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ABSTRACT

The prediction potential of carcass weight (CW) in chicken is an important undertaking that can 
help commercial enterprises make better management decisions. The goal of this study was to examine 
alternative modeling approaches for predicting CW in meat-type Nigerian indigenous chickens using 19 
biometric variables, as well as to discover early expressed traits that may be employed in CW breeding 
selection. Using multiple linear regression (MLR) and stepwise regression (SWREG), artificial neural 
networks (ANNs), and Bayesian networks (BN), the biometric traits of 320 chickens were modeled to 
predict CW. The accuracy of the models was evaluated based on their values of root mean square 
error (RMSE), mean square error (MSE), mean absolute error (MAE), mean absolute percentage error 
(MAPE), coefficient of determination (R2), and correlation coefficient (r) between the predicted and the 
observed values of CW. The results showed that the MLR model was the least capable of predicting 
CW (MAE = 0.608, RMSE = 2.020, and MAPE = 93.244), followed by SWREG (MAE = 0.426, RMSE 
= 0.855, and MAPE = 77.168) compared to the ANNs and BN models. The estimated values of MAE, 
RMSE, and MAPE for the ANN1 model were 0.091, 0.201, and 52.891 respectively while that of ANN3 
were 0.081, 0.101, and 36.765 respectively. The estimated values of MAE, RMSE, and MAPE for the 
MMHC model were 0.095, 0.129, and 63.551 respectively while that of RSMAX2 were 0.099, 0.132, 
and 66.193 respectively. Although it is possible to achieve a higher-performing SWREG model, in this 
study the SWREG (R2 = 57.84%) cannot be considered an optimum model for predicting CW. Based on 
statistical parameters (i.e., R2, MAE, r, and MAPE), the result of the study showed that the BN models 
provided a more powerful tool than the regression models and ANNs for predicting CW. The findings of 
this study showed that day-old chick weight, hatched weight, live weight, and body weight at 8 weeks 
are good predictors of CW. This could be used for management decisions in the chicken industry in the 
determination of CW at an earlier age of chickens.
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INTRODUCTION

Carcass weight (CW), which is closely 
related to live weight, is a significant trait in meat-
type poultry breeding programs. Live weight is 
accumulated from 6 to 10 weeks of age in broiler 
chickens; early management decisions such as 

selection cannot be based on it. As a result, predicting 
CW using early expressed traits as explanatory 
variables could be valuable in production and 
breeding systems to aid decision-making. If a 
broiler’s anticipated CW potential is poor, it may 
be culled sooner. Selective breeding for CW in 
poultry broilers based on qualities expressed in 
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the early weeks of life can result in increased 
live body weight, improved carcass composition, 
shorter production times, and significantly increased 
carcass dressing percentage. 

Regression analysis, Bayesian networks 
(Bishop, 2006), and artificial neural networks (Hastie 
et al., 2009) are some of the methods that can be 
used to predict phenotypes. Frequentist regression 
approaches have been widely used in scientific 
studies involving a variety of livestock species 
and attributes for a variety of objectives, including 
phenotypic forecasting. Multiple regression analysis 
is a well-known technique for predicting a target 
variable conditionally on a group of covariates 
(explanatory variables) using least squares 
regression modeling (Hastie et al., 2009). Various 
subsets of the available observable covariates, as 
well as interaction terms between them, could be 
used to fit a variety of models. However, one of 
the difficulties with regression is determining the 
optimal collection of covariates, because including 
correlated predictors will increase the standard 
errors of the regression coefficients, making 
predictions more sensitive to model modifications 
(Burnham and Anderson, 2002; Adenaike et al., 
2015). Artificial neural networks (ANNs) are 
nonlinear statistical modeling methods that offer 
a fresh option for multiple regressions. The ability to 
implicitly detect complicated nonlinear correlations 
between dependent and independent variables, 
the ability to detect all conceivable interactions 
between predictor variables, and the availability of 
different training procedures are all requirements 
for neural networks. The ANNs are based on the 
biological nervous system of humans and are made 
up of layers of interconnected neurons (linear or 
nonlinear computing elements; Bishop, 2006). 
The neural network’s first layer gathers raw data, 
processes it, and sends the processed data to 
the hidden layers. The information is transferred 
from the concealed layer to the final layer, which 
generates the output. Aside from ANNs, Bayesian 
networks (BNs) learning methods can be utilized 
to study relationships between traits. The BNs are 
conditional independencies models that depict the 
joint distribution of random variables. Constraint-

based and score-based algorithms are the two 
basic types of BNs learning algorithms. The former 
uses a series of conditional independence tests 
to discover the network of variables, whereas the 
later employs a score to compare the fit of many 
(preferably all) feasible networks to the empirical 
data. Hybrid learning algorithms combine constraint-
based and score-based algorithms to compensate 
for each other’s flaws and build dependable network 
architectures in a range of settings. The Max-Min 
Hill-Climbing method (MMHC) by Tsamardinos et 
al. (2006) and the Hybrid HPC (RSMAX2) by Gasse 
et al. (2014) are the two most well-known hybrid 
learning algorithms, both of which improve on the 
sparse candidate algorithm originally proposed by 
Friedman et al. (1999). Correa et al. (2009) provide 
more information on BNs, whereas Heald et al. 
(2000) work provides more information on ANNs.

The ANNs and BNs have been used 
for many purposes in quantitative genetics, for 
example, total egg production of European quails 
using earlier expressed phenotypic traits (Felipe et 
al., 2015) and linkage disequilibrium using single 
nucleotide polymorphism markers (Morota et al., 
2012). Furthermore, many studies have investigated 
connections among several traits via a BN analysis 
incorporating quantitative trait loci and phenotypic 
data (Neto et al., 2010; Hageman et al., 2011; 
Wang and van Eeuwijk, 2014; Peñagaricano et 
al., 2015). In addition, ANNs have been applied 
to the prediction of egg production (Ghazanfari 
et al., 2011; Wang et al., 2012; Yakubu et al., 
2018), hatchability (Bolzan et al., 2008), weight and 
number of eggs (Semsarian et al., 2013), growth 
curves (Ahmad, 2009) and nutritional requirement 
estimation (Mehri, 2012) in poultry. 
	 The objective of the present study was to 
compare the efficiency of multiple regressions, BN, 
and ANNs to predict CW of Nigerian indigenous 
chickens using earlier measured biometric traits. 
As a result, we constructed ANNs and compared 
them with multiple regressions and BNs as well 
as demonstrated the superiority of BNs. As far as 
we know, there have been no comparisons of how 
well these techniques performed in the prediction 
of CW in chickens.
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MATERIALS AND METHODS

Experimental Site and Birds
	 The experiment was carried out at the Poultry 
Breeding Unit of the Directorate of University Farm 
(DUFARM) of the Federal University of Agriculture 
Abeokuta, Ogun State, Nigeria. The University is 
located within latitude 7°10’N and longitude 3°2’E 
and lies in the south-western part of Nigeria.
	 The experimental birds consist of 320 
Nigerian indigenous chickens generated from mating 
of parent stocks through artificial insemination. The 
chicks were brooded in deep litter in an animal 
farmhouse. All the chicks were wing-tagged for 
proper identification and subjected to the same 
management practices throughout the experimental 
period of 8 weeks. Individual hatched weight of 
chicks was measured immediately after the chicks 
were received from the hatchery while the weight 
of day-old chick was measured 24 hours after. 
Body weight, shank length, keel length, and breast 
girth were measured at 2 weeks intervals. At 8 
weeks old, the chickens were starved overnight 
before slaughtering. The birds were weighed before 
slaughtering by severing the carotid artery and 
jugular vein and de-feathered before evisceration 
according to the method described by Hahn and 
Spindler (2002). All weights were measured using 
an electronic scale, while breast girth, shank, and 
keel lengths were measured using the tape rule. 
All the measured traits were hatched weight (HW), 
day-old chick weight (DOCW), body weight at 2 
(BW2), 4 (BW4), 6 (BW6), and 8 (BW8) weeks old, 
breast girth at 2 (BG2), 4 (BG4), 6 (BG6), and 8 
(BG8) weeks old, shank length at 2 (SL2), 4 (SL4), 
6 (SL6), and 8 (SL8) weeks old, keel length at 2 
(KL2), 4 (KL4), 6 (KL6), and 8 (KL8) weeks old, 
live weight before slaughtering (LW), and carcass 
weight (CW).

Statistical Analysis
The input data were normalized to 

correct variations due to differences in scales of 
measurements before analyses. The entire dataset 
was randomly divided into two subsets viz, the 

training set (consisting of 70% of the entire dataset) 
and the testing set (consisting of 30% of the entire 
dataset). Each statistical method used to analyze 
the data is explained further below:

Regression method
Standard multivariate linear regression and 

stepwise regression models were used to evaluate 
the data using R software (R Core Team, 2021). 

yi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + ….. + βpXip + εi

where i is the number of observations, yi is the 
carcass weight, β0 is the intercept, βp is the slope 
coefficients for each dependent trait, and εi is the 
residual error term

Bayesian networks method
A Bayesian network (BN) is a graphic 

representation of a joint probability distribution 
(or joint density) which can be described by the 
structure of a directed acyclic graph. Factorization 
of the BN is a chain of products of conditional 
probabilities, as one node, given its parents, is 
conditionally independent of its non-descendants 
(Scutari and Denis, 2015). This is a convenient 
representation of the joint probability distribution, 
allowing for inference on the desired traits. The 
joint probability distribution is defined as:

	 P (X1,X2…..Xp) = 

where p is the number of variables, i is the counter 
of samples, n is the number of observations, and 
Pai is the parent of Xi 

The initial step for BN was carried out to 
have an algorithm to learn the basic graph structure 
(Scutari, 2010) which followed the learning of the 
implicit local distributions for this given structure 
(Scutari et al., 2014). 

The joint distribution can be represented 
as Pr (CW, HW, DOCW, LW, BW2, SL2, KL2, BG2, 
BW4, SL4, KL4, BG4, BW6, SL6, KL6, BG6, BW8, 
SL8, KL8, BG8) = Pr (HW) Pr (DOCW) Pr (BW2) 
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Pr (BG8) Pr (BW4|BW2) Pr (BG4|BW4) Pr (BW6|BW4) 
Pr (BW8|BW6) Pr (CW|BW2:BW8) Pr (KL4|CW) 
Pr (KL6|HW:BW4:KL4:BW8) Pr(LW|CW:KL6) 
Pr (KL2|BW2:KL4:KL6) Pr (SL2|HW:BW2:KL2) 
Pr (BG6|BW2:SL2:BW4) Pr (KL8|SL2)  
Pr (SL6|LW:KL6:KL8:BG8) Pr (BG2|BW2:SL6) 
Pr (SL8|BW2:BW6:SL6) Pr (SL4|KL2:BW4:SL8)

where Pr is the probability of the traits.

Two BNs models (MMHC and RSMAX2) 
were used. The choice of algorithms was based on 
their computational efficiency. Also, the constraint-
based methods do not always provide a structure 
with directed edges because of the statistical 
equivalence of structures. The models were fitted 
using the package “bnlearn” (Scutari, 2010) in R 
software (R Core Team, 2021).

Artificial neural networks method
For ANN, backpropagation with backtracking 

algorithm containing one input layer with 19 nodes, 
with varying number of hidden layers, and one output 
layer with one node were fitted using “neuralnet” 
package in R software (R Core Team, 2021). Two 
neural networks were selected from the ANNs based 
on good generalization capacity. These were single 
hidden-layered artificial neural networks (ANN1); 
three hidden-layered artificial neural networks 
(ANN3). The backpropagation learning algorithm 
can be divided into 2 phases: propagation and 
weight update. Each propagation involves forward 
propagation of a training pattern input through the 
neural network to generate the output activation 
of the propagation, along with backpropagation of 
this output activation through the neural network, 
using the training pattern target to generate the 
deltas for all the output and hidden neurons. In 
the weight update phase, the output delta of each 
synaptic weight is multiplied by the input activation 
to obtain the gradient of the weight and bring the 
weight in the opposite direction to the gradient by 
subtracting a ratio of the gradient of the weight 
from the weight (Pal and Mitra, 1992). 

The net input function of ANN to the jth 
hidden neuron is given as:

Yj(x) =

where w1ji is the weight between the ith node of the 
input layer and the jth node of the hidden layer and 
b1j is the bias at the jth node of the hidden layer. 
The output of the jth hidden node is given as:

Zj(x) =

For an input vector x, the output, value 
Ok(x) of the Kth node of the output layer is equal 
to the sum of the bias of the Kth node of the output 
layer and weighted outputs of the hidden nodes 
and is given as:

Ok(x) = 

where w2kj is the weight between the jth node of the 
hidden layer and the kth node of the output layer 
and b2k is biasing term at the kth node of the output 
layer. The nodes represent the measured traits. 

Predictive ability of models
The results from the BNs and ANNs were 

compared with that of the fitted regression models. 
Carcass weight estimated by the models was 
compared based on performance measurements. 
The measurement used to validate the estimation 
methods were: i) correlation between the predicted 
value and the actual value estimated, which indicates 
the degree in which the estimated outputs are 
close to the actual outputs. The predictive ability of 
the different models was assessed by computing 
the correlation (r) between the observed and the 
predicted CW, ii) root mean square error (RMSE), 
iii) mean absolute error (MAE), iv) mean absolute 
percentage error (MAPE), v) mean percentage error 
(MPE), vi) mean error (ME), vii) mean square error 
(MSE), and viii) coefficient of determination (R2). 

RESULTS AND DISCUSSION

The descriptive statistics of carcass weight, 
live weight, body weight, breast girth, keel length, 
and shank length of chickens in the training and 
testing datasets are reported in Table 1. The statistical 
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characteristics of the training and testing datasets 
were highly similar. The skewness coefficients for 
the dependent variables of carcass weight were 
low. In general, Table 1 shows satisfactory statistical 
characteristics for the training and testing datasets 
in terms of mean, standard deviation, coefficient of 
variation, and skewness. The observed similarity in 
statistical characteristics of the training and testing 
datasets led to better performance of the models. 

This similarity showed that there is no change in 
the data distribution which is known as a data shift 
between the training and the testing datasets. Also, 
the low values of the skewness coefficient in the 
traits improved the performance of the models. In 
general, the satisfactory statistical characteristics for 
the training and testing datasets in terms of mean, 
skewness, and coefficient of variation increased 
the performance of the prediction models. 

Table 1 Descriptive statistics of measured traits in Nigerian indigenous chickens

Traits
Training set Testing set

Mean SD CV Skewness Mean SD CV Skewness

HW (g) 35.60 3.88 10.90 10.91 35.33 3.08 8.72 8.72
DOCW (g) 34.43 3.28 9.53 8.34 34.67 3.71 10.70 10.70
BW2 (g) 235.87 17.64 7.48 10.91 242.68 13.12 5.41 5.41
BW4 (g) 524.90 49.21 9.38 11.33 516.85 55.99 10.83 10.83
BW6 (g) 838.83 62.45 7.44 28.86 823.37 67.31 8.17 8.17
BW8 (g) 1,220.06 79.36 6.50 9.62 1,208.14 88.66 7.34 7.34
BG2 (cm) 14.84 1.60 10.78 15.58 15.10 2.19 14.50 14.50
BG4 (cm) 19.95 2.17 10.88 11.77 19.02 3.40 17.88 17.88
BG6 (cm) 22.79 2.58 11.32 20.20 21.93 2.15 9.80 9.80
BG8 (cm) 24.39 2.03 8.32 12.71 25.43 2.28 8.97 8.97
SL2 (cm) 3.69 0.35 9.49 20.55 4.15 0.42 10.12 10.12
SL4 (cm) 5.04 0.41 8.13 14.70 5.25 0.57 10.86 10.86
SL6 (cm) 6.32 0.77 12.18 9.55 6.55 0.46 7.02 7.02
SL8 (cm) 8.07 1.53 18.96 20.85 8.30 1.18 14.22 14.22
KL2 (cm) 6.07 1.26 20.76 12.31 7.05 0.97 13.76 13.77
KL4 (cm) 7.80 1.31 16.79 19.04 8.27 1.51 18.26 18.26
KL6 (cm) 10.46 1.63 15.58 14.06 10.17 2.12 20.85 20.85
KL8 (cm) 14.30 1.68 11.75 10.81 15.36 1.85 12.04 12.04
LW (g) 1,190.60 167.44 14.06 16.83 1,150.16 133.45 11.60 11.60
CW (g) 1,133.22 163.53 14.43 14.43 1,050.41 176.41 16.79 16.79

Note: SD = standard deviation, CV = coefficient of variation, HW = hatched weight, DOCW = day-old 
chick weight, BW2 = body weight at 2 weeks old, BW4 = body weight at 4 weeks old, BW6 = 
body weight at 6 weeks old, BW8 = body weight at 8 weeks old, BG2 = breast girth at 2 weeks 
old, BG4 = breast girth at 4 weeks old, BG6 = breast girth at 6 weeks old, BG8 = breast girth at 8 
weeks old, SL2 = shank length at 2 weeks old, SL4 = shank length at 4 weeks old, SL6 = shank 
length at 6 weeks old, SL8 = shank length at 8 weeks old, KL2 = keel length at 2 weeks old, KL4 
= keel length at 4 weeks old, KL6 = keel length at 6 weeks old, KL8 = keel length at 8 weeks old, 
LW = live weight before slaughtering, CW = carcass weight
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The evaluation criteria used to determine 
the quality of the carcass weight estimation 
methodologies used in MLR, ANN and BN models 
are shown in Table 2. The MLR had the highest 
values for ME (0.425), RMSE (2.020), MAE 
(0.608), MPE (55.824), MAPE (93.244), and 
MSE (4.082). Correlation coefficient (r) between 
the observed and the predicted CW values was 
highest in the two models of BN (0.989 in MMHC 
and 0.988 in RSMAX2) while the estimated r in 
MLR was lowest (0.157). Estimated coefficients 
of determination (R2) by models from ANN and 
BN were above 95%. The prediction efficiency 

of regression-based models depends on the  
existence of linear relationships between input 
and output variables. Due to their simplicity, 
MLR models have been used in many studies  
compared to any other modeling techniques in 
agricultural sectors (Golkar et al., 2011; Ghoreishi 
et al., 2012; Huang et al., 2013; Abdipour et al., 
2016; Adenaike et al., 2018; Basak et al., 2020). 
However, the drawbacks of SWREG, such as 
bias in parameter estimation and inconsistencies 
among model selection algorithms, are well known 
(Burnham and Anderson, 2002; Whittingham  
et al., 2006). 

Table 2 The predictive abilities of each models used to train and test the measured traits

Parameters MLR SWREG ANN1 ANN3 MMHC RSMAX2

ME
RMSE
MAE
MPE
MAPE
MSE
R2

r

0.425
2.020
0.608

55.824
93.244
4.082
0.355
0.157

0.178
0.855
0.426

34.543
77.168
0.731
0.578
0.645

0.074
0.201
0.091

30.696
52.891
0.040
0.945
0.957

0.014
0.101
0.081

23.408
36.765
0.010
0.986
0.987

6.87 × 10-17

0.129
0.095

23.323
63.551
0.017
0.977
0.989

1.60 × 10-17

0.132
0.099

21.353
66.193
0.017
0.976
0.988

Note: MLR = multiple linear regression, SWREG = stepwise regression, ANN1 = single hidden-layered 
artificial neural network, ANN3 = three hidden-layered artificial neural networks, MMHC = Bayesian 
network using Max-Min Hill-Climbing algorithm, RSMAX2 = Bayesian network using Hybrid HPC, 
ME = mean error, RMSE = root mean square error, MAE = mean absolute error, MPE = mean 
percentage error, MAPE = mean absolute percentage error, MSE = mean square error, R2 = 
coefficient of determination, r = correlation coefficient 

In this study, using a linear model with 
the stepwise procedure to predict CW did not 
find an optimal set of predictors. Compared to 
the regression procedures (MLR and SWREG), 
MMHC was approximately 58.1% and 34.4% 
respectively more accurate in prediction while 
RSMAX2 was approximately 58.0% and 34.3% 
more accurate in prediction than MLR and 
SWREG respectively. ANN performed better than 
regression models for CW prediction, probably 
due to the existence of nonlinear relationships 
among traits. This result is expected given that 

non-linear components and potential interactions 
among predictors were not considered in the 
linear model. The result is similar to the report 
of Yakubu et al. (2018) who worked on modeling 
egg production in Sasso chickens and observed 
higher predictive performance of ANN models over 
both linear and quadratic regression. The authors 
attributed better performance of ANN to the degree 
of robustness and the ability to tolerant fault 
compared to regression models. The predictive 
abilities of ANN and BN were closed. However, BNs 
can be used either as a pre-selection algorithm 
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of input variables or a selection algorithm for CW 
prediction, unlike ANN which can only be used 
as a selection algorithm. The regression models 

were significant and specifically described the 
influence of the input variables on the CW. The 
regression models are shown below: 

Equation 1 (MLR): CW = 0.0219 – 0.0126HW – 0.0061DOCW + 0.7473LW –0.0673BW2 + 0.0186SL2  
+ 1.4027KL2 + 0.0201BG2 + 0.0346BW4 + 0.0286SL4 – 0.6236KL4 + 0.0013BG4 
– 0.0215BW6 – 0.0084SL6 – 1.3275KL6 – 0.0015BG6 + 0.0352BW8 – 0.0594SL8 
– 0.0019KL8 + 0.0059BG8 

Equation 2 (SWREG): CW = –0.0040 – 0.0359DOCW + 0.7327LW – 0.1210BW2 + 2.7781KL2 + 
0.1557SL4 – 3.7065KL6 + 0.1582SL2

The predicted CW value in equations 1 
and 2 is a linear combination of the input variables, 
such that the sum of the squared deviations of the 
measured and predicted CW values is minimal. A 
formula model in equations (1 and 2) is useful in 
understanding how CW changes with input variables 
and what values of these variables are required 
to achieve the optimal value of CW. The SWREG 
algorithm retained 7 predictor variables for the CW, 
each of which was significant at the 5% level. In 
this study, ANN models were performed to identify 
the relationship between input and output variables 
aided by hidden layer nodes, which the nodes clarify 
the conformation of the data measured from the 
experiment. Figures 1 and 2 show neural networks 
using a single hidden layer and four hidden layers. 
Although different numbers of hidden layers were 

used in ANNs only single and four hidden layers 
showed better results. Each input was synaptically 
connected to the output node which comprises bias 
and the response variable (CW). The relative error 
(0.004) for training the network was nearly the same 
with that of testing (0.006). The network structures 
obtained, comprising 20 phenotypic traits (CW and 
19 covariates) for MMHC and RSMAX2 algorithms 
are presented in Figures 3 and 4, respectively. 
For the MMHC (Figure 3), results indicate that 
CW is directly connected to LW, HW, and DOCW. 
The remaining observed traits are not expected 
to contribute to predicting the CW in the presence 
of (i.e., conditionally on) LW, HW, and DOCW. In 
further analysis (graphic not shown), in which LW 
was removed from the dataset, BW8, HW and DOCW 
became only traits that are directly connected to CW. 
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Figure 1	 Schematic representation of the three hidden-layered artificial neural networks. Weighted sum 
of the inputs (phenotypic traits) and bias term were passed to the activation level through the 
transfer function to produce the output (carcass weight). CW = carcass weight, HW = hatched 
weight, DOCW = day-old chick weight, LW = live weight before slaughtering, BW2 = body 
weight at 2 weeks old, SL2 = shank length at 2 weeks old, KL2 = keel length at 2 weeks old, 
BG2 = breast girth at 2 weeks old, BW4 = body weight at 4 weeks old, SL4 = shank length at 
4 weeks old, KL4 = keel length at 4 weeks old, BG4 = breast girth at 4 weeks old, BW6 = body 
weight at 6 weeks old, SL6 = shank length at 6 weeks old, KL6 = keel length at 6 weeks old, 
BG6 = breast girth at 6 weeks old, BW8 = body weight at 8 weeks old, SL8 = shank length 
at 8 weeks old, KL8 = keel length at 8 weeks old, BG8 = breast girth at 8 weeks old.
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Figure 2   Schematic representation of the single hidden-layered artificial neural network. Weighted sum 
of the inputs (phenotypic traits) and bias term were passed to the activation level through the 
transfer function to produce the output (carcass weight). CW = carcass weight, HW = hatched 
weight, DOCW = day-old chick weight, LW = live weight before slaughtering, BW2 = body 
weight at 2 weeks old, SL2 = shank length at 2 weeks old, KL2 = keel length at 2 weeks old, 
BG2 = breast girth at 2 weeks old, BW4 = body weight at 4 weeks old, SL4 = shank length 
at 4 weeks old, KL4 = keel length at 4 weeks old, BG4 = breast girth at 4 weeks old, BW6 = 
body weight at 6 weeks old, SL6 = shank length at 6 weeks old, KL6 = keel length at 6 weeks 
old, BG6 = breast girth at 6 weeks old, BW8 = body weight at 8 weeks old, SL8 = shank 
length at 8 weeks old, KL8 = keel length at 8 weeks old, BG8 = breast girth at 8 weeks old.
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Figure 3	 Schematic representation of the Bayesian network using MMHC algorithm. CW = carcass 
weight, HW = hatched weight, DOCW = day-old chick weight, LW = live weight before 
slaughtering, BW2 = body weight at 2 weeks old, SL2 = shank length at 2 weeks old, KL2 = 
keel length at 2 weeks old, BG2 = breast girth at 2 weeks old, BW4 = body weight at 4 weeks 
old, SL4 = shank length at 4 weeks old, KL4 = keel length at 4 weeks old, BG4 = breast 
girth at 4 weeks old, BW6 = body weight at 6 weeks old, SL6 = shank length at 6 weeks old, 
KL6 = keel length at 6 weeks old, BG6 = breast girth at 6 weeks old, BW8 = body weight at 
8 weeks old, SL8 = shank length at 8 weeks old, KL8 = keel length at 8 weeks old, BG8 = 
breast girth at 8 weeks old.

For RSMAX2 (Figure 4), the directed 
acyclic graph (DAG) shows that CW is directly 
dependent on LW, BW8, HW, and DOCW. The 
structures learned for MMHC and RSMAX2 present 
a different number of directed edges, 40 edges in 
MMHC and 13 edges in RSMAX2. Comparison of 
different approaches for prediction of CW in Nigerian 
indigenous chickens using phenotypes expressed 
early in life as predictor variables was the objective 
of this study. BN analysis was performed to obtain 
a phenotypic network that was compatible with 
the joint distribution of the traits, and therefore 

make explicit the conditional independencies for 
this distribution. This information described which 
nodes (traits) comprise the Markov Blanket (a set 
of nodes including its parent(s), child(ren), and 
spouse(s)) of CW. This is important information for 
the prediction of CW given that the remaining nodes 
do not contribute to the prediction conditionally 
on the MB set. Also, such data-driven analysis is 
interesting to verify that the statistical consequences 
of the generated DAG were consistent with prior 
beliefs about the observed biological system. In both 
methods used under BNs, CW was independent 
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of all other observed traits given DOCW, HW, LW, 
and BW8, indicating that using these traits alone 
to construct regression models for prediction of 
CW would be sufficient in Nigerian indigenous 
chickens. This dependence between CW and 
those traits (DOCW, HW, LW, and BW8) that had 
a direct effect on CW was expected given that 
the traits shared the same unit (g) with CW. This 
implies that if any DOCW, HW, LW, and BW8 has 
high heritability when estimated, it may be used 
to accurately predict whether a chicken has the 
genetic potential for carcass weight (Chomchuen 

et al., 2022). So, DOCW and HW are early good 
indicators of CW in Nigerian indigenous chickens. 
The modtableel generated from RSMAX2 is given 
as CW = 0.0188 – 0.0003HW – 0.0545DOCW + 
0.4001LW + 0.6705BW8. A comparison of observed 
CW values with predicted CW values from all models 
is shown in Table 3. The values of CW from RSMAX2 
prediction indicate the promising use of RSMAX2 
in bringing these values closer to the observed 
CW values. Therefore, the proposed RSMAX2 
equation indicates good accuracy for prediction 
of CW at early age of chicken. 

Figure 4  Schematic representation of the Bayesian network using RSMAX2 algorithm. CW = carcass 
weight, HW = hatched weight, DOCW = day-old chick weight, LW = live weight before 
slaughtering, BW2 = body weight at 2 weeks old, SL2 = shank length at 2 weeks old, KL2 = 
keel length at 2 weeks old, BG2 = breast girth at 2 weeks old, BW4 = body weight at 4 weeks 
old, SL4 = shank length at 4 weeks old, KL4 = keel length at 4 weeks old, BG4 = breast 
girth at 4 weeks old, BW6 = body weight at 6 weeks old, SL6 = shank length at 6 weeks old, 
KL6 = keel length at 6 weeks old, BG6 = breast girth at 6 weeks old, BW8 = body weight at 
8 weeks old, SL8 = shank length at 8 weeks old, KL8 = keel length at 8 weeks old, BG8 = 
breast girth at 8 weeks old.
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Table 3 Carcass weight (g) predicted from regression, artificial neural and Bayesian networks methods

Obs. CW MLR SWREG ANN1 ANN3 MMHC RSMAX2

1,102.50
1,059.90
1,214.60
1,228.80
1,106.80

981.10
1,183.10
1,070.60
1,288.20
1,078.40
1,131.40

1,007.54
864.82

1,179.03
1,213.96

948.60
865.71

1,111.83
902.05

1,406.71
1,116.37
1,061.66

1,060.63
988.28

1,171.18
1,212.26
1,023.49

882.49
1,162.73

991.65
1,279.81
1,058.66
1,083.12

1,005.56
940.53

1,159.24
1,296.41
1,022.81

811.86
1,199.48
1,013.84
1,363.55
1,081.20
1,089.45

1,044.23
985.95

1,209.96
1,227.36
1,047.71

874.27
1,156.48
1,000.40
1,306.65
1,033.20
1,088.62

1,054.54
1,009.15
1,177.01
1,219.69
1,052.23

889.87
1,165.52
1,030.85
1,239.01
1,077.21
1,091.51

1,060.63
1,012.85
1,180.57
1,223.41
1,056.11

897.40
1,170.21
1,034.99
1,242.34
1,090.78
1,096.93

Note: Obs. CW = observed carcass weight, MLR = multiple linear regression, SWREG = stepwise 
regression, ANN1 = single hidden-layered artificial neural network, ANN3 = three hidden-layered 
artificial neural networks, MMHC = Bayesian network using Max-Min Hill-Climbing algorithm, 
RSMAX2 = Bayesian network using Hybrid HPC

Hence, in the absence of genetic marker 
information for prediction of CW, management 
decisions should be based only on traits relative 
to CW because only DOCW, HW, LW, and BW8 
satisfactorily predict CW. Despite the cost of 
generating genetic marker information is becoming 
cheaper, it still remains a challenge in Nigeria 
because of technicality and other factors (Okpeku et 
al., 2019). We were surprised that BW2, BW4, and 
BW6 were not part of the predictors of CW being 
weight traits. The higher correlation value between 
observed and predicted CW in BN indicates that 
DOCW, HW, LW, and BW8 are good predictors 
of CW. Such predicted CW could be used for 
management decisions in production systems of 
Nigerian indigenous chickens as broiler type of 
chickens for the populist.

CONCLUSION

Bayesian networks had best performance in 
predicting the carcass weight of Nigerian indigenous 
chickens, followed by artificial neural networks. 
Among the earlier expressed traits in the chickens, 
DOCW, HW, LW, and BW8 were good predictors for 
CW. Our results indicate that to achieve reasonable 
predictive ability for CW, the measurements of 
DOCW and HW are necessary selections to be 
made earlier in Nigerian indigenous chickens. We 
recommend BN as a good variable selection tool 
to describe distributions in a more parsimonious 
way for improving generalization being the most 
efficiency. 
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