Cytological Investigation of *Macaranga* in Comparison to *Mallotus* (Euphorbiaceae) in Thailand

PUANGPAKA SOONTORNCHAINAKSAENG*, PRANOM CHANTARANOTHAI**& CHADAPRON SENAKUN***

ABSTRACT. Eight species of Macaranga (Euphorbiaceae) in Thailand were investigated cytologically. The results indicated that, for all species, their pollen mother cells have 2n = 22 and x = 11 consistently. Chromosomes are very well stained with propionocarmine and highly distinctively paired as bivalents at diakinesis and separated to 11:11 at anaphase I. Bivalent length was found to be in the range of 1.3 to 6.0 μ m in pollen mother cells of about $8.7-28.0~\mu$ m. Hence Macaranga species may be fertile in the wild. From a cytological point of view, Macaranga resembles Mallotus in chromosome numbers and stainability but differs in cell size. Pollen mother cells and nucleoli of Macaranga are on average smaller than those of Mallotus. Therefore, cytological data support the distinction of these two genera. Moreover the results also pointed out that Mallotus is more variable than Macaranga.

INTRODUCTION

The genera *Macaranga* Thouars and *Mallotus* Lour. belong to the tribe Rottlerinae, family Euphorbiaceae (Webster, 1994, Radcliffe-Smith, 2001). They are distributed in the tropics of the Old World. *Mallotus* resembles *Macaranga* but differs in having 2 locules per anther and terminal inflorescence. Recently, some species of *Mallotus* were separated as separate genus *Cordeyama* (Sierra et al., 2006).

Eight species of *Macaranga* were studied. Most of them have chromosome number 2n = 22. Mehra & Hans (1969) reported the gametic number of *M. denticulata* (Blume) Müll.Arg., *M. gamblei* Hook.f., *M. indica* Wight and *M. peltata* (Roxb.) Müll.Arg. as n = 11. Hans (1973) recorded chromosome numbers of 18 species from various locations which had been studied by many authors. Chromosome numbers of *Macaranga* species vary from n = 11 in *M. aleuritoides* F.Muell, *M. denticulata*, *M. gamblei*, *M. indica*, *M. peltata*, *M. pustulata* King ex Hook.f. *M. tanarius* (L.) Müll.Arg. and *M. triloba* (Thunb.) Müll.Arg., to 2n = 20 in *M. beillei* Prain and *M.* sp., and to 2n = 22 in *M. curtisii* Hook.f., *M. griffithiana* Müll.Arg., *M. heynei* I.M.Johnst., *M. hosei* King ex Hook.f., *M. hullettii* King ex Hook.f., *M. hypoleuca* (Rchb.f. & Zoll.) Müll.Arg., *M. quadriricornis* Ridl., *M. tanarius* and *M. triloba*. Whitmore (1983) found the gametic number of n = 11 in *M. hullettii*, *M. quadricornis*

^{*} Department of Plant Science, Faculty of Science, Mahidol University, Rama VI Rd., Payathai, Bangkok 10400, Thailand. Corresponding author.

^{**} Applied Taxonomic Research Center, Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.

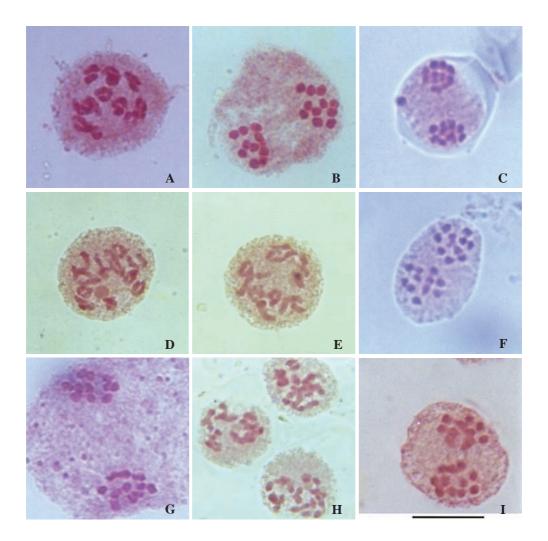
^{***} Walairukhavaj Botanical Research Institute, Mahasarakam University, Mahasarakam, Thailand.

and *M. triloba*. In addition, *M. barteri* Müll.Arg. has n = 11 (www.mobot.org/W3T/Search/ipcn.html). On the other hand, Soontornchainaksaeng et al. (2003) studied the cytogenetics of 13 Thai *Mallotus* species. The results revealed that chromosome numbers of *Mallotus* can be divided into three groups, viz: 2n = 20 (10II), 22(11II) and 24 (12II) with x = 10, 11 and 12 respectively. These dysploid numbers may have evolved through a decrease from 2n = 22 to 2n = 20. Moreover all plants had highly distinctive chromosomes at diakinesis and first anaphase. Bivalent length was in the range1.3–6.0 μ m in pollen mother cells of about 16.0-28.7 μ m.

Therefore, *Macaranga* species appear similar to *Mallotus* species in many characters including chromosome numbers. This paper aims to examine not only the chromosome numbers of Thai *Macaranga* species but also to examine the difference between *Macaranga* and *Mallotus* from a generalised cytological perspective.

MATERIALS AND METHODS

Cytological studies were made on 8 species of *Macaranga* collected at various locations in Thailand (Table 1). Young flowers were fixed in Canoy's solution for 24–48 hours. The anthers were squashed and stained with propionocarmine. Chromosomes were examined from various stages of meiotic cells, using X1000 magnification with an Olympus-BHA light microscope. Voucher specimens are deposited in the herbaria of Department of Plant Science, Mahidol University, Department of Biology, Khon Kaen University and the Royal Garden Suanluang, Rama IX, Bangkok.


RESULTS AND DISCUSSION

The results revealed that Macaranga denticulata, M. siamensis S.J.Davies, M. hulettii, M. hypoleuca, M. indica, M. kurzii (Kuntze) Pax & K.Hoffm., M. laciniata Whitmore & Airy Shaw and M. tanarius have consistent chromosome numbers of 2n = 22 (Table 1 and Fig.1). These counts agree with those of previous studies. For example, many authors (Mehra & Hans 1969, Hans 1973, Whitmore 1983, www.mobot.org/W3T/Search/ipcn.html) have recorded chromosome numbers in 21 species of *Macaranga*. Almost species in the genus have a base number of x = 11 except for M. beillei and M. sp. (Hans, 1973). Chromosomes of pollen mother cells of Macaranga are very well stained with propionocarmine. Most of the chromosomes are paired as bivalents at diakinesis and separated 11:11 at anaphase I. Bivalent length is 1.3–6.0 mm in pollen mother cells of about 8.7–28.0 mm (Æ) with a nucleolus of 1.0-2.0 mm. Therefore, Macaranga may be fertile in the wild. Macaranga resembles Mallotus in regard to chromosome number, chromosome size and chromosome stainability. Moreover, highly distinctive chromosomes are found at diakinesis and anaphase I in pollen mother cells of both genera. However, their cell sizes are different. Pollen mother cells and nucleoli of Macaranga are on average smaller than those of Mallotus (Æ of cell = 16.0–28.7 mm with a nucleolus of 1.3-3.3 mm). Consequently, cytological characters support the taxonomic separation of Macaranga from Mallotus. Moreover the data indicate that *Mallotus* is more variable than *Macaranga* in regard to chromosome number with 2n = 20, 21 and 22 (Soontornchainaksaeng et al., 2003).

Table. 1 Chromosome numbers and meiotic figures of *Macaranga* in Thailand.

Coll. No.= C. Senakun & W. Thongpuban Number; Coll. No.* = P. Soontornchainaksaeng *et al.* Number; Ref. = References number; II = bivalent.

Species	Chromosome number			Meiotic figure	Record/ (ref.)	Locality	Coll.
	2n	n	X				
1. M. denticulata (Blume) Müll. Arg.	22	11	11	11:11	5	Nakhon Ratchasima	5, 253*
2. M. siamensis S.J. Davies	22	11	11	11II	1st	Nakhon Ratchasima	314*
3. <i>M. hullettii</i> King ex Hook.f.	22	11	11	1111	5,11	Narathiwat	51
4. <i>M. hypoleuca</i> (Rchb.f. & Zoll.) Müll. Arg.	22	11	11	11П	5	Narathiwat	58
5. M. indica Wight	22	11	11	11:11	5,6	Nakhon Ratchasima	29, 310*
6. <i>M. kurzii</i> (Kuntze) Pax & Hoffm.	22	11	11	11:11	1st	Chaiyaphum, Nakhon Ratchasima	12, 254*
7. M. laciniata Whitmore & Airy Shaw	22	11	11	1111	1st	Narathiwat	54
8. M. tanarius (L.) Müll. Arg.	22	11	11	11:11	5	Songkhla, Narathiwat	53, 266*

Figures 1. Chromosome of pollen mother cells of *Macaranga* (2n =22), nucleolus (arrow): A.-B. *M. indica* (11II), Diakinesis; C. *M. siamensis* (11:11), Anaphase I; D. *M. hullettii* (11II), Diakinesis; E. *M. hypoleuca* (11II), Diakinesis; F. *M. indica* (11:11), Anaphase I; G. *M. kurzii*(11:11), Anaphase I; H. *M. laciniata* (11II), Diakinesis; I. *M. tanarius* (11:11), Anaphase I. Bar represents 10 μm.

ACKNOWLEDGEMENTS

We would like to thank Dr. Kongkanda Chayamarit, Asst. Prof. Chirayupin Chantharaprasong, Mrs. Leena Phuphathanaphong, Mr. Pongsak Polsena and the staff of the Euphorbiaceae Project in Thailand for providing some taxonomic information and also the referees for their useful comments and very kind contributions, and the TRF/BIOTEC Special Program for Biodiversity Research and Training - BRT 140002 for financial support.

REFERENCES

- Airy Shaw, H. K. (1972). The Euphorbiaceae of Siam. Kew Bulletin 26: 191–363.
- Anonymous. (1999). Index of plant chromosome numbers. Accessed Aug. 11 2006; available from: www.mobot.org/W3T/Search/ipcn.html
- Chayamarit, C., Suntisuk, T., Larsen, K., Welzen, P.V., Esser, H. J., Nanakorn, W., Chantaranothai, P., Boonthavikoon, T., Pooma, R., Phuphathanaphong, L., Chantharaprasong, C. & Larsen, S. (2001). Systematic study of the family Euphorbiaceae in Thailand. *In BRT Research Report 2001*, V. Baimai and R. Kumhom (eds.). Biodiversity Research and Training Program (BRT), Bangkok, Thailand. pp. 78–88.
- Davies, J.S., Bunyavejchewin, S. and Lafrankie, J.V. (2001). A new giant leaved *Macaranga* (Euphorbiaceae) from dry seasonal evergreen forest in Thailand. Thai Forest Bulletin (Botany) 29: 43–50.
- Hans, A.S. (1973). Chromosomal conspectus of Euphorbiaceae. Taxon 22: 591–636.
- Mehra, P.N. and Hans, A.S. (1969). In IOPB chromosome number reports XXI. Taxon 18: 310-315.
- Perry, B.A. (1943). Chromosome number and phylogenetic relationships in the Euphorbiaceae. American Journal of Botany 30: 527–543.
- Sierra, S.E.C., Aparicio, M., Kulju, K.K.M., Fiser, Z., van Welzen, P.C. & van der Ham, R.W.J.M. (2006). Re-shaping *Mallotus* Part I: Expanded circumscription and revision of the genus *Cordemoya* (Euphorbiaceae). Blumea 51: 519–540.
- Soontornchainaksaeng, P. & Chaiyasut K. (1999). Cytogenetic investigation of some Euphorbiaceae in Thailand. Cytologia 64: 229–234.
- Soontornchainaksaeng, P., Chantaranothai, P. and Senakun, C. (2003). Cytogenetic studies and taxonomic considerations in some taxa of *Mallotus* (Euphorbiaceae) in Thailand. Thai Forest Bulletin (Botany) 31:113–122.
- Webster, G.L. (1994). Classification of the Euphorbiaceae. Annals of the Missouri Botanical Garden 81: 3–32.
- Whitmore, T.C. (1983). Tree Flora of Malaya. Vol. 2. Longman Malaysia Sdn. Berhad, Kuala Lumpur.