

***Glycosmis suberosa* (Rutaceae), a new species from Khao Luang National Park, Peninsular Thailand**

HIRONORI TOYAMA^{1,*}, SUKID RUEANGRUEA², SHUICHIRO TAGANE¹, AKIYO NAIKI³,
HIDETOSHI NAGAMASU⁴, SOMRAN SUDDEE² & TETSUKAZU YAHARA¹

ABSTRACT

A new species, *Glycosmis suberosa* H.Toyama & Rueangr. is described from Khao Luang National Park, Nakhon Si Thammarat Province, Thailand. This species is distinguished from the other *Glycosmis* species by its characteristic corky branches.

KEYWORDS: *Glycosmis*, Khao Luang National Park, new species, Rutaceae, Thailand.

Published online: 8 December 2016

INTRODUCTION

The genus *Glycosmis* Corrêa (Rutaceae) comprises about 50 species of unarmed small trees or shrubs mainly distributed in the tropical and subtropical regions of Indomalaya (Kubitzki *et al.* 2011). The genus is easily distinguished from its nearest relatives by a rust-coloured indumentum on young twigs, leaves and inflorescences (Jones, 1995; Zhang *et al.*, 2008, Kubitzki *et al.*, 2011), and exhibits a remarkable diversity in foliage (e.g., simple, unifoliolate and imparipinnate leaves) that has been used for constructing infrageneric classification (Hooker, 1875; Kurz, 1877; Guillaumin, 1946; Stone, 1972, 1985a, 1985b; Jones, 1995; Zhang *et al.*, 2008). In Thailand, 18 species and seven varieties were reported by Guillaumin (1946), Stone (1985a, 1985b), Jones (1995), Zhang *et al.* (2008) and Pooma & Suddee (2014), in which eight taxa (five species and three varieties) have predominantly simple or unifoliolate leaves: *Glycosmis cochinchinensis* Pierre ex Engl., *G. cyanocarpa* var. *cymosa* Kurz, *G. cyanocarpa* var. *simplicifolia* Kurz, *G. dinhensis*

Pierre ex Guillaumin, *G. longipes* Tanaka, *G. parkinsonii* Tanaka, *G. parva* Craib, and *G. puberula* var. *subsessilis* (Craib) B.C.Stone.

During our botanical survey of Khao Luang National Park, Nakhon Si Thammarat Province, Thailand in 2015, we found an undescribed species of *Glycosmis* having unifoliolate leaves and characteristic corky branches. Here, we describe this plant as a new species, *Glycosmis suberosa* H.Toyama & Rueangr. The morphological comparisons were performed using relevant literature (Hooker, 1875; Kurz, 1877; Guillaumin, 1911, 1946; Stone, 1972, 1985a, 1985b; Grierson, 1991; Jones, 1995; Hö, 2003; Newman *et al.*, 2007; Zhang *et al.*, 2008; Chong *et al.*, 2009; Pooma & Suddee, 2014), specimens in the herbaria BKF, BM, E, FU, HN, K, KYO, L, P, and digitized specimen images available on the website of JSTOR Global Plants (<http://plants.jstor.org>), and of the Muséum National d'Histoire Naturelle, Paris (<https://science.mnhn.fr/institution/mnhn/collection/p/item/search>).

¹ Centre for Asian Conservation Ecology, Kyushu University, 744 Motooka, Fukuoka, 819-0395, Japan.

² Forest Herbarium, Department of National Parks, Wildlife and Plant Conservation, Chatuchak, Bangkok, 10900, Thailand

³ Iriomote Station, Tropical Biosphere Research Center, University of the Ryukyus, 870 Uehara, Taketomi-cho, Yaeyama-gun, Okinawa, 907-1541, Japan

⁴ The Kyoto University Museum, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan.

* Corresponding author: htphyscb@kyushu-u.org

In addition to the morphological examination, DNA sequences are extremely helpful for delimiting species (Hebert & Gregory, 2005; Dick & Webb, 2012). Here, we sequenced two DNA barcode regions, the partial genes for the large subunit ribulose-1,5-bisphosphate carboxylase oxygenase (*rbcL*) and maturase K (*matK*) (CBOL Plant Working Group, 2009) according to published protocols (Kress *et al.*, 2009; Dunning & Savolainen, 2010).

DESCRIPTION

Glycosmis suberosa H.Toyama & Rueangr., sp. nov.

This new species is distinguished from the other species of *Glycosmis* by its characteristic corky branches. This species is most similar to *G. parva* Craib (distributed in Laos, NE, E, and SE Thailand) in having simple/unifoliate subcoriaceous lanceolate leaves and short inflorescences, but differs in relatively larger leaves, $7\text{--}23.5 \times 2.5\text{--}8.5$ cm (vs. $3.5\text{--}11.4 \times 1\text{--}2.9$ cm), corky (vs. smooth) branches, dorsally puberulent (vs. glabrous) petals, and 4-locular (vs. 3-locular) ovaries. Typus: Thailand, Nakhon Si Thammarat, Khao Luang National Park, in evergreen forest near stream, $8^{\circ}28'30''\text{N}$, $99^{\circ}45'13''\text{E}$, alt. 838 m, 15 Feb. 2015 (fl. & immat. fr.), Tagane *et al.* T4165 (holotypus **KYO!**, isotypus **BKF!**, **FU!**). Figs. 1 & 2.

Shrubs ca 3.5 m tall; young branches smooth, red-brown, densely covered with rust-coloured indumentum; old branches corky, with longitudinal cracks, cracked parts whitish brown to greyish brown, almost glabrous. Leaves alternate, unifoliate, densely covered with rust-coloured indumentum when young, glabrous when old; petiole 3–17 mm long; petiolule 2–5 mm long; blade narrowly ovate or narrowly elliptic, $7\text{--}23.5 \times 2.5\text{--}8.5$ cm, length/width ratio 2.7–4.2, subcoriaceous, upper surfaces green, slightly lustrous, lower surface pale green, base acute, margin entire, recurved, apex acute to acuminate, occasionally rounded; midrib sunken or almost flat above, prominent below; secondary veins 8–12 pairs, arising at angle of ca 60° from midrib, brochidodromous, slightly prominent above, prominent below; tertiary veins faintly visible, slightly prominent on both surfaces. Inflorescence axillary, 5–7 mm long, 1–5 flowers conglomerate or forming a short raceme; peduncle often corky, sessile

to 3 mm long, densely covered with rust-coloured indumentum; bracts ovate, ca 1.5×1 mm wide, densely covered with rust-coloured indumentum on both surfaces, caducous. Flowers bisexual, pentamerous; pedicels sessile to 1 mm long, densely covered with rust-coloured indumentum; sepals ovate-triangular, $1\text{--}1.5 \times 1\text{--}1.8$ mm, white, densely covered with rust-coloured indumentum on outer surfaces, glabrous on inner surfaces; petals ovate-elliptic, $3\text{--}4.2 \times 1.5\text{--}2.2$ mm, apex acute to obtuse, white, densely or sparsely covered with rust-coloured indumentum at upper part on outer surface, glabrous on inner surface; stamens 10 in two whorls of 5, incurved, shorter antepetalous, 2–2.8 mm long, longer antesepalous, 2.5–3.3 mm long; shorter filaments 1.2–2 mm long, longer filaments 1.7–2.5 mm long; anther dorsifixed, with a few oil glands on the dorsal surface, a prominent connective appendage at apex; gynophore ca 0.5 mm long, surface verrucose, glabrous; pistil ca 2 mm long, with oil glands on the surface; ovary ca 0.8 mm long, ca 0.5 mm in diam., 4-locular; style ca 0.8 mm long; stigma capitate, ca 0.3 mm long, ca 0.5 mm in diam. Immature fruits ovoid, ca 6 mm long, ca 4 mm in diam., green, glabrous, stigma persistent at apex. Seeds not seen.

Thailand.—PENINSULAR: Nakhon Si Thammarat [Khao Luang National Park, alt. 750 m, 27 Jan. 1966 (fl.), Hansen & Smitinand 12119 (**BKF** 39936!); *ibid.*, $8^{\circ}28'54.7''\text{N}$, $99^{\circ}45'01.5''\text{E}$, alt. 884 m, 14 Feb. 2015 (ster.), Tagane *et al.* T4141 (**BKF!**, **FU!**); *ibid.*, $8^{\circ}28'30''\text{N}$, $99^{\circ}45'13''\text{E}$, alt. 838 m, 15 Feb. 2015 (fl. & immat. fr.), Tagane *et al.* T4165 (holotype **KYO!**, isotypes **BKF!**, **FU!**); *ibid.*, $8^{\circ}43'01.0''\text{N}$, $99^{\circ}40'43.1''\text{E}$, alt. 261 m, 14 Dec. 2015 (ster.), Toyama *et al.* T4793 (**BKF!**, **FU!**); *ibid.*, $8^{\circ}28'36.2''\text{N}$, $99^{\circ}45'08.9''\text{E}$, alt. 812 m, 18 Dec. 2015 (ster.), Tagane *et al.* T5219 (**BKF!**)]

Distribution.—Endemic (only known from Khao Luang National Park).

Ecology.—Scattered in hill evergreen forests near streams, at 261–884 m of altitude. Flowering specimen was collected in January, and flowering and immature fruiting specimen was collected in February.

IUCN Conservation Status.—Data Deficient (DD). *Glycosmis suberosa* was collected from the narrow range of elevation in hill evergreen forests of Khao Luang National Park. Thus, this species is

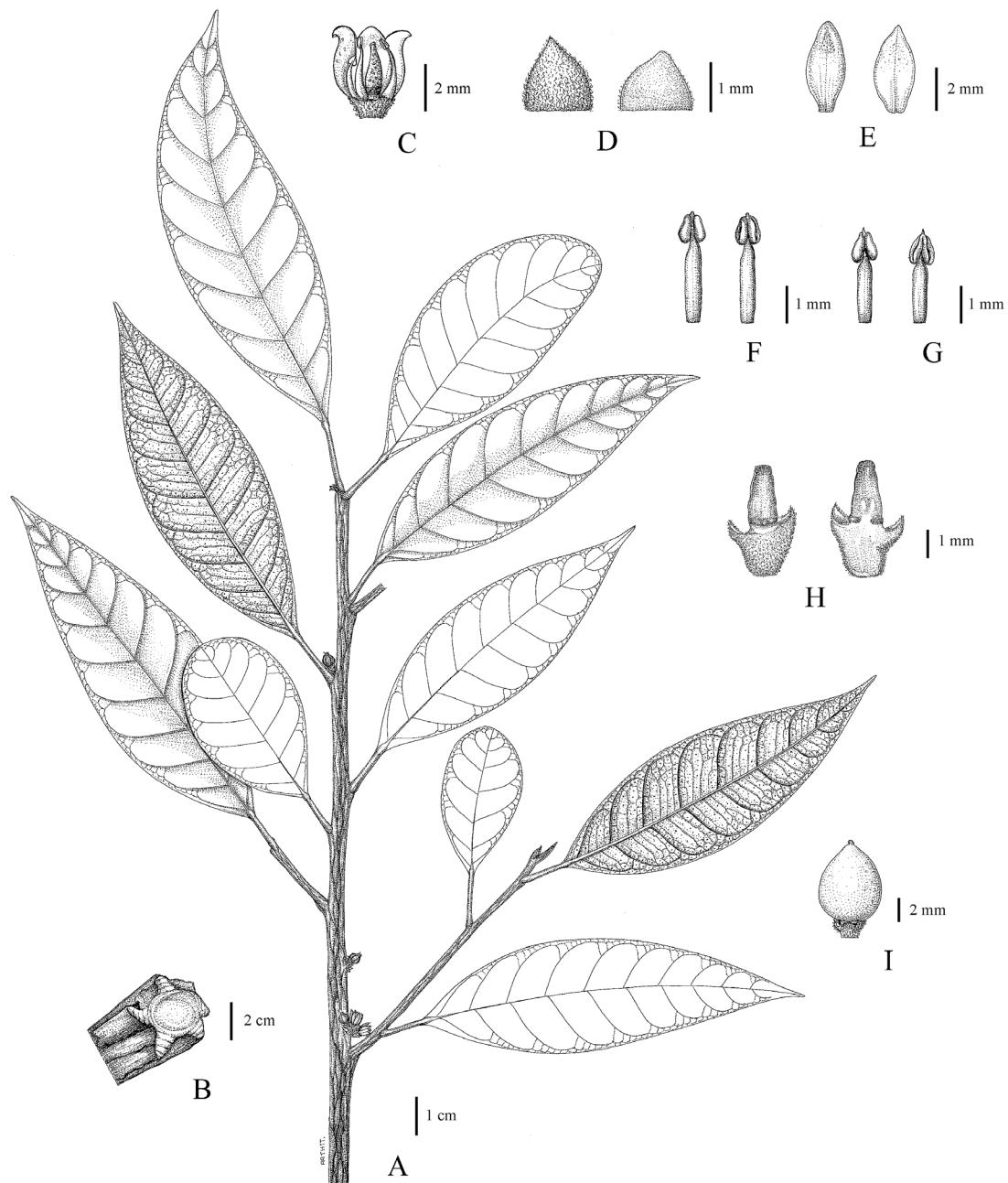


Figure 1. *Glycosmis suberosa* H.Toyama & Rueangr. A. flowering branchlet; B. transverse section of stem; C. flower, a part of perianth and stamens removed; D. sepals (outer and inner surfaces from left); E. petals (outer and inner surfaces from left); F. antepetalous stamen (outer and inner surfaces from left); G. antepetalous stamen (outer and inner surfaces from left); H. pistil (left) and its longitudinal section (right); I. young fruit (A from Tagane *et al.* T4165 (BKF), D–H from Tagane *et al.* T4165 (KYO); B, C & I from photographs taken on 15 Feb. 2015). Drawn by Arthit Kumkamnerd.

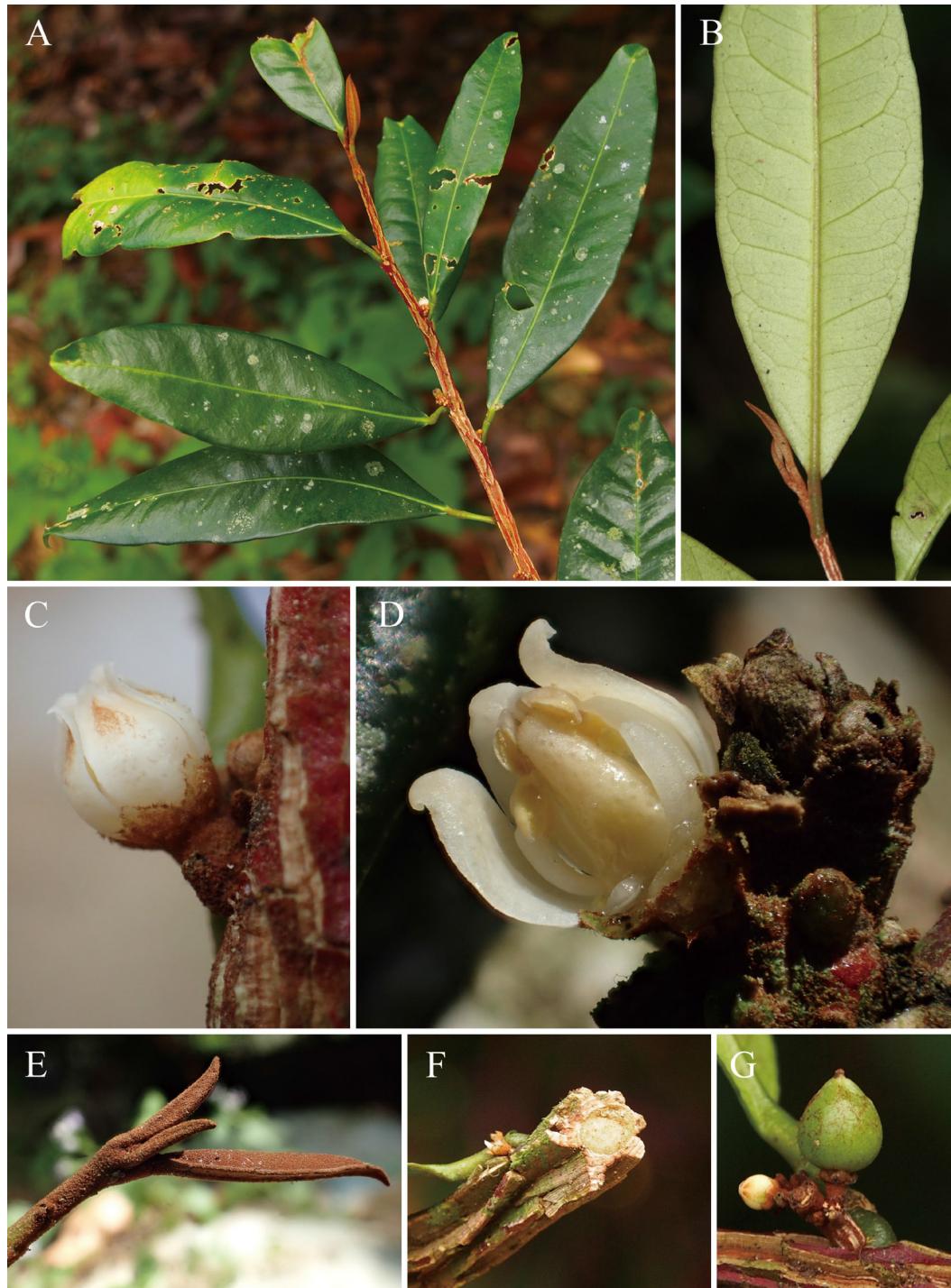


Figure 2. *Glycosmis suberosa* H.Toyama & Rueangr. A. flowering branchlet; B. abaxial leaf surface; C. flower; D. inside of flower, a part of perianth and stamens removed; E. young twig and leaves; F. transverse section of stem; G. young fruit and flower bud. Photographs were taken by the third author on 15 Feb. 2015 at Khao Luang National Park, Thailand.

assumed to be endangered. However, the forest is well-protected, while a larger part of the National Park is still unexplored. To clarify the number of individuals/populations and the distribution range, further studies are needed in Khao Luang and neighbouring areas.

Notes. — We compared specimens and relevant literature of all *Glycosmis* species except for the doubtful species listed in Stone (1985b). *Glycosmis suberosa* is easily distinguished from the other known species in having conspicuous corky branches. In Malay Peninsula, *G. crassifolia* Ridl. and *G. chlorosperma* var. *lindleyana* (Swingle) B.C. Stone are recorded as species having predominantly simple or unifoliate leaves (Stone 1972, 1985b). *Glycosmis suberosa* is distinguished from the former species

by corky (vs. smooth) branches, subcoriaceous (vs. thick coriaceous) leaves and 4-locular (vs. 2–3-locular) ovaries, and from the latter by corky (vs. smooth) branches, relatively narrower leaves (length/width ratio 2.7–4.2 vs. 2.8–3.2) and axillary shorter inflorescences (vs. terminal, 51–84 mm long ones).

DNA sequences of the barcoding regions of *G. suberosa* are identical with *G. parviflora* (Sims) Little (accession no. KP094702, identities: 562/562), *G. chlorosperma* Spreng. (KJ594728, 553/553) and *G. macrophylla* Miq. (AB925327, 531/531) in *rbcL*, and *G. macrophylla* (AB924716, 764/764), *G. pentaphylla* (Retz.) DC. (AB762391, 764/764), *G. parviflora* (KP093765, 728/728) in *matK*.

Genbank accession number. — Tagane *et al.* T4165: LC128588 (*rbcL*), LC128589 (*matK*).

KEY TO THE SPECIES OF *GLYCOSMIS* HAVING PREDOMINANTLY SIMPLE OR UNIFOLIOLATE LEAVES
IN THAILAND (character states mostly based on Stone, 1985b).

1. Branches corky	<i>G. suberosa</i>
1. Branches not corky	
2. Flowers (except for the ovary) 4-merous (with 8 stamens)	
3. Petals dorsally puberulent	<i>G. parkinsonii</i>
3. Petals entirely glabrous	<i>G. cyanocarpa</i>
2. Flowers (except for the ovary) 5-merous (with 10 stamens)	
4. Ovaries finely densely puberulent	
4. Ovaries glabrous	<i>G. puberula</i>
5. Ovaries with 3 locules	
5. Ovaries with usually 5 locules	<i>G. parva</i>
6. Gynophores small, poorly developed	
6. Gynophores well-developed	<i>G. longipes</i>
7. Gynoecium papillate or tuberculate	
7. Gynoecium smooth	<i>G. cochinchinensis</i> <i>G. dinhensis</i>

ACKNOWLEDGEMENTS

We thank the curators and staff of the herbaria BKF, BM, E, HN, K, L and P for their kind permission to access their herbaria. We also thank Arithit Kumkamnerd for her drawing the illustration, and Keiko Mase for her help of DNA barcoding works. This study was supported by the Environment Research and Technology Development Fund (S9 & 4-1601) of the Ministry of the Environment, Japan and was partially supported by JSPS KAKENHI Grant (15H02640 & 15K18472).

REFERENCES

CBOL Plant Working Group. (2009). A DNA barcode for land plants. *Proceedings of the National Academy of Sciences of the United States of America* 106: 12794–12797.

Chong, K.Y., Hugh, T.W.T. & Corlett, R.T. (2009). A checklist of the total vascular plant flora of Singapore: native, naturalised and cultivated species. Raffles Museum of Biodiversity Research, National University of Singapore, Singapore, 273 pp.

Dick, C.W. & Webb, C.O. (2012). Plant DNA barcodes, taxonomic management, and species discovery in tropical forests. In: W.J. Kress & D.L. Erickson (eds), *DNA Barcodes: Methods and Protocols* 858: 379–393. Springer, New York.

Dunning, L.T. & Savolainen, V. (2010). Broad-scale amplification of *matK* for DNA barcoding plants, a technical note. *Botanical Journal of the Linnean Society* 164: 1–9.

Grierson, A.J.C. (1991). Rutaceae. In: A.J.C. Grierson & D.G. Long (eds), *Flora of Bhutan* 2: 6–22. Royal Botanic Garden, Edinburgh.

Guillaumin, A. (1911). Rutaceae. In: F. Gagnepain (ed), Flore Générale de l'Indo-Chine 1: 629–687. Masson, Paris.

_____. (1946). Rutaceae. In: F. Gagnepain & H. Humbert (eds.), Flore Générale de l'Indo-Chine 1 (supplement): 593–657. Masson, Paris.

Hebert, P.D.N. & Gregory, T.R. (2005). The promise of DNA barcoding for taxonomy. *Systematic Biology* 54: 852–859.

Hô, P.H. (2003). Rutaceae. In: P. D. Binh & H. Hoa (eds), An Illustrated Flora of Vietnam 2: 407–440. Published by the author, Montreal.

Hooker, J.D. (1875). Rutaceae. In: J.D. Hooker (ed), The Flora of British India 1: 484–517. L. Reeve & Co., London.

Jones, D.T. (1995). Rutaceae. In: E. Soepandmo & K. M. Wong (eds), Tree Flora of Sabah and Sarawak 1: 351–419. Forest Research Institute Malaysia (FRIM), Kepong.

Kress, W.J., Erickson, D.L., Jones, F.A., Swenson, N.G., Perez, R., Sanjur, O. & Bermingham, E. (2009). Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. *Proceedings of the National Academy of Sciences of the United States of America* 106: 18621–18626.

Kubitzki, K., Kallunki, J.A., Durretto, M. & Wilson, P.G. (2011). Rutaceae. In: K. Kubitzki (ed), The Families and Genera of Vascular Plants 10: 276–356. Springer, Berlin & Heidelberg.

Kurz, W.S. (1877). Forest Flora of British Burma 1. Office of the Superintendent of Government Printing, Calcutta, 549 pp.

Newman, M.F., Ketphanh, S., Svengsuksa, B., Thomas, P., Sengdala, K., Lamxay, V. & Armstrong, K. (2007). A checklist of the vascular plants of Lao PDR. Royal Botanic Garden, Edinburgh, 394 pp.

Pooma, R. & Suddee, S. (eds) (2014). Tem Smitinand's Thai Plant Names, revised edition 2014. The Office of the Forest Herbarium, Department of National Parks, Wildlife and Plant Conservation, Bangkok, 826 pp.

Stone, B.C. (1972). Rutaceae. In: T.C. Whitmore (ed), Tree Flora of Malaya 1: 367–387. Longman Malaysia Sdn Berhad, Kuala Lumpur.

_____. (1985a). Rutaceae. In: M.D. Dassanayake & F.R. Fosberg (eds), A Revised Handbook of the Flora of Ceylon 5: 406–476. Amerind Publishing Co. Ltd., New Delhi.

_____. (1985b). A conspectus of the genus *Glycosmis* Corrêa: studies in Malesian Rutaceae, III. *Proceedings of the Academy of Natural Sciences of Philadelphia* 137(2): 1–27.

Zhang, D.X., Hartley, T.G. & Mabberley, D.J. (2008). Rutaceae. In: W. Zhengyi, P.H. Raven & D. Hong (eds), *Flora of China* 11: 51–97. Science Press, Beijing & Missouri Botanical Garden, St. Louis.