

Shortgun Proteomics Analysis of Mouse Colon Treated with *Eryngium foetidum* Linn. Extracts

Titipat Likitpruekpaisarn¹, Sittiruk Roytrakul², Suthathip Kittisenachai², Piya Temviriyankul³, Chaniphun Butryee^{3*}

¹Master of Science Program in Food and Nutritional Toxicology, Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand

²Proteomics Research Laboratory, National Centre for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand

³Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand

Abstract

Eryngium foetidum Linn. leaves (EF) have been traditionally used as a food and medicine in South East Asia. The average consumption of EF in Thai population in each age group is about 0.48 g/kg BW/day. EF was able to prevent colon carcinogenesis in mice treated with azoxymethane-dextran sulfate sodium. Moreover, there was no defect observed in colon tissues using a pathological approach. In the present study, the safety of EF at the translational level was investigated. Total proteins from 3 groups (Group 1; control group, Group 2; 0.8% EF and Group 3; 3.2% EF in diet) of each colon sample were analyzed by GeLC-MS/MS. After fractionation by SDS-PAGE, the proteins bands were divided according to their molecular weight followed by tryptic digestion and nanoLC-MS analysis. Protein quantitation and identification were determined by Decyder MS Differential Analysis and Mascot softwares. The results showed significantly different levels of protein expression between EF-treated and non-treated mice. However, no significantly different expression was observed in 0.8% and 3.2% EF-treated mice for 15 weeks. No alteration of proteins involved in colon carcinogenesis was observed. In addition, pathological study did not show any defect in colon tissues treated with EF. It can be concluded that the treatment with EF at 0.8% and 3.2% for 15 weeks in mice was considered as safe.

Keywords: Colon cancer, *Eryngium foetidum* Linn. leaves, Mouse, Proteomics

*Corresponding author

Asst. Prof. Chaniphun Butryee

Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand

Tel: 02-8002380, Fax: 02-4419344

E-mail: chaniphun.but@mahidol.ac.th

กลไกการออกฤทธิ์ระดับโปรตีนด้วยเทคนิค shortgun ประติโอมิกส์ของลำไส้ใหญ่ในหนูเม้าส์ที่ได้รับผักชีฟรั่ง

ฐิติพัฒน์ ลิขิตพุกมีไฟศาล¹, สิทธิรักษ์ รอยตระกูล², สุชาทิพย์ กิตติเสนาชัย², ปิยะ เต็มวิริยะนุกูล³, ชนพรวณ บุตรยี^{3*}

¹หลักสูตรปริญญาโทสาขาวิทยาทางอาหารและโภชนาการ สถาบันโภชนาการ มหาวิทยาลัยมหิดล

²หน่วยวิจัยเทคโนโลยีโภชนาการ ศูนย์พันธุ์วิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ สำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ

³สถาบันโภชนาการ มหาวิทยาลัยมหิดล

บทคัดย่อ

ผักชีฟรั่ง (*Eryngium foetidum* Linn. leaves; EF) เป็นพืชสมุนไพรพื้นบ้านที่ชาวເອເຊີຍຕະວັນອອກເຄີຍໄດ້ນິຍົມນຳມາບັນຍາໂຄດເປັນອາຫາຣແລ້ວມີສຽງພຸດູນທາງຍາ ຈາກຂໍ້ມູນການບັນຍາໂຄດຂອງປະຊາກົມໄທຢູ່ເຄີຍຂອງປະມາມການບັນຍາໂຄດຜັກີ່ຟັ່ງເທົ່າກັນ 0.48 ກຣັມຕ່ອງໂຄດຮັມນໍ້າຫັນກົດຕ້ວ່າວັນ ແລ້ວມີມາຍາການສຶກຍາພວນວ່າຜັກີ່ຟັ່ງມີມຸນສົມບັດໃນເຊີງປົ້ນກັນການເກີດມະເຮັງລຳໄສ້ໃໝ່ໃນຫຼຸດໜີ້ມີກົດໜັກນຳໃຫ້ເກີດມະເຮັງລຳໄສ້ຈາກສາຮັກ່ອມເຮັງ azoxymethane ແລ້ວ dextran sulfate sodium ໂດຍໄມ້ມີຜົດຕ່ອກການເປັ້ນປົ້ນທາງພາຫິວທານຂອງເນື້ອເຂົ້ອບຣິເວັນລຳໄສ້ ຈຶ່ງເປັນທີ່ມາຂອງການສຶກຍາຄວາມປົດກັບການບັນຍາໂຄດຜັກີ່ຟັ່ງໃນກາລີໂປຣດັບໂປຣຕິນໂດຍນຳລຳໄສ້ຂອງຫຼຸດໜີ້ມີກົດໜັກນຳໃຫ້ຮັບອາຫາຣປົກຕິ ກຸລຸມທີ່ສອງເປັນກຸລຸມທີ່ໄດ້ຮັບອາຫາຣປົກຕິຮ່ວມກັບຜັກີ່ຟັ່ງໃນປະມາມຮ້ອຍລະ 0.8 ແລ້ວກຸລຸມທີ່ສາມເປັນກຸລຸມທີ່ໄດ້ຮັບອາຫາຣປົກຕິຮ່ວມກັບຜັກີ່ຟັ່ງໃນປະມາມຮ້ອຍລະ 3.2) ນາວີເຄຣະທີ່ການແສດງອອກຂອງໂປຣຕິນດ້ວຍເກົ່າ GeLC-MS/MS ຈາກນັ້ນທ່ານການແກ່ງຂາດຂອງໂປຣຕິນດ້ວຍເກົ່າ SDS-PAGE ແລ້ວທ່ານການສັດຍາໂປຣຕິນອອກຈາກແຜ່ນແຈລດ້ວຍວິທີ trypsin digestion ແລ້ວທ່ານການວິເຄຣະທີ່ດ້ວຍເຄຣື່ອງ nanoLC-MS ໂດຍໝັດແລ້ວປະມາມຂອງໂປຣຕິນຈະກູກຈຳແນກຄວາມແຕກຕ່າງດ້ວຍໂປຣແກຣມ Decyder MS ແລ້ວໂປຣແກຣມ Mascot softwares ຈາກການສຶກຍາກ້ຽນນີ້ພວນວ່າປະມາມການແສດງອອກຂອງໂປຣຕິນໃນກຸລຸມຄວບຄຸມແລ້ວກຸລຸມທົດລອງທີ່ໄດ້ຮັບອາຫາຣຮ່ວມກັບຜັກີ່ຟັ່ງເປັນຮະບະເວລາ 15 ສັປດາທີ່ມີປະມາມທີ່ແຕກຕ່າງກັນອ່າງມີນັກສຳຄັນທາງສົດີ ແຕ່ຜົດໃນກຸລຸມທົດລອງທີ່ສອງກຸລຸມ (ສ່ວນຜສມ EF ຮ້ອຍລະ 0.8 ແລ້ວສ່ວນຜສມ EF ຮ້ອຍລະ 3.2) ພວນວ່າປະມາມການແສດງອອກຂອງໂປຣຕິນໄມ້ມີຄວາມແຕກຕ່າງກັນອ່າງມີນັກສຳຄັນ ອ່າງໄຣກ໌ຕາມໄມ້ພົບການແສດງອອກຂອງໂປຣຕິນໃນກຸລຸມທີ່ເກີ່ວຂຶ້ອງກັນການກ່ອໄຫ້ເກີດມະເຮັງລຳໄສ້ ຊື່່ສົດຄລ້ອງກັບພົບຖາງພາຫິວທາຍາທີ່ໄມ້ພົບການເປັ້ນປົ້ນແປງຂອງເນື້ອເຂົ້ອລຳໄສ້ຫຼຸດໜີ້ມີກົດໜັກນຳທີ່ໄດ້ຮັບອາຫາຣຮ່ວມກັບຜັກີ່ຟັ່ງເປັນຮະບະເວລາ 15 ສັປດາທີ່ສຽບໄວ້ການໃຫ້ຜັກີ່ຟັ່ງທີ່ຜສມອາຫາຣປະມາມຮ້ອຍລະ 0.8 ແລ້ວຮ້ອຍລະ 3.2 ແກ່ຫຼຸດເປັນຮະບະເວລາ 15 ສັປດາທີ່ມີຄວາມປົດກັບ

คำສຳຄັນ: ມະເຮັງລຳໄສ້ໃໝ່ໃນຜັກີ່ຟັ່ງ ຫຼຸດໜີ້ມີກົດໜັກນຳ ໂປຣຕິໂອມິກສໍ

*ผู้รับผิดชอบบทความ

ผศ.ดร. ชนิพรรณ บุตรชี

สถาบันโภชนาการ มหาวิทยาลัยมหิดล จ.นนทบุรี 73170

E-mail: chaniphun.but@mahidol.ac.th

Introduction

A number of herbal products have been studied as anticancer agents¹. The *Eryngium foetidum* Linn leaves (EF) also known as "Phakchi-farang" has been used as a traditional medicine for treatment of colds, fits, convulsions, fainting, headaches and malaria^{2,3}. It has been found that EF contains essential nutrients and various phytochemicals, such as polyphenols, phenolic acids, terpenes, and alkaloids etc. The main chemical components of volatile oil in Thai EF are 3-dodecen-1-al (67.25%), dodecanal (7.49%), nor-copaanone (7.13%), and eugenol (4.30%)⁴. The health benefits of EF are mainly imposed due to antioxidant and anti-cancer properties. The antioxidant components of EF are Vitamin C, vitamin E, carotenoid, xanthophil, tannin, phenolic and flavonoid compounds⁵. There are several reports about the properties of EF in induction of cancer cell apoptosis. The phenolic compounds in volatile oil of EF showed the highest inhibition activity for human mammary carcinoma (MCF-7) (ED₅₀ = 28.30 µg/ml)⁴. Other studies reported that the major components in EF (alpha-choloesterol, brassicasterol, campesterol and stigmasterol) had anti-inflammatory activity when studied on chronic and acute inflammation in mouse models⁶.

Proteomics is the large-scale study of proteome to comprehensively map

biological processes, such as the molecular mechanisms of carcinogenesis⁷. It should be noted that proteomics not only focus exclusively on the identification and quantification of these proteins, but also investigates their location, their modifications, their interactions and their functions⁸.

Previously, the preventive and suppressive effects of EF were shown on colon carcinogenesis. EF (3.2% in diet) was able to prevent colon cancer in mice induced with azoxymethane (AOM) and dextran sodium sulfate (DSS) in comparison with control group⁹. No clastogenicity was found in mice after receiving 0.8%, 1.6% and 3.2% EF contained diet for 2 weeks prior to the administration of both direct-acting, mitomycin C (MCC, 1 mg/kg body weight, i.p) and indirect-acting, 7,12-dimethylbenz(a)anthracene (DMBA, 40 mg/kg body weight, i.g) clastogens. However, their anticlastogenic potential against both direct- and indirect-acting types of clastogens were found in mice¹⁰. However, the long-term consumption for 24-weeks in mice received EF should be avoided due to chronic toxicity. EF diet at 1.6% and 3.2% showed the adverse effects on some biochemical parameters (increased blood urea nitrogen) and histopathology (tubular degeneration of kidney) in mice after 24 weeks of treatment¹¹. However, there was no report on the protein

expression profile in any organs of mice treated with EF. Therefore, shotgun proteomic approach was used to investigate the changes in mouse colon proteome after treated with EF for the safety concern of 15 weeks consumption.

World Health Organization (WHO) described that the incidence of colorectal cancer (CRC) is rapidly rising in various regions within countries such as China, Japan, Korea and Singapore. The increase in the number of new cases of CRC per year is witnessed in both men and women. However, not all countries in Asia witness the same degree of rise in incidence of CRC, for example, in East Asian countries, such as Indonesia, Thailand, Vietnam and India¹². CRC in Thailand is the third most common type of cancer in men and the fifth most common type of cancer in women. The annual incidence per 100,000 persons in 2010-2012 of male and female were 14.4 and 11.2, respectively¹³. Early detection of CRC can therefore significantly reduce the mortality for this malignancy. However, current screening methods including faecal occult blood test (FOBT), sigmoidoscopy, colonoscopy and virtual computed tomography scanning either lack the required sensitivity and specificity or are costly and invasive¹⁴. Some biomarkers such as the circulating carcinoembryonic antigen (CEA) levels and tumor-associated gene mutations have only shown some prognostic

or predictive value¹⁵. Therefore, there is an urgent need for developing new screening tests and identifying new biomarkers to diagnose, predict, and monitor the progress of CRC, and eventually find more efficient drug targets for this disease.

Materials and Methods

Eryngium foetidum Linn. leaves (EF) collection and preparation

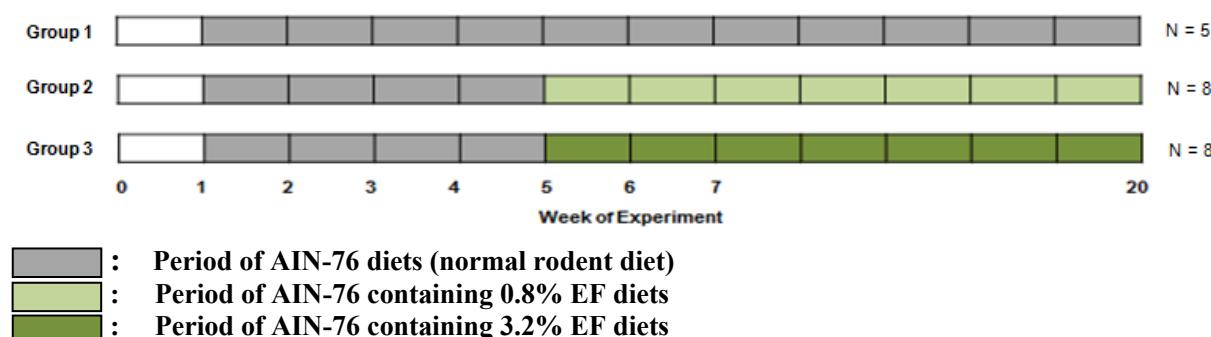
The EF samples were collected from 4 different cultivation areas in Thailand. All samples were pooled and preparations were made according to method described by Promtes et al⁹. Briefly, edible part of the EF was washed with both tap water and deionized water, drained, and air-dried and then cut into small pieces. Then, the EF samples were quickly frozen, ground, sifted, and stored at -20°C until used. Then aliquots of each EF sample were pooled and the AIN-76 diet was supplemented with 0.8% and 3.2% of freeze-dried EF before giving to mice.

Tissue specimens

The animal care and use was reviewed and approved by the National Cancer Institute, Thailand (AE.No.241/2011). Colon sample preparations were obtained from the study of Promtes et al⁹. The scheme for mice treatment is shown in Figure 1.

Sample preparation and GeLC-MS/MS analysis

Colon samples were used for proteomics analysis by using the combination of one-dimension SDS-PAGE and LC-MS/MS (GeLC-MS/MS)¹⁶. Briefly, proteins from colon tissues were extracted using 0.1% SDS (w/v), then equal amount of extracted proteins were fractionated on 12.5 % SDS-PAGE. The running condition was 20 mA/gel for approximately 90 minutes or until tracking dye reached the bottom of the gel. Electrophoresed gel was stained with silver staining¹⁷. To extract the proteins from gel, the in-gel digestion was performed according to Paemanee et al¹⁶. The LC-MS/MS analysis was performed as triplicated and described previously by Paemanee et al¹⁶.


Protein identification and Gene ontology categories

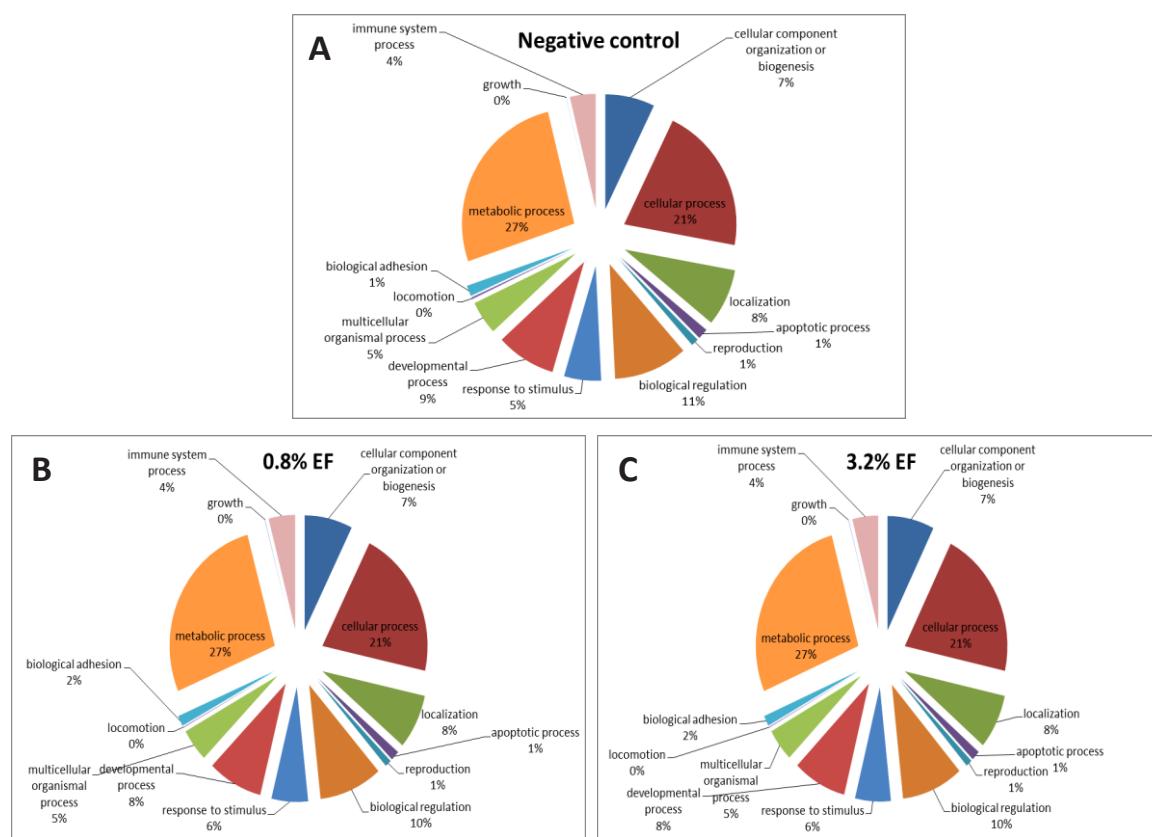
Decyder MS Differential Analysis software (GE Healthcare) was used to quantify the differentially expressed peptide in all samples¹⁶. The data obtained from

Decyder MS was submitted to Mascot and searched against Musmusculus database for protein identification.

Gene ontology annotation and quantification of the change in protein analysis

The protein information was obtained from the online database especially, uniprot knowledge base database. All of the gene ontology information contained biological process. Proteins that showed a significantly altered expression level in the hierarchical clustering were identified by the multi experiment viewer (MEV) software¹⁸. To analyze the changes in the protein between control and treatment groups, the t-test significance of $p \leq 0.05$ and Pearson correlation were employed¹⁶. Other information including protein categorization and biological function were analyzed according to protein analysis through evolutionary relationships (Panther) protein classification¹⁹.

Figure 1 The experimental design of toxicity of EF in ICR mice (Promtes et al. 2013).


Results and Discussion

The differentially expressed protein in mouse colon treated with and without EF

Hierarchical clustering analysis of these proteins was performed to reveal the protein expression patterns. Comparing between mouse colon treated with and without EF, 1,856 differentially expressed proteins.

Analysis of peptide functions using gene ontology (GO)

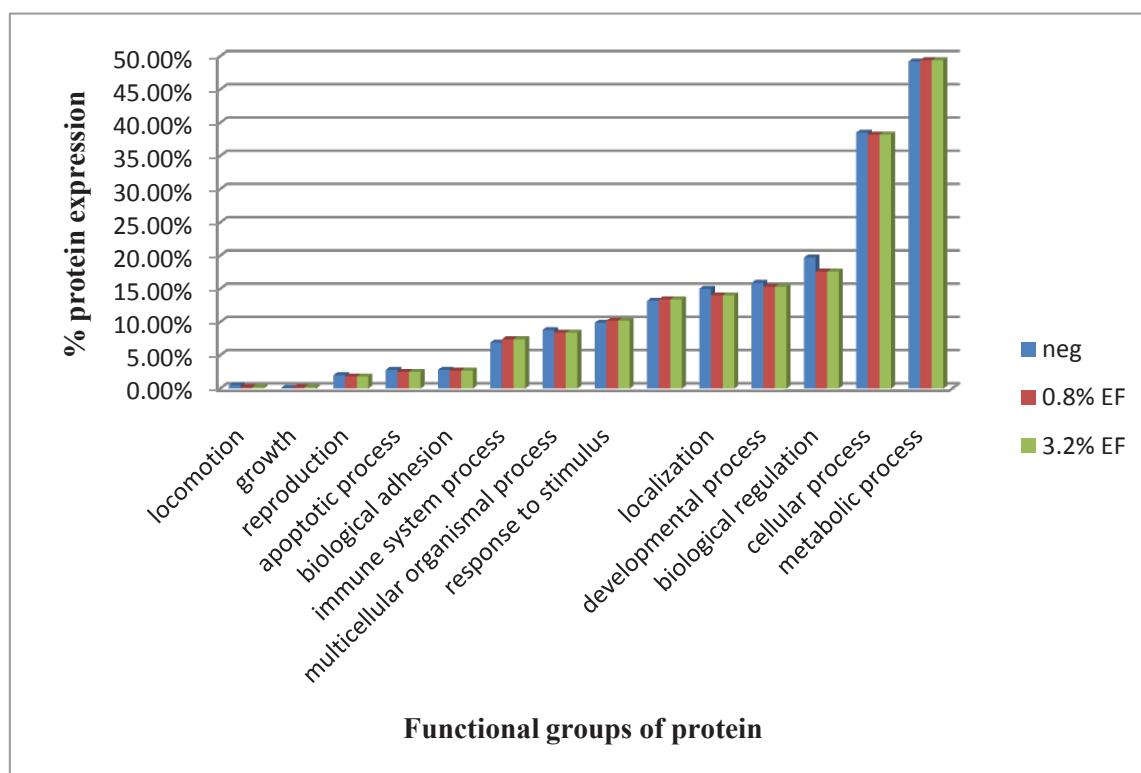

The online PANTHER (Protein Analysis Through Evolutionary Relationships) was used to classify function of identified proteins. They were categorized into 14 groups according to their GO based functional annotation at the mouse genome annotation project (Fig. 2A-C).

Figure 2 The functional distribution of 1856 proteins significantly differentially expressed in mouse colon after treated with and without 0.8% and 3.2% EF mixed AIN-76 diet for 15 weeks.

The data showed that the protein expression patterns of mouse colon in three sample groups (Group 1; control group, Group 2; 0.8% EF and Group 3; 3.2% EF in diet) were the same as shown in Figure 3, albeit at different levels of expression. This indicates that EF may affect the level of protein expression, but not for cellular integrity. In support, Promtes et al.²⁰ reported that EF does not induce colon carcinogenesis in mouse's colon after treatment with 0.8% and 3.2% EF for 15

weeks. However, a pathological study of mice treated with 1.6% and 3.2% EF in diet for 24 weeks displayed a mild grading on gut-associated lymphoid tissue (GALT) of small and large intestine¹¹. Considerably, long-term treatment of EF more than 15 weeks should be considered for toxicity. The possibility of the adverse effect might be due to chronic consumption of high dietary fiber that may provoke inflammation in the large intestine²¹.

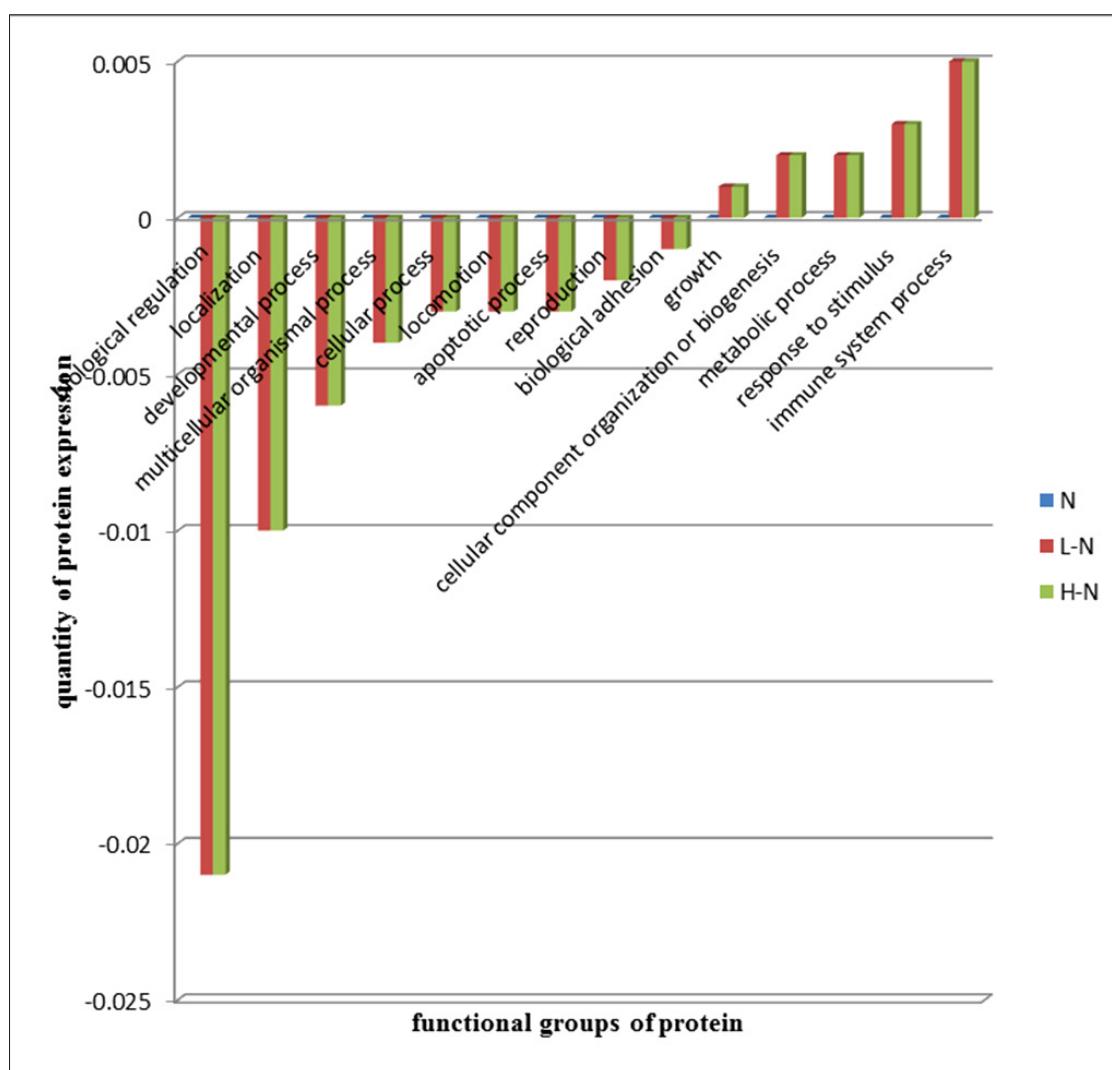
Figure 3 The proteins expression in mouse colon treated with and without 0.8% and 3.2% EF mixed AIN-76 diet for 15 weeks.

neg : Negative control group

0.8% EF : Group of mice received AIN-76 containing 0.8% EF diets

3.2% EF : Group of mice received AIN-76 containing 3.2% EF diets

The differences of protein expression between control and EF- treated mice were further examined. When compared with the control group, the EF-treated mice (0.8% and 3.2%) showed either increasing or decreasing of protein expression. The PANTHER showed that proteins involved in immune system process, response to stimulus and metabolic process were dramatically increased (Fig. 4 and Table 1). On the other hand, the proteins involved in biological regulation, localization and developmental process were reduced (Fig. 4 and Table 2).


It is possible that the induction of some proteins playing role in immune system process, response to stimulus and metabolic process might be due to the activation of biotransformation and antioxidant enzymes, such as phospholipid hydroperoxide glutathione peroxidase (PHGPx). It has been reported that PHGPx reduces product of lipid peroxidation and suppresses cell apoptosis. Moreover, PHGPx appears to activate a defense mechanism in order to reduce pro-inflammatory stimuli which is in line with the finding that NLRC5, a probable regulator of the NF-KB, was increased after EF treatment²². Conversely, the reduction of some proteins that function in biological

regulation, localization and developmental process was observed. However, no pathological defect has been reported in the same group of mice treated with EF²⁰. Thus, this suggested that reduction of these proteins might not contribute to typical cellular functions. Moreover, although the different levels of protein expression in mouse colon after EF treatment were not similar to control group, no alteration of proteins involved in colon's oncogenesis was detected.

The consumption of EF (0.8 and 3.2% in diet) did not alter protein expression pattern in mice within 15 weeks. Furthermore, the long-term use of EF at high dose should be avoided as the previous study illustrated its adverse effect on kidney function in mice¹¹.

Acknowledgements

This research was financially supported by the National Research Council of Thailand for Graduate student. The laboratory facilities were supported by the Proteomics Research Laboratory, National Centre for Genetic Engineering and Biotechnology (BIOTEC). The specimen was provided by Promtes's study. We thank Dr. Mehraj Ahmad for editing the manuscript.

Figure 4 The change of proteins expression in mouse colon treated with and without 0.8% and 3.2% EF mixed AIN-76 diet for 15 weeks.

N : Negative control group

L-N : Quantity of protein in (0.8% EF group – negative control)

H-N : Quantity of protein in (3.2% EF group – negative control)

Table 1 Name and quantity of some upregulated proteins expression in mouse colon detected after mice treated with 0.8% and 3.2% EF mixed AIN-76 diet for 15 weeks.

Uniprot ID	Gene Name	Gene Symbol	PANTHER Protein Class	Quantity of Protein Expression (ng/200 µl)		
				Control	0.8%EF group	3.2%EF group
C3VPR6	Protein NLRC5	Nlrc5	transcription cofactor nucleic acid binding	0	9.486	9.993
O09039	SH2B adapter protein 3	Sh2b3	-	0	8.336	8.498
P63017	Heat shock cognate 71 kDa protein	Hspa8	Hsp70 family chaperone	0	0	9.276
P70375	Coagulation factor VII	F7	peptide hormone receptor serine protease protease inhibitor	0	8.258	8.911
Q60847	Collagen alpha-1(XII) chain	Col12a1	transporter receptor	0	9.504	9.328
Q8BQC3	Immunoglobulin superfamily DCC subclass member 3	Igdcc3	immunoglobulin receptor superfamily protein phosphatase immunoglobulin superfamily cell adhesion molecule	0	0	10.382
Q91XR9	Phospholipid hydroperoxide glutathione peroxidase, nuclear	Gpx4	peroxidase	0	0	9.735
Q9CW0	Rho guanine nucleotide exchange factor 25	Arhgef25	signaling molecule guanyl-nucleotide exchange factor	0	0	9.850
Q9CYL5	Golgi-associated plant pathogenesis- related protein 1	Glipr2	defense/immunity protein	0	0	8.123
Q9D3W5	Leucine-rich repeat-containing protein 71	Lrrc71	transcription cofactor nucleic acid binding	0	6.883	7.095

Table 2 Name and quantity of some down regulated proteins expression in mouse colon detected after mice treated with 0.8% and 3.2% EF mixed AIN-76 diet for 15 weeks.

Uniprot ID	Gene Name	Gene Symbol	PANTHER Protein Class	Quantity of Protein Expression (ng/200 µl)		
				Control	0.8%EF group	3.2%EF group
A2AAJ9	Obscurin	Obscn	immunoglobulin receptor superfamily protein phosphatase immunoglobulin superfamily cell adhesion molecule	6.024	6.626	0
A2AD83	FERM domain-containing protein 7	Frmnd7	guanyl-nucleotide exchange factor	5.468	6.839	0
G3X9R0	MCG68164	Cycl1	structural protein	7.099	8.573	7.772
O70624	Myocilin	Myoc	structural protein	9.356	0	0
O88487	Cytoplasmic dynein 1 intermediate chain 2	Dynci12	microtubule family cytoskeletal protein	4.154	4.385	0
P04627	Serine/threonine-protein kinase A-Raf	Araf	non-receptor serine/threonine protein kinase	9.781	9.903	0
P05213	Tubulin alpha-1B chain	Tubalb	tubulin	5.108	6.184	0
P06332	T-cell surface glycoprotein CD4	Cd4	immunoglobulin receptor superfamily	6.471	6.782	0
P08553	Neurofilament medium polypeptide	Nefm	structural protein	10.398	0	0
P11679	Keratin, type II cytoskeletal 8	Krt8	structural protein	10.587	10.421	9.739
P13020	Gelsolin	Gsn	intermediate filament	8.677	7.893	7.153
P13412	Tropomodulin I, fast skeletal muscle	Tnni2	non-motor actin binding protein	6.808	7.387	6.919
P28481	Collagen alpha-1(II) chain	Col2al	transporter	9.110	8.652	0
Q8C310	Roundabout homolog 4	Robo4	surfactant receptor	7.661	8.664	0
			extracellular matrix structural protein			
			antibacterial response protein			
			immunoglobulin superfamily cell adhesion molecule			

References

1. Srivastava V, Negi AS, Kumar JK, *et al.* Plant-based anticancer molecules: a chemical and biological profile of some important leads. *Bio Org Med Chem.* 2005; 13(21): 5892-908.
2. Mitchell SA, Ahmad MH. A Review of Medicinal Plant Research at the University of the West Indies, Jamaica, 1948–2001. *West Indian Med J.* 2006; 55(4): 243.
3. Roumy V, Garcia-Pizango G, Gutierrez-Choquevilca AL *et al.* Amazonian plants from Peru used by Quechua and Mestizo to treat malaria with evaluation of their activity. *J Ethno Pharmacol.* 2007; 112(3): 482-9.
4. Kawaree R. Chemical component variation cytotoxicity, antioxidant and stability of volatile oil from Thai medicinal plants [M.S. Thesis in Pharmaceutical Sciences]. Chiang Mai: Chiang Mai University; 2007.
5. Chanwitheesuk A, Teerawutgulrag A, Rakariyathan N. Screening of antioxidant activity and antioxidant compounds of some edible plants of Thailand. *Food Chem.* 2005; 92(3): 491-7.
6. García MD, Sáenz MT, Gómez MA *et al.* Topical anti-inflammatory activity of phytosterols isolated from *Eryngium foetidum* on chronic and acute inflammation models. *Phytother Res* 1999; 13(1): 78-80.
7. Wilkins MR, Sanchez J-C, Gooley AA, *et al.* Progress with proteome projects: Why all proteins expressed by a genome should be identified and how to do it. *Biotechnol Genet Eng Rev* 1996; 13(1): 19-50.
8. Alvarez-Chaver P, Otero-Estevez O, Paez de la Cadena M, *et al.* Proteomics for discovery of candidate colorectal cancer biomarkers. *World J Gastroenterol.* 2014; 20(14): 3804-24.
9. Promtes K, Kupradinun P, Rungsipipat A, *et al.* Chemopreventive Effects of *Eryngium foetidum* L. Leaves on COX-2 Reduction in Mice Induced Colorectal Carcinogenesis. *Nutr Cancer.* 2016; 68(1): 144-53.
10. Promkum C, Butryee C, Tuntipopipat S, *et al.* Anticlastogenic Effect of *Eryngium foetidum* L. Assessed by Erythrocyte Micronucleus Assay. *Asian Pac J Cancer Prev.* 2012; 13(7): 3343-7.
11. Janwitthayanuchit K, Kupradinun P, Rungsipipat A, *et al.* A 24-Weeks Toxicity Study of *Eryngium foetidum* Linn. Leaves in Mice. *Toxicol Res* 2016; 32(3): 1-7.
12. Sung JJ, Lau JY, Young GP, *et al.* Asia Pacific consensus recommendations for colorectal cancer screening. *Gut.* 2008; 57(8): 1166-76.
13. Imsamran W, Chaiwerawattana A, Wiangnon S, *et al.* Cancer in Thailand Vol

VIII, 2010-2012. Bangkok: New Thammada Press (Thailand) Co.,Ltd.; 2015.

14. de Wijkerslooth TR, Bossuyt PM, Dekker E. Strategies in screening for colon carcinoma. *Neth J Med* 2011; 69: 112-9.

15. Walther A, Johnstone E, Swanton C, *et al.* Genetic prognostic and predictive markers in colorectal cancer. *Nature Rev Cancer* 2009; 9(7): 489-99.

16. Paemanee A, Wikan N, Roytrakul S, *et al.* Application of GelC-MS/MS to proteomic profiling of Chikungunya virus infection: Preparation of peptides for analysis. *Methods Mol Biol.* 2016; 1426: 179-93.

17. Blum H, Beier H, Gross HJ. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. *Electrophoresis*. 1987; 8(2): 93-9.

18. Saeed A, Sharov V, White J, *et al.* TM4: a free, open source system for microarray data management and analysis. *Biotechniques* 2003; 34(2): 374.

19. Mi H, Poudel S, Muruganujan A, *et al.* PANTHER version 10: expanded protein families and functions, and analysis tools. *Nucleic Acids Res* 2016; 44(D1): D336-42.

20. Promtes K. Effect of *Eryngium foetidum* Linn. on AOM/DSS- induced mouse colon tumors [M.S. Thesis in Science (Toxicology and Nutrition)]. Nakhon Pathom, Mahidol University; 2013.

21. Marlett JA, McBurney MI, Slavin JL. Position of the American Dietetic Association. *J Am Diet Assoc* 2002; 102(7): 993-1000.

22. Banning A, Brigelius-Flohé R. NF-kappaB, Nrf2, and HO-1 interplay in redox-regulated VCAM-1 expression. *Antioxid Redox Signal* 2005; 7(7-8): 889-99.