The Cenozoic leaf morphotypes and palaeoclimate interpretation from the Doi Ton Formation, Mae Sot District, Tak Province, western Thailand

Authors

  • Atiwut Bunlam Department of Geological Sciences, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
  • Yupa Thasod Department of Geological Sciences, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
  • Pitaksit Ditbanjong Department of Geological Sciences, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
  • Rattanaporn Fongngern Department of Geological Sciences, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
  • Paul J. Grote Northeastern Research Institute of Petrified Wood and Mineral Resources, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima 30000, Thailand.

DOI:

https://doi.org/10.20531/tfb.2020.48.2.06

Keywords:

Cenozoic, Doi Ton Formation, leaf morphotypes, Palaeoclimate, western Thailand

Abstract

The Cenozoic palaeovegetation and palaeoclimate of Doi Ton, western Thailand, megaflora are reconstructed based on physiognomic climate analysis, including Leaf Margin Analysis (LMA), Leaf Area Analysis (LAA), Leaf Size Index (LSI), Climate Leaf Analysis Multivariate Program (CLAMP), and systematic descriptions of each leaf morphotype. The leaf fossils were divided into 23 dicotyledonous leaf morphotypes and two unknown leaf morphotypes. The mean annual temperature results from LMA indicate 32.3 ± 1.17 °C and CLAMP shows 21.2°C. CLAMP also provides temperature data of a warm month mean temperature (WMMT) of 27.4 °C and a CMMT of 14.2 °C, which is similar to the present climate. The mean annual precipitation is estimated by LAA to be ~ 125 cm. CLAMP suggests precipitation in the 11 months of growing period was 154.9 cm with the three wettest months having precipitation of 73 cm, widely contrasting with 15.5 cm for the three driest months. The precipitation shows the signal of the monsoon effect. The temperature, precipitation, and LSI mirrored the vegetation of the contemporary Doi Ton area which is a semi-evergreen forest in the tropical zone. The palaeoclimatic parameters of Doi Ton are in good agreement with those of south China and northwest
India from the Eocene period and the present-day Mae Sot area. Moreover, the Doi Ton flora also closely matches the humid subtropical modern vegetation of south China. Palaeoclimate and vegetation analysis support an Eocene age estimate for the Doi Ton Formation however further independent age estimates are required to test this working hypothesis.

Downloads

Download data is not yet available.

References

Ampaiwan, T. Churasiri, P. & Kunwasi, C. (2003). Palynology of coal-bearing units in the Mae Ramat Basin, Tak Province, northern Thailand: implications for the palaeoclimate and the palaeoenvironment. The Natural History Journal of Chulalongkorn University 3(2): 19–40.

Bailey, I.W. & Sinnott, E.W. (1916). The climatic distribution of certain types of angiosperm leaves. American Journal of Bota ny 3(1): 24–39.

Benammi, M., Chaimanee, Y., Jaeger, J-J., Suteethorn, V. & Ducrocq, S. (2001). Eocene Krabi Basin (southern Thailand): palaeontology and magnetostratigraphy. Geological society of America Bulletin 113: 265–273.

Burnham, R.J., Pitman, N.C.A., Johnson, K.R., & Wilf, P. (2001). Habitat-related error in estimating temperatures from leaf margins in a humid tropical fores t. American Journal of Botany 88: 1096–1102.

Charusiri, P. & Pum-Im, S. (2009). Cenozoic tectonic evolution of major sedimentary basins in central, northern, and the Gulf of Thailand. Bulletin of Earth Science Thailand 2: 40–62.

Dilcher, D.L. (1974). Approaches to the identification of angiosperm leaf remain. The Botanical Review 40(1): 1–157.

Dolph, G.E. & Dilcher, D. (1980a). Variation in leaf size with respect to climate in Costa Rica. Biotropica 12: 91–99.

Dolph, G.E. & Dilcher, D. (1980b). Variation in leaf size with respect to climate in the tropics of the Western Hemisphere. Bulletin of the Torrey Botanical Club 107: 154–162.

Edwards, E.J., Spriggs, E.L., Chatelet, D.S. & Donoghue, M.J. (2016). Unpacking a centuryold mystery: winter buds and the latitudinal gradient in leaf form. American Journal of Botany 103: 975–978.

Ellis, B., Daly, D.C., Hickey, L.J., Mitchell, J.D., Johnson, K.R., Wilf, P. & Wing, S.L. (2009). Manual of leaf architecture. Cornell University Press.

Endo, S. & Fujiyama, I. (1995). Some Late Mesozoic and Late Tertiary plants and a fossil insect from Thailand. Geology and Palaeontology of Southeastern Asia 1: 113–117.

Gastaldo, R.A., Ferguson, D.K., Walther, H. & Robold, J.M. (1996). Criteria to distinguish parautochthonous leaves in Tertiary alluvial channel-fills. Review of Palaeobotany and Palynology 91: 1–21.

Givnish, T.J. (1984). Leaf and canopy adaptations in tropical forests. Physiological Ecology of Plants of the Wet Tropics 12: 51–84.

Green, W.A. (2006). Loosening the CLAMP: an exploratory graphical approach to the Climate Leaf Analysis Multivariate Program. Palaeontologia Electronica 9: 1–17.

Greenwood, D.R. (2005). Leaf Margin Analysis: taphonomic constraints. Palaios 20: 498–505.

Greenwood, D.R. (2007). Fossil angiosperm leaves and climate: from Wolfe and Dilcher to Burnham and Wilf. Advances in Angiosperm Palaeobotany and Palaeoclimatic Reconstruction 258: 95–108.

Grote, P.J. (2005). Character evolution of Alnus (Betulacae) and fossil leaves and cones from the Tertiary of Northern Thailand. Proceedings of the XVII international Botanical Congress, p. 417.

Grote, P.J. (2006). Studies of a flora from the Pleistocene of northeastern Thailand. School of Biology, Insitute of Science, Suranaree University of Technology, Nakhon Ratchasima.

Herman, A.B., Spicer, R.A., Aleksandrova, G.N., Yang, J., Kodrul, T.M., Maslova, N.P., Spicer, T.E.V., Chen, G., & Jin, J. (2017). Eocene–early Oligocene climate and vegetation change in southern China: Evidence from the Maoming Basin Palaeogeography, Palaeoclimatology, Palaeoecology 479: 126–137.

Hickey, L.J. (1973). Classification of the architecture of dicotyledonous leaves. American Journal of Botany 60: 17–33.

Huber, M. & Goldner, A. (2012). Eocene monsoons. Journal of Asian Earth Science 44: 3–23.

Jacobs, B.F. (1999). Estimation of rainfall variables from leaf characters in tropical Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 145: 231–250.

Khan, M.A., Spicer, R.A., Bera, S., Ghosh, R., Yang, J., Spicer, T.E.V., Guo, S., Su, T., Jacques, F., & Grote, P.J. (2014). Miocene to Pleistocene floras and climate of the eastern Himalayan Siwaliks, & new palaeoelevation estimates for the Namling–Oiyug Basin, Tibet. Global and Planetary Change 113: 1–10.

Kovach, W.L. & Spicer, R.A. (1995). Canonical correspondence analysis of leaf physiognomy: a contribution to the development of a new palaeoclimatological tool. Palaeoclimates 1: 125–38.

Kowalski, E.A. & Dilcher, D.L. (2003). Warmer palaeotemperatures for terrestrial ecosystems. Proceedings of the National Academy of Sciences USA 100(1): 167–70.

Kunzmann, L. & Walther, H. (2007). A noteworthy plant taphocoenosis from the Lower Oligocene Haselbach Member (Saxony, Germany) containing Apocynophyllum neriifolium Heer. Acta Palaeobotanica 47: 145–161.

Leaf Architecture Working Group (1999). Manual of leaf architecture - morphological description and categorization of dicotyledonous and netveined monocotyledonous angiosperms. Smithsonian Institution, Washington DC.

Little, S.A., Kembel, S.W . & Wilf, P. (2010). Palaeotemperature proxies from leaf fossils reinterpreted in light of evolutionary history. PLoS ONE 5(12): e15161.

Maxbauer, D.P., Peppe, D.P., Bamford, M., McNulty, K.P., Harcourt-Smith, W.E.H. & Davis, L.E. (2013). A morphotype catalog and paleoenvironmental interpretations of Early Miocene fossil leaves from the Hiwegi Formation, Rusinga Island, Lake Victoria, Kenya. Palaeontologia Electronica 16.3.28A: 1–19.

Metcalfe, I. (2017). Tectonic evolution of Sundaland. Bulletin of the Geological Society of Malaysia 63: 27–60.

Miller, I.M., Brandon, M.T., & Hickey, L.J. (2006). Using leaf margin analysis to estimate the mid-Cretaceous (Albian) paleolatitude of the Baja BC block: Earth and Planetary Science Letters 245: 95–114.

Moles, A.T., Perkins, S.E., Laffan, S.W., Flores-Moreno, H., Awasthy, M., Tindall, M.L., Sack, L., Pitman A., Kattge, J., Aarssen, L.W., Anand, M., Bahn, M., Blonder, B., Cavender-Bares, J., Cornelissen, J.H.C., Cornwell, W.K., Dıaz, S., Dickie, J.B., Freschet, G.T., Griffiths, J.G., Gutierrez, A.G., Hemmings, F.A., Hickler, T., Hitchcock, T.D., Keighery, M., Kleyer, M., Kurokawa, H., Leishman, M.R., Liu, K., Niinemets, U., Onipchenko, V., Onoda, Y., Penuelas, J., Pillar V.D., Reich, P.B., Shiodera, S., Siefert, A., Sosinski Jr, E.E., Soudzilovskaia, N.A., Swaine, E.K., Swenson, N.G., van Bodegom, P.M., Warman, L., Weiher, E., Wright, I.J., Zhang, H., Zobel, M. & Bonser, S.P. (2014). Which is a better predictor of plant traits: temperature or precipitation? Journal of Vegetation Science 25: 1167–1180.

Morley, C.K. & Racey, A. (2011). Tertiary, pp. 224–271. In: M.F. Ridd, A.J. Barber & M .J. Crow (eds), The Geology of Thailand. Geological society of London.

Murphy, P.G. & Lugo, A.E. (1986). Ecology of tropical dry forest. Annual Review of Ecology, Evolution, and Systematics 17: 67–88.

Peppe, D.J., Royer, D.L., Cariglino, B., Oliver, S.Y., Newman, S. & Leight, E. (2011). Sensitivity of leaf size and shape to climate: global patterns and palaeoclimatic applications. New Phytologist 190: 724–739.

Peppe. D.J., Baumgartner, A., Flynn, A. & Blonder, B. (2018). Reconstructing palaeoclimate and palaeoecology using fossil leaves, pp. 289–317. In: D. Croft, D. Su & Simpson S. (eds), Methods in Palaeoecology. Springer, Cham.

Pirrie, D. & Marshall, J.D. (1990). High-paleolatitude late Cretaceous paleotemperatures: new data from James Ross Island, Antarctica. Geology 18(1): 31–34.

Raunkiaer, C. (1934). The life forms of plants and statistical plant geography; being the collected papers of C. Raunkiaer. Oxford: Clarendon Press. U.K.

Royer, D. (2012). Climate reconstruction from leaf size and shape: new developments and challenges. The Paleontological Society Papers 18: 195–212.

Royer, D.L., Wilf, P., Janesko, D.A., Kowalski, E.A. & Dilcher, D.L. (2005). Correlations of climate and plant ecology to leaf size and shape: potential proxies for the fossil record. American Journal of Botany 92: 1141–1151.

Sawangchote, P. (2006). Report of surveying and collecting Tertiary plants of peninsular Thailand for biodiversity and palaeoecology research. Faculty of Science, Prince of Songkla University, Songkhla.

Sawangchote, P., Grote, P.J. & Dilcher, D. (2010). Tertiary leaf fossils of Semecarpus (Anacardiaceae) from Li Basin, northern Thailand. Thai Forest Bulletin (Botany) 38: 8–22.

Shukla, A., Mehrotra, R.C., Spicer, R.A., Spicer, T.E.V. & Kumar, M. (2014). Cool equatorial terrestrial temperatures and the South Asian monsoon in the Early Eocene: evidence from the Gurha Mine, Rajasthan, India. Palaeogeography, Palaeoclimatology, Palaeoecology 412: 187–198.

Singh, G. (2010). Plant systematics - an integrated approach (third edition). Science Publishers, Enfield.

Songtham, W., Ratanasthien, B., Mildenhall, D.C., Singharajwarapan, S. & Kandharosa, W. (2003). Oligocene-Miocene climatic changes in northern Thailand resulting from extrusion tectonics of Southeast Asian landmass. Science Asia 29: 221–233.

Spicer, R.A. & Corfield, R.M. (1992). A review of terrestrial and marine climates in the Cretaceous with implications for modelling the ‘Greenhouse Earth’. Geological Magazine 129(2): 169–180.

Spicer, R.A., Herman, A.B. & K ennedy, E.M. (2004). Foliar physiognomic record of climatic conditions during dormancy: climate leaf analysis multivariate program (CLAMP) and the cold month mean temperature. The Journal of Geology 112: 685–702.

Spicer, R.A., Herman, A.B., Liao, W., Spicer, T.E.V., Kodrul, T.M., Yang, J. & Jin, J. (2014). Cool tropics in the Middle Eocene: evidence from the Changchang Flora, Hainan Island, China. Palaeogeography. Palaeoclimatology. Palaeoecology 412: 1–16.

Spicer, R.A., Valdes, P.J., Spicer, T.E.V., Craggs, H.J., Srivastava, G., Mehrotra, R.C. & Yang, J. (2009). New developments in CLAMP: calibration using global gridded meteorological data. Palaeogeography, Palaeoclimatology, Palaeoecology 283: 91–98.

Spicer, R.A., Yang, J., Herman, A.B., Kodrul, T., Maslova, N., Spicer, T.E.V., Aleksandrova, G. & Jin, J. (2016). Asian Eocene monsoons as revealed by leaf architectural signatures. Earth and Planetary Science Letters 449: 61–68.

Srivastava, G., Spicer, R.A., Spicer, T.E.V., Yang, J., Kumar, M., Mehrotra, R. & Mehrotra, N. (2012). Megaflora and palaeoclimate of a Late Oligocene tropical delta, Makum Coalfield, Assam: evidence for the early development of the South Asia Monsoon. Palaeogeography, Palaeoclimatology, Palaeoecology 342–343: 130–142.

Steart, D.C., Spicer, R.A. & Bamford, M.K. (2010). Is southern Africa different? An investigation of the relationship between leaf physiognomy and climate in southern African mesic vegetation. Review of Palaeobotany and Palynology 162: 607–620.

Su, T., Xing, Y., Liu, Y., Jacques, F., Chen, W., Huang, Y. & Zhou, Z. (2010). Leaf Mar gin Analysis: a new equation from humid to mesic forests in China. Palaios 25: 234–238.

Tantiwanit, W., Raksaskulwong, L., Bupphasiri, W. & Khamchoo, A. (1986). Geological map of Thailand, sheet Mae Ramat (4742IV) and Mae La (4643II), scale 1: 250,000. Geological Survey Division, Department of Mineral Resources, Bangkok.

Teodoridis, V., Mazouch, P., Spicer, R.A. & Uhl, D. (2010). Refining CLAMP — investigations towards improving the Climate Leaf Analysis Multivariate Program. Palaeogeography, Palaeoclimatology, Palaeoecology 299: 39–48.

Thai Meteorological Department (2010). Mean Annual Rainfall in Thailand (mm) 30 year. downloaded 10 December 2019. Thai Meteorological Department database.

Thanomsap, S. (1983). Stratigraphy sequence and facies distributions in Mae Sot Basins. Conference Proceedings of Geology and Mineralogy Resources of Thailand, Bangkok, Thailand.

Thanomsap, S. & Sitahirun, S. (1992). The Mae Sot oil shale. Conference Proceedings of Geologic Resources of Thailand: Potential for Future Development, Bangkok, Thailand.

Watanasak, M. (1988). Mid-Tertiary palynology of onshore and offshore Thailand. PhD dissertation, University of Adelaide, Australia.

Watanasak, M. (1990). Mid Tertiary palynostratigraphy of Thailand. Journal of Southeast Asian Earth Scienc 4(3): 203–218.

Webb, L.J. (1959). A physiognomic classification of Australian rain forests. Journal of Ecology 47: 551–570.

Webb, L.J. (1968). Environmental relationships of structural types Australian rain forest vegetation. Ecology 49: 296–311.

West, C.K., Greenwood, D.R. & Basinger, J.F. (2015). Was the Arctic Eocene ‘rainforest’ monsoonal? Estimates of seasonal precipitation from early Eocene megafloras from Ellesmere Island, Nunavut. Earth and Planetary Science Letters 427: 18–30.

Whittaker, R.H. (1975). Communities and Ecosystems, (second edition). MacMillan Publishing Co., New York.

Wilf, P. (1997). When are leaves good thermometers? A new case for leaf margin analysis. Paleobiology 23: 373–390.

Wilf, P., Cúneo, N.R., Johnson, K.R., Hicks, J.F., Wing, S.L. & Obradovich, J.D. (2003). High plant diversity in Eocene South America: evidence from Patagonia. Science 300: 122–125.

Wilf, P., Wing, S.L., Greenwood, D.R. & Greenwood, C.L. (1998). Using fossil leaves as paleoprecipitation indicators: an Eocene example. Geology 26: 203–206.

Wing, S.L. & Greenwood, D.R. (1993). Fossils and fossil climate: the case for equable continental interiors in the Eocene. Philosophical Transactions of the Royal Society of London Series B 341: 243–252.

Wolfe, J.A. (1971). Tertiary climatic fluctuations and methods of analysis of Tertiary floras. Palaeogeography, Palaeoclimatology, Palaeoecology 9: 27–57.

Wolfe, J.A. (1979). Temperature parameters of humid to mesic forests of eastern Asia and relation to forests of other regions in the Northern Hemisphere and Australasia. United States Geological Survey Professional Paper 1106, 37p.

Wolfe, J.A. (1990). Palaeobotanical evidence for a marked temperature increase following the Cretaceous/Tertiary boundary. Nature 343: 153–156.

Wolfe, J.A. (1993). A method of obtaining climatic parameters from leaf assemblages. United States Geological Survey Bulletin 2040: 1–73.

Wolfe, J.A. (1995). Paleoclimatic estimates from tertiary leaf assemblages. Annual Review of Earth and Planetary Sciences 23(1): 119–142.

Wolfe, J.A. & Upchurch, G.R. (1987). North American nonmarine climates and vegetation during the late Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology 61: 33–77.

Yang, J., Spicer, R.A., Spicer, T.E.V. & Li, C.S. (2011). CLAMP online’: a new web-based palaeoclimate tool and its application to the terrestrial Paleogene and Neogene of North America. Palaeobiodiversity and Palaeoenvironments 91: 163–183.

Downloads

Published

2020-08-03

How to Cite

Bunlam, A., Thasod, Y., Ditbanjong, P., Fongngern, R., & Grote, P. J. (2020). The Cenozoic leaf morphotypes and palaeoclimate interpretation from the Doi Ton Formation, Mae Sot District, Tak Province, western Thailand . Thai Forest Bulletin (Botany), 48(2), 118–141. https://doi.org/10.20531/tfb.2020.48.2.06

Issue

Section

Articles