

ฤทธิ์ยับยั้งของสารสกัดจากเกาวลัย์เบรียงต่อเอนไซม์ไซโตโครมพี 450 ไอโซฟอร์ม 2อี-อะนิลิน-4-ไฮดรอกซีเลสในหลอดทดลอง

ทัศนีย์ ปัญจานนท์¹

¹ หมวดวิชาเภสัชวิทยาและพิชวิทยา ภาควิชาวิทยาศาสตร์การแพทย์ คณะวิทยาศาสตร์ มหาวิทยาลัยรังสิต

บทคัดย่อ

สารสกัดจากเกาวลัย์เบรียงมีข้อบ่งใช้สำหรับบรรเทาอาการปวดหลังส่วนล่างและการปวดจากข้อเข่าเสื่อม การใช้สารสกัดจากเกาวลัย์เบรียงร่วมกับยาหรือสารอื่นๆ อาจก่อให้เกิดอันตรายร้ายแรงได้ ผลการทดลองของสารสกัดจากเกาวลัย์เบรียงต่อเอนไซม์ไซโตโครม P450s วัดด้วยการวิจัยนี้เพื่อประเมินผลของสารสกัดจากเกาวลัย์เบรียงต่อเอนไซม์ไซโตโครมพี 450 ไอโซฟอร์ม 2อี-อะนิลิน-4-ไฮดรอกซีเลส ที่ได้จากไมโครโซมจากตับของหนูขาวใหญ่ที่เหนี่ยวนำด้วยยาฟีโนบาร์บิทอลในหลอดทดลอง โดยใส่สารสกัดจากเกาวลัย์เบรียงที่มีความเข้มข้นขนาด 0, 100, 200, 400, 600, 800, และ 1,000 ไมโครกรัมต่อมิลลิลิตรในระบบที่มี ไมโครโซม อะนิลิน ไฮดรคลอไรด์ โคแฟคเตอร์ และฟอสฟอสบับเพอร์ บ่มที่ 37 องศาเซลเซียส 20 นาที วัดปริมาณของพาราอะมิโนฟีนอล ซึ่งเป็นผลผลิตจากการย่อยสารตั้งต้น ด้วยการทำให้เกิดสีและวัดการดูดกลืนแสง ผลการวิจัยพบว่าสารสกัดจากเกาวลัย์เบรียงมีฤทธิ์ยับยั้งการทำงานของ CYP 2อี1 อย่างมีนัยสำคัญทางสถิติโดยสัมพันธ์กับความเข้มข้นของสารสกัด และมีค่า IC_{50} เท่ากับ 321.22 ไมโครกรัมต่อมิลลิลิตร

คำสำคัญ: เกาวลัย์เบรียง CYP 2อี1 อะนิลิน-4-ไฮดรอกซีเลส

*ผู้รับผิดชอบบทความ

รศ.ดร.ทัศนีย์ ปัญจานนท์

คณะวิทยาศาสตร์ มหาวิทยาลัยรังสิต ต.หลักหก อ.เมืองฯ จ.ปทุมธานี 12000

Email: tadsanee@rsu.ac.th

The Inhibitory Effect of the *Derris scandens* Extract on Cytochrome P450 2E1 (CYP2E1) -associated Aniline-4-Hydroxylase *in vitro*

Tadsanee Punjanon

Pharmacology and Toxicology Unit, Department of Medical Sciences, Faculty of Science, Rangsit University, Pathum-thani 12000, Thailand

Abstract

The indications of the 50% ethanolic extract of *Derris scandens* (Tao-Wan-Priang) are for relieving pain in lower back pain and knee osteoarthritis. It is well established that many herbs interact pharmacokinetically with drugs by modulating the activities of cytochrome P450s enzymes. The aim of this study was to investigate the effect of the *D. scandens* extract on the activity of cytochrome P450 2E1 (CYP2E1) -associated aniline-4-hydroxylase (A4H) in the rat hepatic microsome induced by phenobarbital under *in vitro* condition. Different concentrations of the *D. scandens* extract of 0, 100, 200, 400, 600, 800, and 1,000 μ g/mL were added to the reaction mixture contained microsome, aniline hydrochloride, cofactor, and phosphate buffer and incubated at 37 °C for 20 minutes. Para-aminophenol, a product of A4H was measured by colorimetric method. The results clearly showed that the *D. scandens* extract significantly inhibited CYP2E1 with a dose dependent manner and the median inhibitory concentration (IC₅₀) was 321.22 μ g/mL.

Keywords: *Derris scandens*, CYP2E1, Aniline-4-hydroxylase

***Corresponding author**

Assoc.Prof.Dr.Tadsanee Punjanon

Faculty of Science, Rangsit University, Lak Hok, Amper Meuang, Pathum-thani 12000

Tel. 0-2997-2222 Ext. 1461 Fax. 0-2997-2222 Ext. 1417

Email: tadsanee@rsu.ac.th

Introduction

Derris scandens (Roxb.) Benth, or Jewel Vine, known as Tao-Wan-Priang in Thai, is an evergreen climbing shrub with branched stems up to 20 meters long growing from a taproot. This woody vine is growing throughout Southeast Asia. It is the well-known Asian medicinal plant. The stem of *D. Scandens* has been used as the active ingredient in the Thai traditional medicine recipes for pain treatment, for example of osteoarthritis, joint diseases, musculoskeletal diseases, rheumatic diseases, muscle tension, etc¹. The major active constituents of *D. scandens* stem extracts are benzyls and isoflavones, including genistein, coumarins, scandinone, scandenin, prenylated isoflavones, and isoflavone^{2, 3}. The leaf and root extracts of *D. scandens* showed anti-inflammatory activity on carrageenan-induced paw edema in rats⁴.

The clinical trials showed that the 50% ethanol extract of *D. scandens* resulted in better effective treatment, fewer side effects, and non-toxic effects when compared with a nonsteroidal anti-inflammatory drug (NSAIDs) such as diclofenac⁵ and naproxen⁶. The major adverse events were gastrointestinal symptoms. The adverse events (AEs) of *D.*

scandens showed no different relative risk with NSAIDs⁷.

From the Thailand National List of Essential Medicines (2016), the *D. scandens* extract is a drug developed from Thai medicinal plants. One formulated capsule contains 400 mg of the 50% ethanol extract from the stem of *D. scandens*. Its indications are relieving pain in lower back pain and knee osteoarthritis⁸. Low back pain and knee osteoarthritis are frequently found in the elderly. The increasing of prevalence tendency is also found. Anti-inflammatory drugs, such as NSAIDs, are given to treat patients. However, the adverse effects of anti-inflammatory drugs are reported such as irritation and ulcers of the gastric and intestine system. The Thai Ministry of Public Health has the policy to support the research and development of herbal plants to be processed into high-quality goods and promote the use of the Thai herbs⁹. Therefore, the treatment effect of *D. scandens* is to replace or coadminister with other analgesic drugs by physicians and patients themselves.

Herbal and other natural remedies could affect the disposition of conventional pharmaceuticals through inhibition of human cytochrome P450 (CYP). The potential interaction of medicinal plants with clinically used drugs

is a major safety concern, especially for drugs with narrow therapeutic index (e.g. warfarin and theophylline) and may lead to treatment failure or life threatening adverse reactions^{10, 11}. The data of the study suggested that the *D. scandens* extract contained constituents altering the activities of major drug metabolizing enzyme whose route of activity is mainly via cytochrome P450 systems. *D. scandens* extract showed the potent inhibitory activity against CYP1A2, weak potent inhibitory activity against CYP2C9, and did not affect CYP3A4 activity¹².

Cytochrome P450 2E1 has received a great deal of attention in recent years because of its vital role in the activation of many low molecular weight hepatotoxic chemicals such as ethanol, benzene, CCl₄, paracetamol, nitrosamines, pyridine and cancer suspect agents¹³⁻¹⁶. It is well established that CYP2E enzymes are mainly involved in mutagen and carcinogen metabolism^{11, 17}. Aniline-4-hydroxylase (A4H) has been known as a member of mixed-function oxidases belonging to P450 2E1 gene family. Jeong *et al.* reported that the protective effects of 18 β -glycyrrhetic acid against the carbon tetrachloride-induced hepatotoxicity may be due to its ability to block the bioactivation of carbon tetrachloride, primarily by inhibiting the expression and activity of P450 2E1, and its free radical

scavenging effects¹⁸. In this respect; the aim of this study was to determine the effect of the *D. scandens* extract on the activity of rat hepatic CYP2E1-associated A4H *in vitro*.

Materials and Methods

1. The Extract, Drug and Chemical

Reagents

The commercial “GPO Thao-Wan-Priang Capsules”, 50% ethanolic extract from the stem of *D. scandens* produced by the Government Pharmaceutical Organization of Thailand was used. Aniline hydrochloride, glucose-6-phosphate, nicotinamide, and para-aminophenol were obtained from Sigma-aldrich Co Ltd. All other chemicals and solvents were of the highest grade commercially available.

2. Experimental Animals

Adult male Wistar rats (180-200 g) were obtained from the National Laboratory Animal Center, Mahidol University, Thailand. Rats were housed in the Faculty of Science, Rangsit University, Thailand, under standard environmental conditions of 22 \pm 1 °C, 60-70% humidity, and 12 h light and 12 h dark cycle. All animals had free access to water and standard pellet laboratory animal diet and acclimatized for at least 1 week before use. Before experiments began, the animals were deprived of food for 12 h. The

experiment was conducted in accordance with the Care of Laboratory Animals and Ethical Guidelines of the National Research Council of Thailand. The experiment protocol was submitted and approved for ethical considerations by the Rangsit University Animal Ethics Committee (ID RSEC02/2558).

3. Microsomal Preparation

The CYP enzymes were induced in rats by intraperitoneal injection of phenobarbital (75 mg/kg BW/day) for 7 days. Rats were starved overnight and sacrificed by cervical dislocation. The entire liver was perfused with ice-cold 0.9% NaCl in a short time to eliminate any possible effects due to diurnal variation and rinsed in cold 0.15 M Tris-KCl buffer (pH 7.4). Liver homogenates were prepared in ice-cold 0.15 M Tris-KCl buffer (pH 7.4) and centrifuged at 10,000 rpm for 20 min at 4 °C. The microsomal fraction (pellet) was precipitated by centrifuging the supernatant at 100,000 g for 60 min at 4 °C and stored at -70 °C until assay of A4H¹⁹. Microsomal protein was determined by the method of Lowry²⁰ using bovine serum albumin (BSA) as a standard at 660 nm. A standard curve of 0 to 100 µg/mL BSA was also constructed and was used for calculation of protein amounts in microsomes.

4. Determination of CYP2E1-associated Aniline-4-hydroxylase

The reaction mixture contained phosphate buffer (100 mM, pH 7.4), NADP (0.5 µM), glucose-6-phosphate (10 µM), nicotinamide (50 µM), MgCl₂ (25 µM), aniline hydrochloride (5 µM), rat hepatic microsome (6-8 mg protein) and the various final concentrations (0, 100, 200, 400, 600, 800, and 1,000 µg/mL) of the *D. scandens* extract dissolved in distilled water were added to the reaction mixture in a final volume of 1.0 mL. The reaction mixture was incubated for 20 min at 37 °C. The reaction was then stopped by the addition of 0.5 mL 20% trichloro acetic acid (TCA). The contents were then mixed, centrifuged at 3,000 rpm for 10 min. The supernatant (0.5 mL) was treated with 0.25 mL of 10 % Na₂CO₃ solution and 0.5 mL of 2% phenol in 0.2 N NaOH, mixed and placed in an incubator at 37 °C for 20 min. p-Aminophenol formed during the enzyme action reacts with phenol in the alkaline medium to form a blue colored product, which was measured at 630 nm. A standard curve of 0 to 100 µM p-aminophenol was constructed and was used for calculation of activity of A4H in microsome^{21, 22}. The experiment was performed in triplicates.

5. Data Analysis

The experimental data were expressed as mean with their standard error of means (SEM, triplicates). Results were reported as specific activity of A4H in the presence of the *D. scandens* extract in a unit of μM of p-aminophenol produced/hr/mg microsomal protein compared with basal activity. A basal activity represents the specific activity observed in the absence of the *D. scandens* extract.

The degree of A4H inhibition was calculated as the percentage of inhibition using the formula;

$$\frac{(a-b) \times 100}{a}$$

a = Specific activity in the absence of the *D. scandens* extract

b = Specific activity in the presence of the *D. scandens* extract

Median Inhibitory Concentration (IC₅₀) Determination

A least-squares linear regression analysis of the log concentration-response curves allowed the calculation of the concentration that produced 50% of inhibition (IC₅₀).

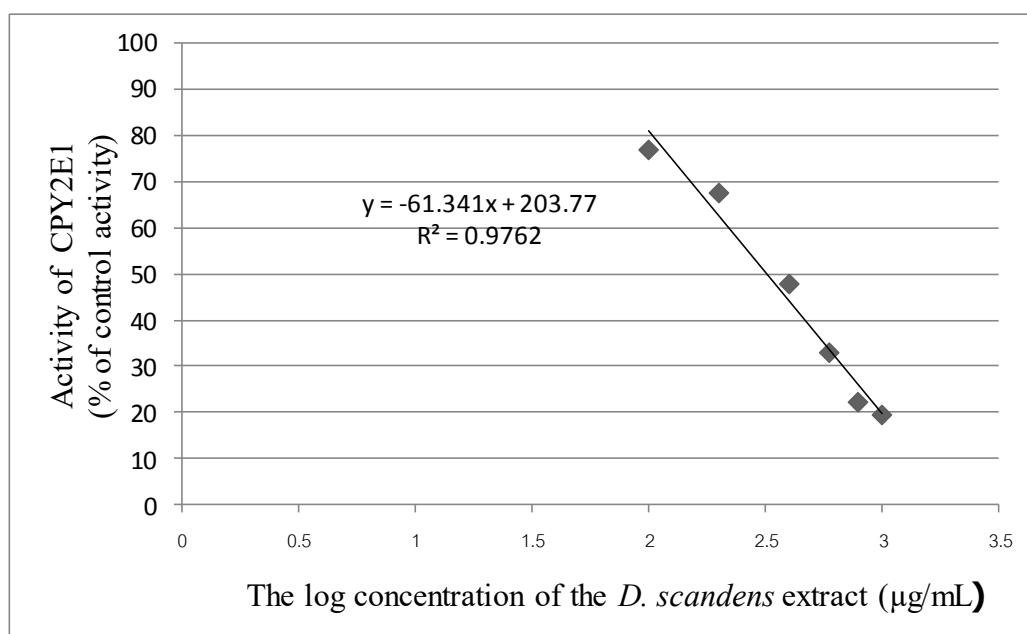
6. Statistical Analysis

The significances of different among the various treated groups and the control group were analyzed by one-way analysis of variance (ANOVA) followed by Post Hoc LSD test using the Statistics Package for Social Sciences (IBM SPSS statistic 21) program for windows. A *P* value <0.05 was considered statistically significant.

Results and Discussion

The effect of the *D. scandens* extract on CYP2E1-associated A4H activity was shown in Table 1. The 50% ethanolic extract of *D. scandens* produced a dose-dependent inhibiting effect on A4H activity *in vitro* compared with the control group. The extracts treatment at a dose of 100 to 1,000 $\mu\text{g}/\text{mL}$ caused a statistically significant decrease in the activity of A4H with the percentage of inhibition at 13.2 ± 2.02 to $78.4 \pm 5.91\%$ in rat hepatic microsome. Figure 1 showed the inhibition of A4H activity by the 50% ethanolic extract of *D. scandens*. Concentration needed for 50% inhibition (IC₅₀) of A4H was 321.22 $\mu\text{g}/\text{mL}$. The *D. scandens* extract showed a significantly dose dependent inhibition of CYP2E1-associated A4H from rat hepatic microsome induced by phenobarbital. Recent data from Nooin *et al.* (2017) reported that the 98% ethanolic extract of

D. scandens inhibited CYP2E1 activity in human liver microsome and IC_{50} was 150.67 ± 7.51 mg/mL²³. Patil and Magdum reported that the ethanolic extracts of *Euphorbia hirta* L, *Euphorbia tirucalli* Linn, *Euphorbia nerrifolia* Linn were showing the potent inhibitory activity on phenobarbitone induced aniline hydroxylase enzyme *in vitro* with IC_{50} at 310.45, 381.35, and 481.85 μ g/mL, respectively. This *E. hirta* L extract was found to have the significant activity against the chemically induced tumor²⁴.


The major active constituents of *D. scandens* stem extracts are benzyls and

isoflavones, including genistein, coumarins, scandinone, scandenin, prenylated isoflavones, and isoflavone^{2, 3}. The phytochemical contents of the ethanolic extract of *D. scandens* including the phenolic, flavonoid, tannin and alkaloid compound were also reported²³. Further research is needed to investigate which of constituent that inhibits CYP2E1-associated A4H.

Table 1 Inhibitory Effect of the *D. scandens* extract on rat hepatic microsomal CYP2E1-associated A4H *in vitro*. (Values are mean + SEM of triplicates)

<i>D. scandens</i> extract (μ g/mL)	Activity of aniline-4-hydroxylase (μ M of p-aminophenol produced/hr/mg microsomal protein)	% inhibition
0	28.4 ± 2.20	0
100	24.7 ± 2.23	$13.2 \pm 1.17^{**}$
200	21.7 ± 1.99	$23.7 \pm 1.12^{**}$
400	$15.4 \pm 3.21^*$	$46.9 \pm 7.25^{**}$
600	$10.6 \pm 2.87^{**}$	$63.8 \pm 7.39^{**}$
800	$7.2 \pm 1.86^{**}$	$75.4 \pm 4.68^{**}$
1000	$6.3 \pm 1.32^{**}$	$78.4 \pm 3.00^{**}$

. $p \leq 0.05$, ** $p \leq 0.01$ compare to the absence of the *D. scandens* extract

Figure 1. Concentration-response curve for the activity of the *D. scandens* extract on rat hepatic microsomal CYP2E1-associated A4H *in vitro*

The *D. scandens* extract showed the potent inhibitory activity against CYP1A2, weak potent inhibitory activity against CYP2C9, and did not affect CYP3A4 activity¹². The result from these studies indicates that *D. scandens* extract drug might have a potential not only to inhibit and/or induce the metabolism of certain co-administered drugs but also influence the development of toxicity and carcinogenesis. CYP1A and CYP2E enzymes are mainly involved in metabolic activation of toxic substances^{15, 17}. As the results of this metabolic activation, organ toxicity, mutagenesis and carcinogenesis may be observed. Inhibition of CYP1A2 and CYP2E1 results in decreased amounts of reactive metabolites formation. This may, in turn, further decrease potentiate

the risk of organ toxicity, mutagenesis and malignant due to and other toxic chemicals metabolized by CYP1A2 and CYP2E1^{15, 25}. It is well known that a number of non-toxic herbs are having activities like membrane-stabilizing, hepatoprotective, and anti-oxidation related with CYP2E1 inhibitory effects. Aliyu *et al.* reported that an aqueous extract of *Cochlospermum planchonii* rhizomes showed the hepatoprotective effect against CCl₄-treated rats from liver damage²⁶. Its plausible hepatoprotective mechanisms may be by inhibiting cytochrome P-450 monooxygenases aminopyrine-N-demethylase and aniline hydroxylase. The protective effects of 18β-glycyrrhetic acid against the carbon tetrachloride-induced hepatotoxicity may be due to its

ability to block the bioactivation of carbon tetrachloride, primarily by inhibiting the expression and activity of P450 2E1, and its free radical scavenging effects¹⁸. These are also observed with *Terminalia belerica Roxb.*²⁷, *Urtica urens*²⁸, *Polygonum bistorta* Linn., and tannic acid²⁹. Many organosulfur compounds, such as diallyl sulfide from garlic, are the potent inhibitors of CYP2E1; this may provide an explanation for garlic's chemopreventive effects¹¹.

CYP2E1 isoform is inducible not only by various chemical agents such as ethanol, benzene, CCl₄, paracetamol (acetaminophen), nitrosamines, pyridine and cancer suspect agents¹³⁻¹⁶, but also by fasting and diabetes induction. CYP2E1 may provide a biochemical basis for the increased incidence of occult liver disease and certain cancers noted in obese individuals³⁰. Chlormethiazole (CMZ), a CYP2E1 inhibitor prevents hepatic carcinogenesis induced by diethylnitrosamine in alcohol-fed rats³¹. Indications of the *D. scandens* extract are relieving pain in lower back pain and knee osteoarthritis. Recently, the synergistic analgesic interaction between the *D. scandens* extract drug, and paracetamol in

the acetic acid-induced abdominal constriction in a mouse model was reported³². The result of the present work indicated that the *D. scandens* extract showed a significantly dose dependent inhibition of CYP2E1-associated A4H. The *D. scandens* extract might cause herb-drug interaction through selective inhibition of CYP2E1. Future studies will attempt to further elucidate its mode of actions and also its interaction in clinical uses and the effects of the *D. scandens* extract on phase II xenobiotic metabolizing enzymes are needed to investigate further.

Conclusion

In conclusion, the *D. scandens* extract showed a dose dependent inhibition of CYP2E1-associated A4H *in vitro* with IC₅₀ at 321.22 µg/mL. This may, in turn, further decrease potentiate the risk of organ toxicity, mutagenesis and malignant due to and other toxic chemicals metabolized by CYP2E1.

Acknowledgements

We are grateful to the Research Institute and the Faculty of Science, Rangsit University, Thailand for providing grants and facilities to carry out this study.

References

1. Laupattarakasem P, Houghton PJ, Hoult JR. *et al.* An evaluation of the activity related to inflammation of four plants used in Thailand to treat arthritis. *J Ethnopharmacol* 2003; 85: 207-15.
2. Mahabusarakam W, Deachathai S, Phongpaichit S, *et al.* A benzil and isoflavone derivatives from *Derris scandens* Benth. *Phytochemistry* 2004; 65: 1185-91.
3. Rao SA, Srinivas PA, Tiwari K, *et al.* Isolation, characterization and chemobiological quantification of α -glucosidase enzyme inhibitory and free radical scavenging constituents from *Derris scandens* Benth. *J Chromatogr B* 2007; 855: 166-72.
4. Ganapaty S, Josaphine JS, Thomas PS. Antiinflammatory activity of *Derris scandens*. *JNR* 2006; 6: 73-6.
5. Srimongkol Y, Warachit P, Chavalittumrong P, *et al.* A study of the efficacy of *Derris scandens* (Roxb.) Benth. extract compared with diclofenac for the alleviation of low back pain. *Journal of Thai Traditional & Alternative Medicine* 2007; 5: 17-23.
6. Kuptniratsaikul V, Pinthong T, Bunjob M., Thanakhumtorn, *et al.* Efficacy and safety of *Derris scandens* Benth extracts in patients with knee osteoarthritis. *J Altern Complement Med* 2011; 17: 147-53.
7. Puttarak P, Sawangjit R, Chaiyakunapruk N. Efficacy and safety of *Derris scandens* (Roxb.) Benth. for musculoskeletal pain treatment: A systematic review and meta-analysis of randomized controlled trials. *J Ethnopharmacol* 2016; 194: 316-23.
8. Thailand National List of Essential Medicines, 2016. Available at <http://drug.fda.moph.go.th:81/nlem.in.th/>, accessed Feb 1, 2017.
9. The Government Public Relations Department, 2015. Promoting Thai Herbal Medicine and Health Behavior Change Program. Available at http://thailand.prd.go.th/ewt_news.php?nid=2141&filename=index, accessed Feb 1, 2017.
10. Elvin-Lewis M. Should we be concerned about herbal remedies. *J Ethnopharmacol* 2001; 75: 141-64.
11. Zhou S, Gao Y, Jiang W, *et al.* Interactions of herbs with

- Cytochrome P450. *Drug Metab Rev* 2003; 35: 35-98.
12. Dilokthornsakul P, Hamkratok J, Kerdpheng W, *et al.* An *in vitro*, herb-drug interaction study of Thai herbal medicine: Inhibition potential on drug-metabolizing enzymes. Proceeding of the 13th Naresuan Research Conference; 2017 July 20-21; 2017, 650-59.
13. Guengerich FP, Kim DH, Iwasaki M. Role of human cytochrome P450 2E1 in the oxidation of many low molecular weight cancer suspects. *Chem Res Toxicol* 1991; 4: 168-79.
14. Lee SST, Buters JTM, Pineau T. *et al.* Role of CYP2E1 in the hepatotoxicity of acetaminophen. *J Biol Chem* 1996; 271: 12063-7.
15. Sen A, Arinc E. Preparation of highly purified cytochrome P450 IA1 from leaping mullet (*Liza saliens*) liver microsomes and its biocatalytic, molecular and immunochemical properties. *Comp Biochem Physiol* 1998; 121C: 249-65.
16. Arinc E, Adali O, Gencler-Ozkan AM. Induction of N-nitroso dimethylamine metabolism in liver and lung by *in vivo* pyridine treatments of rabbits. *Arch Toxicol* 2000; 74: 329-34.
17. Chung WG, Sen A, Wang-Buhler JL, *et al.* cDNA-directed expression of a functional zebrafish CYP1A in yeast. *Aquat Toxicol* 2004; 70: 111-21.
18. Jeong HG, You HJ, Park SJ. Hepatoprotective effects of 18 beta-glycyrrhetic acid on carbon tetrachloride-induced liver injury: Inhibition of cytochrome P450 2E1 expression. *Pharmacol Res* 2002; 46: 221-7.
19. Guo Z, Smith TJ, Wang E, *et al.* Effects of phenethyl isothiocyanate, a carcinogenesis inhibitor, on xenobiotic-metabolizing enzymes and nitrosamine metabolism in rats. *Carcinogenesis* 1992; 13: 2205-10.
20. Lowry OH, Rosebrough NJ, Farr AL, *et al.* Protein measurement with the Folin Phenol reagent. *J Biol Chem* 1951; 193: 265-75.
21. Mazel P. Fundamentals of Drug Metabolism and Drug Disposition. Baltimore: Williams and Wilkins, 1971: 546-82.
22. Kulkarni AP, Hodgson E. Mouse liver microsomal hexose-6-phosphate dehydrogenase: NADPH generation and utilization in monooxygenation reactions. *Biochem Pharmacol* 1982; 31: 1131-7.

23. Nooin R, Jaikang C, Pitchakan P, *et al.* Ethanolic extract of *Derris scandens* benth. inhibited cytochrome 2E1 activity in human liver microsome. Proceeding of the 6th Burapha University International Conference 2017.
24. Patil SB, Magdum CS. The Inhibitory effect of some Indian plant extracts on the aniline hydroxylase. *Asian J Pharm Clin Res* 2012; 5: 129-31.
25. Ma Q, Lu AY. CYP1A induction and human risk assessment: an evolving tale of *in vitro* and *in vivo* studies. *Drug Metab Dispos* 2007; 35: 1009-16.
26. Aliyu R, Okoye ZSC, Shier WT. *Cochlospermum planchonii* rhizome extract with hepatoprotective activity inhibits cytochrome P-450 monooxygenases. *Phytotherapy Res* 1995; 9: 600-2.
27. Jadon A, Bhaduria M, Shukla S. Protective effect of *Terminalia belerica* Roxb and gallic acid against carbon tetrachloride induced damage in albino rats. *J Ethnopharmacol* 2007; 109: 214-8.
28. Ozen T, Korkmaz H. The effects of *Urtica dioica* L. leaf extract on aniline-4-hydroxylase in mice. *Drug Res* 2009; 66: 305-9.
29. Mittal DK, Joshi D, Shukla S. Antioxidant and hepatoprotective effects of *Polygonum bistorta* Linn. and tannic acid on carbon tetrachloride-treated rats. *IJP* 2011; 2: 23-30.
30. Raucy JL, Lasker JM, Kraner JC, *et al.* Induction of cytochrome P450IIE1 in the obese overfed rat. *Mol Pharmacol* 1991; 39: 275-80.
31. Ye Q, Lian F, Chavez PRG, *et al.* Cytochrome P450 2E1 inhibition prevents hepatic carcinogenesis induced by diethylnitrosamine in alcohol-fed rat. *Hepatobiliary Surg Nutr* 2012; 1: 5-18.
32. Punjanon T, Yingyong W, Untharin N. Analgesic synergy between paracetamol and *Derris scandens* in mice. Proceeding of the RSU International Research Conference; 2017 April 27; Pathum-thani; 2017, 20-4.