

The Accumulation of Heavy Metals (Pb and Cd) of the Plant Family Zingiberaceae at Srinakarin Dam, Kanchanaburi Province

Puangpak Promrungsri and Warangkana Srichamnong*

Institute of Nutrition, Mahidol University

Abstract

Indigenous plants and herbs have been consumed by local people in Thailand for past decades. The use of these plants beside taste and aroma for the dish, it is also used for its medicinal properties. In addition, the native plants are inexpensive and readily available, so most of the users are not aware of some toxin that could present such as phytotoxin and heavy metals. Heavy metals including lead (Pb) and Cadmium (Cd) can be occurred naturally or from external contamination. The accumulation of heavy metal can be found at any part of the plants such as leaf, root and stem. The aim of the study was to examine the level of heavy metal in *Zingiber cassumunar* Roxb., *Alpinia malaccensis* and *Zingiber citriodorum* which cultivated in the Royal initiative of Her Royal Highness Princess Maha Chakri Sirindhorn, Kanchanaburi Province, Thailand where forest expose to minimum human activities leading less contaminated from fertilizers and pesticides. Heavy metals content were analyzed by Inductively coupled plasma (ICP). The results indicated that the content of Pb in *Z. cassumunar* Roxb., *A. laccensis* and *Z. citriodorum* were $0.074 \pm 0.012 \text{ mg.kg}^{-1}$, $0.025 \pm 0.001 \text{ mg.kg}^{-1}$ and $0.127 \pm 0.01 \text{ mg.kg}^{-1}$ respectively. Considering Cd concentration, *Z. citriodorum* had the highest concentration ($0.057 \pm 0.00 \text{ mg.kg}^{-1}$) followed by *Z. cassumunar* Roxb ($0.043 \pm 0.00 \text{ mg.kg}^{-1}$), and *A. laccensis* ($0.041 \pm 0.02 \text{ mg.kg}^{-1}$). However, the presence of those heavy metals were below Maximum Permitted Level ($\text{Pb} \leq 1 \text{ mg.kg}^{-1}$, $\text{Cd} \leq 0.3 \text{ mg.kg}^{-1}$) indicating that those roots plants were safe to consume. It can be seen that, even the root plants are belong to same family, they accumulates heavy metal differently. This could be due to the thickness of the plant's cell wall and the location of plant habitat. From the results, the content of both Pb and Cd in *Z. cassumunar* Roxb., *A. malaccensis* and *Z. citriodorum* were considered as in low level, though they grow in reserved area. It is indicated that there are accumulation of heavy metal which occur naturally in nature. Thus, they are safe for consumption.

Keywords: *Alpinia malaccensis*, Cadmium, Lead, Zingiberaceae family, *Zingiber cassumunar* Roxb, *Zingiber citriodorum*

***Corresponding author:**

Dr. Warangkana Srichamnong

Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand

E-mail: warangkana.sri@mahidol.ac.th

การสะสมของโลหะหนัก (ตะกั่ว และแคนเดเมียม) ของพืชตระกูล Zingiberaceae ในพื้นที่ป่าอุ่นศรีนคินทร์ จังหวัดกาญจนบุรี

พวงพักตร์ พรหมรังสี และ วรangkana ศรีจำนงค์*

สถาบันโภชนาการ มหาวิทยาลัยมหิดล

บทคัดย่อ

ทศวรรษที่ผ่านมาพืชพื้นเมืองและสมุนไพรได้รับความนิยมในการนำมาบริโภคโดยคนในท้องถิ่นในประเทศไทย พืชเหล่านี้มีรสชาติและกลิ่นหอมเหมาะสมสำหรับนำมาปรุงอาหาร และใช้เป็นสมุนไพร นอกจากนี้พืชพื้นเมืองมีราคาไม่แพงและสามารถหาได้ง่ายในท้องถิ่น ทำให้มีการใช้พืชสมุนไพรเหล่านี้อย่างกว้างขวาง โดยผู้ใช้ไม่ได้ตระหนักรึพิทีจากจะได้รับจากพืช เช่น สารพิษและโลหะหนัก เช่น ตะกั่ว (Pb) และแคนเดเมียม (Cd) เป็นต้น ซึ่งสามารถเกิดขึ้นตามธรรมชาติหรือจากการปนเปื้อนในสิ่งแวดล้อม พืชสามารถสะสมโลหะหนักไว้ในส่วนต่างๆ ของต้นได้ เช่น ใน ราก และ ลำต้น วัตถุประสงค์ของการศึกษานี้คือจะศึกษาปริมาณของโลหะหนักในไฟล (Zingiber cassumunar Roxb.) ข่าป่า (Alpinia malaccensis) และกระชายพราวน (Zingiber citriodorum) ซึ่งเป็นพืชที่ปลูกในโครงการพระราชดำริขอสมเด็จพระเทพรัตนราชสุดาฯ สยามบรมราชกุมารี จังหวัดกาญจนบุรี ซึ่งเป็นพื้นที่ป่าอนุรักษ์ที่ไม่ถูกรบกวนจากมนุษย์หรือการกระทำของมนุษย์ เช่น การใช้ปุ๋ยและยาฆ่าแมลง โดยวิเคราะห์โลหะหนักด้วย Inductively coupled plasma (ICP) ผลการวิจัยพบว่าปริมาณของตะกั่วในไฟล ข่าป่า และกระชายพราวนเท่ากัน $0.074 \pm 0.012 \text{ mg.kg}^{-1}$, $0.025 \pm 0.001 \text{ mg.kg}^{-1}$ และ $0.127 \pm 0.01 \text{ mg.kg}^{-1}$ ตามลำดับ ในขณะที่การสะสมของแคนเดเมียมในกระชายพราวนมีความเข้มข้นสูงสุด ($0.057 \pm 0.00 \text{ mg.kg}^{-1}$) ตามด้วยไฟล ($0.043 \pm 0.00 \text{ mg.kg}^{-1}$) และ ข่าป่า ($0.041 \pm 0.02 \text{ mg.kg}^{-1}$) ซึ่งปริมาณของโลหะหนักที่พบนั้นต่ำกว่าระดับสูงสุดที่อนุญาต ($\text{Pb} \leq 1 \text{ mg.kg}^{-1}$, $\text{Cd} \leq 0.3 \text{ mg.kg}^{-1}$) แสดงให้เห็นว่าพืชเหล่านี้มีความปลอดภัยในการบริโภค จะเห็นได้ว่าพืชตระกูลเดียวกันสามารถสะสมโลหะหนักได้แตกต่างกัน ซึ่งอาจเป็นเพราะความหลากหลายของพนังเซลล์ของพืช และพื้นที่เพาะปลูก จากผลการศึกษานี้ชี้ให้เห็นว่าทั้งตะกั่วและแคนเดเมียมในไฟล ข่า และกระชายพราวน มีปริมาณต่ำแม้ว่าจะเกิดในพื้นที่ธรรมชาติห่างไกลเมือง ซึ่งแสดงให้เห็นว่าเป็นการสะสมของโลหะหนักที่เกิดขึ้นตามธรรมชาติ แต่อย่างไรก็ตามยังมีความปลอดภัยในการบริโภค

คำสำคัญ: ข่าป่า แคนเดเมียม ตะกั่ว พืชตระกูลข่า ไฟล กระชายพราวน

*ผู้รับผิดชอบบทความ

ดร. วรangkana ศรีจำนงค์

สถาบันโภชนาการ มหาวิทยาลัยมหิดล จ. นครปฐม 73170 ประเทศไทย

E-mail: warangkana.sri@mahidol.ac.th

Introduction

Local people usually use indigenous plants as food and traditional medicines. Currently, the trend of herb and food remedies has been increasing. This is one of the factors that increase the utilization of wild plants. Fresh consumption is a popular choice of local plant usage. However, fresh consumption could cause health adverse effects from natural phytotoxins, pathogens contamination and heavy metal accumulation in the plants.

Recently studies have related the accumulation of heavy metals in several herbal remedies. Okem *et al.* (2014)¹ reported that in South African medicinal plant such as *Rapenea melanophloeos* and *Alepidea amatymbic* have been contaminated with many toxic elements including lead (Pb), arsenic (As) and cadmium (Cd).

Heavy metal such as Pb and Cd are naturally contaminated in environment or by human activities such as industrial and cultivation. Soil is the main source of heavy metal contamination followed by water. Plant absorbs foods and nutrients from soil by diffusion through the rhizosphere². This shows that the roots are the first part that contact with heavy metal and could accumulated heavy metal elements. The toxicity of heavy metal especially lead could cause renal dysfunction, nervous system disease and cross placenta to fetus³ and

cancer⁴. The chronic toxicity of cadmium is pulmonary diseases⁵. In addition, the IARC has classified cadmium as Group 1 carcinogens⁶.

Zingiber cassumunar Roxb. (Plai), *Alpinia malaccensis* (Khapa) and *Zingiber citriodorum* (Krachaipran) are local plants that can be found abundantly in Kanchanaburi Province, Thailand. These plants belong to the same family, Zingiberaceae, (roots herb). The application of plants included drinks, food or medicines. The studies have found that all three plants exhibit medicinal properties such as anti-inflammatory and anti-virus. Furthermore, *Z. cassumunar* Roxb. (Plai) is used for its antimicrobial activity⁷. *A. malaccensis* (Khapa) showed strong antioxidant activity in hepatotoxicity induced mice⁸.

Due to the good taste, aroma and health promoting function in Zingiberaceae family, it is still not sufficient to promote the usage of this plant family. Plant accumulates various compounds beside bioactive compounds such as phytotoxin and heavy metal. Therefore, before encourage the consumption of these plants, it is important to study the possible presence of phytotoxin or heavy metal in the plants. This is to ensure that safe consumption of plants and food security. The aim of this study was to study the presence of heavy metals including Pb and Cd in *Z. cassumunar* Roxb. (Plai), *A. malaccensis* (Khapa) and

Z. citriodorum (Krachaipran) in reserved area using ICP-OES-method.

Materials and Methods

Plants and chemicals

Z. cassumunar Roxb. (Plai), *A. malaccensis* (Khapa) and *Z. citriodorum* (Krachaipran) (Table 1) were collected from the Royal initiative of Her Royal Highness Princess Maha Chakri Sirindhorn, Kanchanaburi Province, Thailand in May 2014.

Chemicals and reagents

Concentrated nitric acid (MERCK, Germany), Perchloric (HPO_4) (MERCK, Germany), cadmium standard solution 1000 mg/L (BDH, Spectrosol, England) and lead standard solution 1,000 mg/L (Merck, Germany).

Samples preparation

Only the edible part of samples was analyzed. The brown outer part of Plai was removed and the yellow inner flesh was used for analysis which similarly to Khapa. While Krachaipran, the light brown root was cleaned and used as a whole for sample analysis (Table 1). The edible part of each sample was collected, washed twice with tap water and rinsed with DI water. After that

samples were freeze dried and blended to the powder.

Samples digestion

Approximately 0.5 g of dried samples were weighed and mixed with 5 mL of 65% HNO_3 (concentrated) and 1 mL of Perchloric (HPO_4) [5:1] in a teflon jar. Sample digestion was conducted at 100 °C, 9 h in hot air oven and cooled under the fume hood. Solution was filtered into volumetric flask and volume was adjusted to 25 ml with DI water. All sample solutions were run through Inductively Coupled Plasma Optical Emission spectrometry (ICP-OES) (PerkinElmerTM, optima 4200 DV, USA) with WinLab32TM software. Operational conditions used for determination are shown in Table 2.

Statistic analysis

Statistical analysis were performed in triplicate and data analyzed are mean \pm SD subjected to One-Way ANOVA by using SPSS 19 (Statistical Package for the Social Science), significant different at $p < 0.05$.

Table 1 The medicinal plants (Zingiberaceae family) used in this study

Plant (scientific name)	Local name	Part used
<i>Zingiber cassumunar</i> Roxb.	Plai (Cassumunar ginger, Bengal root)	Rhizome
<i>Alpinia malaccensis</i>	Khapa (Galanga)	Rhizome
<i>Zingiber citriodorum</i>	Krachaipran	Rhizome

(Faculty of pharmacy , Mahidol University, 2015; Agrofolio, 2015; Institute of Nutrition, Mahidol University, 2011)

Table 2 Operational parameters for determination of Pb and Cd by ICP-OES

Parameter	ICP-OES
Radio-frequency power (W)	1,400
Plasma gas flow rate (L/min)	15.0
Auxiliary gas flow rate (L/min)	0.2
Nebulizer gas flow rate (L/min)	0.8
Observation view	Axial
Analyte	
Pb	220.353
Cd	228.802

Operational parameters used in this experiment were shown in Table 2. Plasma and auxiliary flow rate were kept constant at 15.0 and 0.2 L/min respectively. In addition, Pb and Cd were observed at 220.353 and 228.802.

Results and discussion

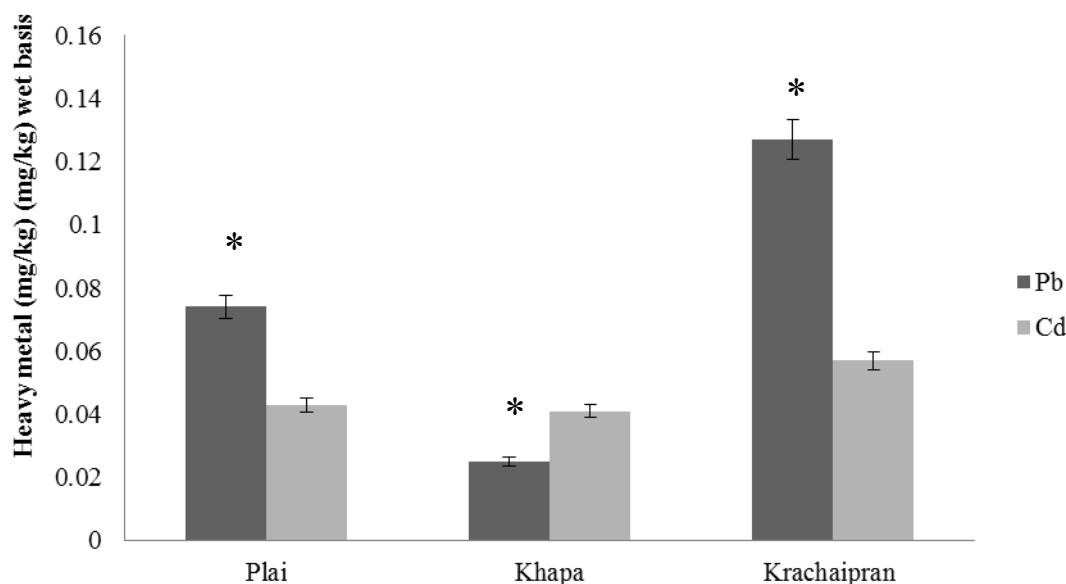
It is widely accepted that a great deal about the accumulation of heavy metals are from the human⁹. Therefore, the area that is reserved and away from human activity is desirable for this study. Hence, the Royal initiative of Her Royal Highness Princess Maha Chakri Sirindhorn, is selected. It is also the conservative area with no contaminated from fertilizer and pesticide area. The samples are Zingiberaceae family that is rhizomes herb (Table 1).

Root herbal has been used for a long time and can contaminated with varieties of metal depending on plant species, collecting site and bio-accumulation¹⁰. The result of this study showed that the edible part contain heavy metal.

The highest level of Pb was detected in *Z. citriodorum* (0.127 ± 0.01 mg/kg) followed by *Z. cassumunar* Roxb. (0.074 ± 0.012 mg/kg) and the lowest was *A. malaccensis* (0.025 ± 0.001 mg/kg) (Figure 1).

Pb that found in three plants are significantly different ($p < 0.05$). Cecchi *et al.*¹¹ reported that Pb normally accumulated in top soil (about 8 inch from the surface) and decreases for deeper soil layer. Therefore, root plants that stay on soil can contain Pb in this part.

Although all three plants in this study are in the same family, their abilities to accumulated Pb are different which


depends on various factors such as soil pH¹², surface of root, immature of plant and the thickness of cell wall at root because metal diffused through cell wall and stored in vacuole¹³.

This study showed that the accumulation of lead in all three plants are significantly different ($p < 0.05$). The highest accumulation is Krachaipran followed by the Plai and Khapa, respectively. However, the accumulation of cadmium in all three plants is no different.

Regarding Cd content, *Z. cassumunar* Roxb., *A. malaccensis* and *Z. citriodorum* were, 0.043 ± 0.00 mg.kg⁻¹, 0.041 ± 0.02 mg.kg⁻¹ and 0.057 ± 0.00 mg.kg⁻¹, respectively (Figure 1). This finding is agreed with the finding to Cd in the rhizome of ginger, galangal, black galingale which are belong to Zingiberaceae family, the average is found 0.3 mg/kg at Nakhon Pathom Province¹⁴. Rhizome is the primary part of plant that contact with heavy metal. It is positioned on the ground which mineral and heavy metal are presences. In addition, the transportation of mineral and element is conducted through the root. Hence, this part is likely to have heavy metal accumulation¹⁵. Ginger rhizome which belong to the same family of plant samples contain similarly in high Pb concentration¹⁶.

Normally, the uptake of Cd in plant is flow through cell wall of root similar to Pb. After that, Cd are transported to different parts of the plant by xylem and

move to grain by phloem^{17,18}. Generally, Cd can be found in any parts of the plants. However, in this study, Cd was detected in rhizome in small quantity.

Figure 1 The content of Pb and Cd (mg/kg) wet basis in Plai (*Zingiber cassumunar* Roxb.), Khapa(*Alpinia malaccensis*) and Krachaipran (*Zingiber citriodorum*) edible part analysed by ICP-OES

Moreover, the accumulation of Cd are varied depends on species of plant or the expression of Zinc-regulated transporter Iron-regulated transporter protein (ZIP) and Heavy Metal ATPase 4 (HMA4). Those are the transporter regulation of Cd¹⁹. In addition, high levels of Pb and Cd can cause plant toxicity, growth retardation and affect the expression of the plants genotype²⁰. The level of heavy metals in this study was considered to be safe to consume in moderate level (Thai FDA, 1986)²¹. According to FDA regulation, the concentration of Pb less than 1 mg.kg⁻¹⁽²¹⁾ is

safe. There is no specified limits of Cd in food but the standard heavy metal contamination in traditional medicine is limited to 0.3 mg/kg²². The limits of Cd in food of FAO/WHO is defined in the PTWI (Provisional Tolerable Weekly Intake).

Conclusion

This study concluded that *Z. cassumunar* Roxb. (Plai), *A. malaccensis* (Khapa) and *Z. citriodorum* (Krachaipran) from Royal initiative of Her Royal Highness Princess Maha Chakri Sirindhorn, Kanchanaburi Province, Thailand, contain

safe level of heavy metal accumulation for consume. However, the higher intake of these plants as traditional medicine will cause acute toxicity because the accumulation of heavy metals in the body. It depends on the characteristics of the plants, the edible part can accumulate heavy metals in high level. In addition, soil is a major source of heavy metals contamination. Therefore, growing location and human factors should be carefully observed to acquire safe food.

References

1. Okem A, Southway C, Stirk WA, *et al.* Heavy metal contamination in South African medicinal plants: A cause for concern. *SAfr J Bot* 2014; 93: 125-30.
2. Robinson D. Roots and resource fluxes in plants and communities in plant root growth. an ecological perspective. In: Atkinson D, editors. The British Ecological Society No 10. London: Blackwell Scientific, 1991: 103-30.
3. Tong SV, Schirnding YE, Prapamontol T. Environmental lead exposure: a public problem of global dimension. *Bull World health organ* 2000; 78: 1068-77.
4. Reilly C. Metal contamination of food, 2nd ed. London: Elsevier applied science, 1991.
5. Friberg L, Piscator M, Norberg G, *et al.* Cadmium in the environment, 2nd ed. Boca Raton (FL): CRC Press, 1974.
6. IARC. Monograph Beryllium, Cadmium, Mercury, and Exposures in the Glass Manufacturing Industry. The International Agency for Research on Cancer 1993; 58.
7. Tg-Kamazeri TSA, Samah OA, Taherc A, *et al.* Antimicrobial activity and essential oils of Curcuma aeruginosa, Curcuma mangga, and Zingiber cassumunar from Malaysia. *Asian Pac J Trop* 2012; 202-9.
8. Sethi S, Prakash O, Pant AK. Hepato-protective and antioxidant activity of Alpinia malaccensis Roscoe Rhizome. *Int J Pharm Pharm Sci* 2014; 7(2): 220-4.
9. Deshpande SS. Toxic metal, Radio-nuclide, and Food Packaging Contaminations. In: Fennema OR, editors. *Handbook of Food Toxicology*. New York: Marcel Dekker, 2002: 783-807.
10. Jyoti B, Nair S, Kakkar P. Heavy metal accumulation in medicinal plants collected from environmentally different sites. *Biomed Environ Sci* 2008; 21: 319-24.
11. Cecchi M, Dumat C, Alric A, *et al.* Multi-metal contamination of a calcic cambisol by fallout from a lead-

recycling plant. *Geoderma* 2008; 144(1-2): 287-29.

12. US.ATSDR. Toxicological profile for Lead: Agency for Toxic Substances and Disease Registry 2007, Available from: <http://www.atsdr.cdc.gov/toxprofiles/tp13.pdf>. accessed Jul 13, 2015.

13. Fahr M, Laplaze L, Bendaou N, *et al.* Effect of lead on root growth. *Front Plant Sci* 2013; 4: 1-7.

14. ชุดที่มา ลิ้มมทาวกิริศ์, ชัวซชัย แพชนัด และ จุรีย์ เจริญชีรบูรณ์. การหาปริมาณโลหะหนักในเหง้าหรือรากของพืชสมุนไพรไทยในวงศ์ Zingiberaceae โดยใช้เทคนิคอินดักทีฟลี คับเป็นล ผลลัพธ์-แมสส์ สเปกโตรเมทริ (ไอซีพี-เอ็มเอส) [Determination of Heavy Metals in Rhizome or Root of Thai Herbal Plants in Zingiberaceae using Inductively Coupled Plasma – Mass Spectrometry (ICP-MS)]: รายงานการวิจัย. นครปฐม: สถาบันวิจัยและพัฒนา มหาวิทยาลัยศิลปากร, 2553.

15. Lynch JM, Whipps JM. Substrate flow in the rhizosphere. *Plant and Soil* 1990; 129: 1-10.

16. Gupta S, Pandotra P, Gupta AP, *et al.* Volatile (As and Hg) and non-volatile (Pb and Cd) toxic heavy metals analysis in rhizome of Zingiber officinale collected from different locations of North Western Himalayas by Atomic Absorption Spectroscop. *Food Chem Toxicol* 2010; 48: 2966-71.

17. Sallt DE, Smith RD, Raskin I. Phytoremediation. *Annu Rev Plant Physiol Plant Mol Biol* 1998; 49: 643-68.

18. Fujimaki S, Suzui N, Ishioka NS, *et al.* Tracing Cadmium from Culture to Spikelet: Noninvasive Imaging and Quantitative Characterization of Absorption, Transport, and Accumulation of Cadmium in an Intact Rice Plant. *Plant Physiology* 2010; 152: 1796-806.

19. Rascio N, Navari-Izzo F. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? *Plant Science* 2011; 180: 169-81.

20. Zeng F, Mao Y, Cheng W, *et al.* Genotypic and environmental variation in chromium, cadmium and lead concentrations in rice. *Environ Pollut* 2008; 153: 309-14.

21. Thai FDA. Notification of the Ministry of Health Apartment No. 98 Standard foods containing contaminated 1986, Available from: http://iodinethailand.fda.moph.go.th/food_54/law/data/announ_moph/P98.pdf. accessed Jul 13, 2015.

22. Thai FDA. Declaration for employee of the Food and Drug Administration

Company. The criteria for determining the registered Thai Herbal Pharmacopoeia. 2004, Available from: http://drug.fda.moph.go.th/zone_law/ files. accessed Jul 13, 2015.