeks old, BG8 =

breast girth at 8 weeks old.

For RSMAX2 (Figure 4), the directed
acyclic graph (DAG) shows that CW is directly
dependent on LW, BW8, HW, and DOCW. The
structures learned for MMHC and RSMAX2 present
a different number of directed edges, 40 edges in
MMHC and 13 edges in RSMAX2. Comparison of
different approaches for prediction of CW in Nigerian
indigenous chickens using phenotypes expressed
early in life as predictor variables was the objective
of this study. BN analysis was performed to obtain
a phenotypic network that was compatible with
the joint distribution of the traits, and therefore

make explicit the conditional independencies for
this distribution. This information described which
nodes (traits) comprise the Markov Blanket (a set
of nodes including its parent(s), child(ren), and
spouse(s)) of CW. This is important information for
the prediction of CW given that the remaining nodes
do not contribute to the prediction conditionally
on the MB set. Also, such data-driven analysis is
interesting to verify that the statistical consequences
of the generated DAG were consistent with prior
beliefs about the observed biological system. In both
methods used under BNs, CW was independent
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of all other observed traits given DOCW, HW, LW,
and BWS8, indicating that using these traits alone
to construct regression models for prediction of
CW would be sufficient in Nigerian indigenous
chickens. This dependence between CW and
those traits (DOCW, HW, LW, and BW8) that had
a direct effect on CW was expected given that
the traits shared the same unit (g) with CW. This
implies that if any DOCW, HW, LW, and BW8 has
high heritability when estimated, it may be used
to accurately predict whether a chicken has the
genetic potential for carcass weight (Chomchuen

et al., 2022). So, DOCW and HW are early good
indicators of CW in Nigerian indigenous chickens.
The modtableel generated from RSMAX2 is given
as CW = 0.0188 — 0.0003HW — 0.0545DOCW +
0.4001LW + 0.6705BWS8. A comparison of observed
CW values with predicted CW values from all models
is shown in Table 3. The values of CW from RSMAX2
prediction indicate the promising use of RSMAX2
in bringing these values closer to the observed
CW values. Therefore, the proposed RSMAX2
equation indicates good accuracy for prediction
of CW at early age of chicken.

Figure 4 Schematic representation of the Bayesian network using RSMAX2 algorithm. CW = carcass
weight, HW = hatched weight, DOCW = day-old chick weight, LW = live weight before
slaughtering, BW2 = body weight at 2 weeks old, SL2 = shank length at 2 weeks old, KL2 =
keel length at 2 weeks old, BG2 = breast girth at 2 weeks old, BW4 = body weight at 4 weeks
old, SL4 = shank length at 4 weeks old, KL4 = keel length at 4 weeks old, BG4 = breast
girth at 4 weeks old, BW6 = body weight at 6 weeks old, SL6 = shank length at 6 weeks old,
KL6 = keel length at 6 weeks old, BG6 = breast girth at 6 weeks old, BW8 = body weight at
8 weeks old, SL8 = shank length at 8 weeks old, KL8 = keel length at 8 weeks old, BG8 =
breast girth at 8 weeks old.
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Table 3 Carcass weight (g) predicted from regression, artificial neural and Bayesian networks methods

Obs. CW MLR SWREG ANN1 ANN3 MMHC RSMAX2
1,102.50 1,007.54 1,060.63 1,005.56 1,044.23 1,054.54 1,060.63
1,059.90 864.82 988.28 940.53 985.95 1,009.15 1,012.85
1,214.60 1,179.03 1,171.18 1,159.24 1,209.96 1,177.01 1,180.57
1,228.80 1,213.96 1,212.26 1,296.41 1,227.36 1,219.69 1,223.41
1,106.80 948.60 1,023.49 1,022.81 1,047.71 1,052.23 1,056.11

981.10 865.71 882.49 811.86 874.27 889.87 897.40
1,183.10 1,111.83 1,162.73 1,199.48 1,156.48 1,165.52 1,170.21
1,070.60 902.05 991.65 1,013.84 1,000.40 1,030.85 1,034.99
1,288.20 1,406.71 1,279.81 1,363.55 1,306.65 1,239.01 1,242.34
1,078.40 1,116.37 1,058.66 1,081.20 1,033.20 1,077.21 1,090.78
1,131.40 1,061.66 1,083.12 1,089.45 1,088.62 1,091.51 1,096.93

Note: Obs. CW = observed carcass weight, MLR = multiple linear regression, SWREG = stepwise
regression, ANN1 = single hidden-layered artificial neural network, ANN3 = three hidden-layered
artificial neural networks, MMHC = Bayesian network using Max-Min Hill-Climbing algorithm,
RSMAX2 = Bayesian network using Hybrid HPC

Hence, in the absence of genetic marker
information for prediction of CW, management
decisions should be based only on traits relative
to CW because only DOCW, HW, LW, and BW8
satisfactorily predict CW. Despite the cost of
generating genetic marker information is becoming
cheaper, it still remains a challenge in Nigeria
because of technicality and other factors (Okpeku et
al., 2019). We were surprised that BW2, BW4, and
BW6 were not part of the predictors of CW being
weight traits. The higher correlation value between
observed and predicted CW in BN indicates that
DOCW, HW, LW, and BW8 are good predictors
of CW. Such predicted CW could be used for
management decisions in production systems of
Nigerian indigenous chickens as broiler type of
chickens for the populist.

CONCLUSION

Bayesian networks had best performance in
predicting the carcass weight of Nigerian indigenous
chickens, followed by artificial neural networks.
Among the earlier expressed traits in the chickens,
DOCW, HW, LW, and BW8 were good predictors for
CW. Our results indicate that to achieve reasonable
predictive ability for CW, the measurements of
DOCW and HW are necessary selections to be
made earlier in Nigerian indigenous chickens. We
recommend BN as a good variable selection tool
to describe distributions in a more parsimonious
way for improving generalization being the most
efficiency.
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