

Research Article

Mining Agricultural Soils for Bacteria Antagonistic to Plant Pathogens

Dolrudee Boonyapisit¹, Tananya Nuanjohn¹, Apiradee Siangsuepchart², and Juangjun Jumpathon^{1*}

¹Faculty of Agriculture, Natural Resources and Environment and Center of Excellent in Research for Agricultural Biotechnology, Naresuan University, Phitsanulok, 65000, Thailand

²Department of Agro-Industrial Biotechnology, Maejo University Phrae Campus, Phrae, 54140, Thailand

*Corresponding author: juangjunj@nu.ac.th

(Received: July 8, 2020; Revised: July 25, 2020; Accept: August 31)

Abstract

Microbial biological control agents have been isolated from numerous substrates, but the reservoir of potential useful organisms has not been evaluated in soils that are exposed to herbicides during cropping practices. Therefore, we screened bacteria from soils from under field crops that had been routinely sprayed with herbicides for their ability to reduce the *in vitro* growth of two plant pathogens. Simple dual plate and paper disc diffusion assays were used to identify potential biocontrol agents. Among 115 bacterial isolates, 8 isolates showed antifungal activity against *Rhizoctonia solani* 1406 and 6 isolates had >50% inhibition. The most suppressive isolate was M59 (68% inhibition). From the 16S rRNA gene sequence, M59 had 100% identity to *Pseudomonas aeruginosa* strain JCM 5962^T. Results from antibacterial screening against *Xanthomonas axonopodis* pv. *citri* (Xac) revealed that isolate M93 has the potential to produce antibacterial compounds that can inhibit growth of the citrus canker pathogen *in vitro*. From a nucleotide BLAST search of the 16S rRNA gene sequence, M93 had 99.9% identity with *Bacillus subtilis* strain IAM 12118^T. Further research is necessary to identify candidate compounds and their antimicrobial efficacy in greenhouse trials.

Keywords: Antimicrobial activity, Plant disease, Herbicide-sprayed soil, *Pseudomonas*, *Bacillus*

Introduction

Soil bacteria have a great impact in agricultural environments and plant production. In agricultural applications, biocontrol agents are often isolated from bulk soil, rhizosphere soil and plant tissues (Hallmann et al., 1997; Eichorst et al., 2007; Majeed et al., 2015). Conventional methods used for screening biologically active substances include the dual plate, agar well diffusion and paper disc diffusion assays (Sugita et al., 1998; Lertcanawanichakul & Sawangnop, 2008; Abeysinghe, 2009). From these approaches, bacterial strains of interest can be identified using the 16S rRNA gene region and their metabolites examined in detail. By way of an example, many *Bacillus* and *Pseudomonas* taxa have been shown to produce diverse classes of antimicrobial compounds and this has led to their use as biocontrol agents (Santoyo et al., 2012; Caulier et al., 2019).

Herbicides are routinely applied in modern broad-acre cropping in the world (Meena et al., 2020). It is often concluded that application of herbicide only has a minor and/or temporary impact on soil biota (Rose et al., 2016). However, organophosphate herbicides can have detrimental effects on the diversity of soil microbes (Usman et al., 2017). Whether herbicide-treated soils contain an untapped reservoir of useful organisms has so far not been studied in any detail. The aim of this study was to screen for antimicrobial activity of soil bacteria against *Rhizoctonia solani* 1406, a common fungal pathogen of horticultural and field crops. The most suppressive bacterial isolate was then assessed for *in vitro* activity against the bacterial pathogen *Xanthomonas axonopodis* pv. *citri*, the cause of citrus canker.

Materials and Methods

Isolation of bacteria from herbicide-sprayed soil

Ten farmer's paddy and fallow fields were randomly chosen and sampled in the wet season in Kamphaeng Phet, Chainat and Phichit provinces during June-August, 2016. The fields had a long history of applied glyphosate and/or paraquat herbicides. Within one rai, three soil samples (0-15 cm depth) were taken by hand and bulked into one mixed sample (10 grams). Two grams of each soil sample were used to isolate bacterial colonies and the 16S rRNA gene was amplified as described by Jumpathong & Masin (2018). The sequence data were deposited with accession numbers in GenBank.

Screening for antifungal activity

A simple dual plate assay was used to determine extent of antifungal activity against the soil-borne pathogens *Rhizoctonia solani* 1406 and *Sclerotium rolfsii* 2357 isolated from root rot in chili. The bacterial isolates were streaked on one side of the potato dextrose agar (PDA) medium and incubated at 30°C for 24 hours. After that, 6 mm-mycelial agar discs of each

fungal pathogen were placed on the other side of the Petri plates and they were incubated at 30°C for a further 3-5 days. The experiment was performed in triplicate.

Screening for antibacterial activity

Xanthomonas axonopodis pv. *citri* (*Xac*) isolated from kaffir lime (strain number DOABC856), lime (strain number DOABC956) and pomelo (strain number DOABC992) were obtained from the Plant Protection Research and Development Office, Department of Agriculture in Thailand.

One loop of *Bacillus* sp. M93 was scraped from nutrient agar and inoculated into nutrient broth before incubating on a shaking incubator at 150 rpm at room temperature (30±2 °C) for 24 hours. Then, 10% of bacterial seed culture was transferred to modified Wickerhams Antibiotic Test Medium (Jumpathong et al., 2019) and incubated in the same condition for 5 days.

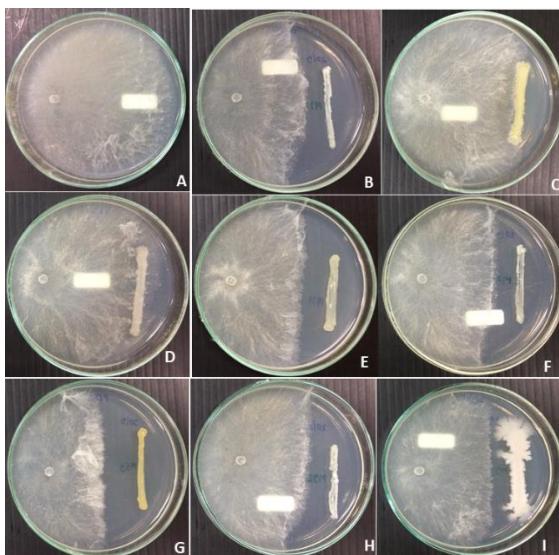
To prepare the crude extract, 3 liters of cell-free supernatant were separated by centrifugation at 8,000 rpm for 20 minutes. The bacterial biomass was dried in a hot air chamber at 50 °C for 48 hours. Cell-free supernatant and dry biomass were extracted separately using ethyl acetate for three times. The ethyl acetate layer was evaporated using a rotary evaporator at 40°C under reduced pressure. Crude extracts were dried under N₂ for further study.

Twenty microliters of each crude extract (100 mg/ml) was loaded on each paper disc (diameter 6 mm), dried in a safety cabinet and then applied onto plates pre-inoculated with *Xac*. There were three replicates of each treatment. After 24-48 hours incubation, the inhibitory zones were measured and compared to the inhibition zone with chloramphenicol (20 µg/disc).

Statistical analysis

Fungal and bacterial inhibition data were analyzed statistically using SPSS 17.0 software package (Trial License).

Results and Discussion


Bacterial isolates

One hundred and fifteen bacterial isolates were obtained from herbicide-sprayed soils and screened for antifungal activity against *Rhizoctonia solani* 1406 and *Sclerotium rolfsii* 2357, and antibacterial activity against *Xanthomonas axonopodis* pv. *citri* (*Xac*).

Antifungal activity

Of the 115 bacterial isolates screened using the dual plate assay, 8 showed inhibitory activities against *Rhizoctonia solani* 1406. A nucleotide BLAST search against the GenBank database revealed that these 8 isolates belonged to *Bacillus*, *Brevibacillus*, *Lysinibacillus* and

Pseudomonas (Table 1). *Pseudomonas* sp. M59 had the highest inhibition percentage (68.1%) against mycelial growth of *R. solani* 1406 (Figure 1). The 16S rRNA gene sequence of M59 showed 100% similarity to *Pseudomonas aeruginosa* strain JCM 5962^T (accession number MK796437) in the BLAST search. In a parallel study, supernatant from liquid cultures of M59 had weak antifungal activity against *S. rolfsii* 2357 and the supernatant did not inhibit growth of *R. solani* (Jumpathong & Masin, 2018). This indicates that extracellular lytic enzymes and other antifungal metabolites may be produced at very low levels in liquid culture in contrast to the agar challenge tests. This requires validation.

Figure 1 Mycelial inhibition of *Rhizoctonia solani* 1406 (left side of plates) by bacterial isolates (right side of plates) using dual culture assay. (A) Control: no bacteria, (B) *Brevibacillus* sp. M1, (C) *Bacillus* sp. M3, (D) *Lysinibacillus* sp. M4, (E) *Pseudomonas* sp. M14, (F) *Brevibacillus* sp. M44, (G) *Pseudomonas* sp. M59, (H) *Brevibacillus* sp. M92, and (I) *Bacillus* sp. M93

Strains of *Pseudomonas* have been reported to produce a range of compounds such as siderophores, hydrogen cyanide, antimicrobials and extracellular lytic enzymes that are important in inducing systemic resistance and other responses (Etmian & Harighi, 2018; Kotasthane et al., 2017; Uzair et al., 2018). Many studies have demonstrated the use of *Pseudomonas* as biocontrol agents against root rot pathogens in green house trials (Durairaj et al., 2018; Kalantari et al., 2018; Al-Sman et al., 2019). Of the Bacillales, isolates M93 (*Bacillus* sp.) and M1 (*Brevibacillus* sp.) were nearly as effective as M59 in inhibiting mycelial growth of *R. solani* 1406 (Table 1). Members of the Bacillales such as *B. subtilis* (Todorova & Kozhuharova, 2010), *B. amyloliquefaciens* (Nastro et al., 2013), *B. thuringiensis* (Djenane et al., 2017) and *Brevibacillus laterosporus* (Saikia et al., 2011) exhibited antimicrobial activity against various bacteria and fungi.

Antibacterial activity

Bacillus sp. M93 was selected to screen against *Xanthomonas axonopodis* pv. *citri* (Xac) in preference to *Pseudomonas* M59 because *Bacillus* produces endospores and is easier to apply in the field. Also, some *Pseudomonas* strains can cause opportunistic infections in humans. The nucleotide BLAST search of the 16S rRNA gene sequence of M93 exhibited 99.00 % identity with *Bacillus subtilis* strain IAM 12118.

Table 1 Identity of 16S rRNA gene sequence of bacterial strains with antifungal activity (inhibition percentage) against *R. solani*

Bacterial isolate [§]	Location [‡]	Identity of 16S rRNA gene sequence, % [¶]	GenBank Accession Number	Antifungal Activity (Inhibition percentage)*
M1	KP	<i>Brevibacillus laterosporus</i> strain NBRC 15654, 99.33%	NR112727	53.7 ± 0.38 ^{bc}
M3	KP	<i>Bacillus paramycooides</i> strain MCCC 1A04098, 98.04%	NR157734	42.8 ± 1.03 ^d
M4	KP	<i>Lysinibacillus fusiformis</i> strain DSM 2898, 99.60%	NR042072	29.2 ± 0.23 ^e
M14	PHS	<i>Pseudomonas aeruginosa</i> strain JCM 5962, 100%	MK796437	53.7 ± 0.38 ^{bc}
M44	KP	<i>Brevibacillus laterosporus</i> strain NBRC 15654, 99.45%	NR112727	50.6 ± 0.68 ^c
M59	KP	<i>Pseudomonas aeruginosa</i> strain JCM 5962, 100%	MK796437	68.1 ± 1.91 ^a
M92	KP	<i>Brevibacillus laterosporus</i> strain NBRC 15654, 99.45%	NR112727	51.4 ± 0.39 ^c
M93	KP	<i>Bacillus subtilis</i> strain IAM 12118, 99.93%	MK267098	55.3 ± 1.81 ^b

[§]Accession number for bacterial strains: M1(MK554648), M3(MK554656), M4(MK554657), M14(MK554652), M44(MK554650), M59(MK554655), M92(MK554651), M93(MK554667)

[‡]Location: KP= Kamphaeng Phet Province, PHS= Phitsanulok Province

[¶]Homology searches using nucleotide BLAST software (NCBI)

*Different small letters in each column indicate significant differences from Duncan's multiple range test (P<0.05, n= 3).

The ethyl acetate crude extract from M93 biomass did not present any zone of inhibition when tested with Xac. By contrast, cell free supernatant extracts strongly inhibited Xac with the greatest effect against Xac from limes (Table 2). The inhibition zones were less than in the chloramphenicol treatments. This indicated that antibacterial molecules produced

and secreted in the supernatant. However, its secretion was relied on the growth phase, cultivation medium, and temperature (Saggese et al., 2018).

As many *Bacillus* species produce antibiotic compounds and resistant endospores (Piggot & Hilbert, 2004), they are often selected as biological control agents to control plant pathogens (Shafi et al., 2017). Also, some *Bacillus* species can induce systematic resistance in agricultural crops (Abriouel et al., 2011; Ashwini & Srividya, 2014). *Bacillus subtilis* produces antifungal agents such as iturin A and iturin A2 (Besson et al., 1978; Ye et al., 2012), mycosubtilin (Peypoux et al., 1976) and bacillomycin L (Besson et al., 1977). Fengycin synthesis in *B. subtilis* NCD-2 inhibited growth of *Rhizoctonia solani*, a soil-borne pathogen in cotton (Guo et al., 2013). Low cost commercial formulations have been manufactured from *B. subtilis* CPA-8 (Yáñez-Mendizábal et al., 2012a; Yáñez-Mendizábal et al., 2012b). Notably, *B. subtilis* also exhibited antimicrobial activity against various fungi and bacteria (Wang et al., 2015). Antagonistic activity tests of *B. subtilis* against *Xanthomonas campestris* pv. *glycines* revealed that strain 210 had potential biocontrol effect against bacterial pustule in soybean (Salerno & Sagardoy, 2003). Kwon & Kim (2014) isolated a cyclic lipopeptide from *B. subtilis* JW-1 culture broth that was able to control bacterial wilt caused by *Ralstonia solanacearum*. *Bacillus subtilis* CQBS03 isolated from citrus leaf surface was studied the antibacterial protein against citrus canker caused by *Xanthomonas axonopodis* pv. *citri* (Xac) (Li et al., 2008). Islam et al. (2019) reported that the endophyte *B. thuringiensis* may be used as a biocontrol agent or source of antibacterial compounds to reduce citrus canker.

Table 2 *In vitro* antibacterial test of crude extracts from bacterial strain M93 culture against *Xanthomonas axonopodis* pv. *citri* (Xac) from three citrus hosts

Treatment	Inhibition zone (mm)*		
	Xac (pomelo)	Xac (kaffir lime)	Xac (lime)
Chloramphenicol	30.33±0.58Aa	30.67±1.15Aa	29.67±2.52Aa
Crude extract			
Biomass	0.00±0.00c	0.00±0.00c	0.00±0.00c
Supernatant	17.67±3.21Bb	24.33±0.58Ab	22.00±1.73Ab

Notes * Values are presented as mean ± standard deviation.

Different lowercase letters in each column indicate significant differences from Duncan's multiple range test ($P<0.05$, $n= 3$).

Different capital letters in each row indicate significant differences from Duncan's multiple range test ($P< 0.05$, $n= 3$).

Pseudomonas are ubiquitous in agricultural soils and in the rhizosphere of crop plants (Andersen et al., 2001; Weller, 2007). *Pseudomonads* are an important group of bacteria that have potential for use in the control of *R. solani* 1406 and other plant pathogens (Schreiter et

al., 2018). Furthermore, *P. aeruginosa* produces phenazines, toxin compounds that can be employed to kill nematodes (Gallagher and Manoil, 2001; Cezairliyan et al., 2013).

Conclusion

The present study suggests that agricultural soils affected by herbicides can harbor a useful source of bacteria with potential biocontrol attributes. Eight out of 115 bacterial isolates partially inhibited the mycelial growth of *Rhizoctonia solani* 1406 *in vitro*. This preliminary research indicates that comparative studies should be undertaken comparing soils with different chemical application histories. The efficacy of the most inhibitory isolates should now be evaluated *in vivo*. The present result also revealed the efficiency of the antibacterial metabolites produced by *Bacillus* sp. M93 as a good potential agent for controlling *Xanthomonas axonopodis* pv. *citri* (Xac). The strain may be used as a promising biocontrol agent in the future.

Acknowledgements

This work was performed with financial support from the Naresuan University Government budgeting grant number R2562B044. Professor Bernard Dell edited the manuscript.

References

Abeyasinghe, S. (2009). Effect of combined use of *Bacillus subtilis* CA32 and *Trichoderma harzianum* RU01 on biological control of *Rhizoctonia satani* on *Solanum melongena* and *Capsicum annuum*. *Plant Pathology Journal*, 8, 9-16.

Abriouel, H., Franz, C.M.A.P., Omar, N.B. & Galvez, A. (2011). Diversity and applications of *Bacillus* bacteriocins. *FEMS Microbiology Reviews*, 35(1), 201–232.

Al-Sman, M.K., Abo-Elyousr, K.A., Eraky, A. & El-Zawahry, A. (2019). Efficiency of *Pseudomonas* spp.-based formulation for controlling root rot disease of black cumin under greenhouse and field conditions. *Archives of Phytopathology and Plant Protection*, 52(19-20), 1313-1325.

Andersen, S., Jørgensen, C. & Jacobsen, C. (2001). Development and utilization of a medium to isolate phenanthrene-degrading *Pseudomonas* spp. *Applied microbiology and biotechnology*, 55(1), 112-116.

Ashwini, N., & Srividya, S. (2014). Potentiality of *Bacillus subtilis* as biocontrol agent for management of anthracnose disease of chilli caused by *Colletotrichum gloeosporioides* OGC1. *3 Biotech*, 4(2), 127-136.

Besson, F., Peypoux, F., Michel, G., & Delcambe, L. (1977). Structure de la bacillomycine L, antibiotique de *Bacillus subtilis*. *European Journal of Biochemistry*, 77, 61–67.

Besson, F., Peypoux, F., Michel, G. & Delcambe, L. (1978). Identification of antibiotics of iturin group in various strains of *Bacillus subtilis*. *The Journal of antibiotics*, 31(4), 284-288.

Caulier, S., Nannan, C., Gillis, A., Licciardi, F., Bragard, C., & Mahillon, J. (2019). Overview of the antimicrobial compounds produced by members of the *Bacillus subtilis* group. *Frontiers in microbiology*, 10, 302.

Cezairliyan, B., Vinayavekhin, N., Grenfell-Lee, D., Yuen, G.J., Saghatelian, A., & Ausubel, F. M. (2013). Identification of *Pseudomonas aeruginosa* phenazines that kill *Caenorhabditis elegans*. *PLoS pathogens*, 9(1), 1-9.

Djenane, Z., Nateche, F., Amziane, M., Gomis-Cebolla, J., El-Aichar, F., Khorf, H. & Ferré, J. (2017). Assessment of the antimicrobial activity & the entomocidal potential of *Bacillus thuringiensis* isolates from Algeria. *Toxins*, 9(4), 139.

Durairaj, K., Velmurugan, P., Park, J.H., Chang, W.S., Park, Y.J., Senthilkumar, P. & Oh, B.T. (2018). An investigation of biocontrol activity *Pseudomonas* and *Bacillus* strains against *Panax ginseng* root rot fungal phytopathogens. *Biological Control*, 125, 138-146.

Eichorst, S.A., Breznak, J.A., & Schmidt, T.M. (2007). Isolation and characterization of soil bacteria that define *Terriglobus* gen. nov., in the phylum Acidobacteria. *Applied and Environmental Microbiology*, 73(8), 2708-2717.

Etminani, F., & Harighi, B. (2018). Isolation and identification of endophytic bacteria with plant growth promoting activity and biocontrol potential from wild pistachio trees. *The Plant Pathology Journal*, 34(3), 208-217.

Gallagher, L.A., & Manoil, C. (2001). *Pseudomonas aeruginosa* PAO1 kills *Caenorhabditis elegans* by cyanide poisoning. *Journal of Bacteriology*, 183(21), 6207-6214.

Guo, Q., Dong, W., Li, S., Lu, W., Wang, P., Zhang, X., & Ma, P. (2013). Fengycin produced by *Bacillus subtilis* NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. *Microbiological Research*, 169(7-8), 533-540.

Hallmann, J., A. Quadt-Hallmann, W.F. Mahaffee, & J.W. Kloepper. (1997). Bacterial endophytes in agricultural crops. *Canadian Journal of Microbiology*, 43(10), 895-914.

Islam, M.N., Ali, M.S., Choi, S.J., Hyun, J.W., & Baek, K.H. (2019). Biocontrol of citrus canker disease caused by *Xanthomonas citri* subsp. *citri* using an endophytic *Bacillus thuringiensis*. *The Plant Pathology Journal*, 35(5), 486-497.

Jumpathong, J., & Masin, K. (2018). Screening for biological activities of bacteria isolated from agricultural soil in central area. *Science and Technology Nakhon Sawan Rajabhat University Journal*, 10(11), 59-74. (in Thai)

Jumpathong, J., Nuengchamnong, N., Masin, K., Nakaew, N., & Suphrom, N. (2019). Thin layer chromatography- bioautography assay for antibacterial compounds from *Streptomyces* sp. TBRC 8912, a newly isolated actinomycin D producer. *Chiang Mai Journal of Science*, 46(5), 839-849.

Kalantari, S., Marefat, A., Naseri, B., & Hemmati, R. (2018). Improvement of bean yield and *Fusarium* root rot biocontrol using mixtures of *Bacillus*, *Pseudomonas* and *Rhizobium*. *Tropical Plant Pathology*, 43(6), 499-505.

Kotasthane, A.S., Agrawal, T., Zaidi, N.W., & Singh, U.S. (2017). Identification of siderophore producing and cynogenic fluorescent *Pseudomonas* and a simple confrontation assay to identify potential bio-control agent for collar rot of chickpea. *3 Biotech*, 7(2), 137.

Kwon, J.W., & Kim, S.D. (2014). Characterization of an antibiotic produced by *Bacillus subtilis* JW-1 that suppresses *Ralstonia solanacearum*. *Journal of Microbiology and Biotechnology*, 24(1), 13-18.

Lertcanawanichakul, M., & Sawangnop, S. (2008). A comparison of two methods used for measuring the antagonistic activity of *Bacillus* species. *Walailak Journal of Science and Technology (WJST)*, 5(2), 161-171.

Li, C., W. Zhongkang, & Guanjun, H. (2008). Evaluation of *Bacillus subtilis* strain CQBS03 against *Xanthomonas axonopodis* pv. *citri*. *Scientia Agricultura Sinica*, 41(8), 2537-2545.

Majeed, A., Abbasi, M.K., Hameed, S., Imran, A., & Rahim, N. (2015). Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. *Frontiers in Microbiology*, 6, 198.

Meena, R.S., Kumar, S., Datta, R., Lal, R., Vijayakumar, V., Brtnicky, M., & Pathan, S.I. (2020). Impact of agrochemicals on soil microbiota and management. A review. *Land*, 9(2), 34.

Nastro, R.A., Arguelles-Arias, A., Ongena, M., Di Costanzo, A., Trifugatti, M., Guida, M., & Fickers, P. (2013). Antimicrobial activity of *Bacillus amyloliquefaciens* ANT1 toward pathogenic bacteria and mold: effects on biofilm formation. *Probiotics and Antimicrobial Proteins*, 5(4), 252-258.

Peypoux, F., Michel, G. & Delcambe, L. (1976). Structure de la mycosubtiline, antibiotique isolé de *Bacillus subtilis*. *European Journal of Biochemistry*, 63, 391-398.

Piggot, P.J., & Hilbert, D.W. (2004). Sporulation of *Bacillus subtilis*. *Current opinion in microbiology*, 7(6), 579-586.

Rose, M.T., Cavagnaro, T.R., Scanlan, C.A., Rose, T.J., Vancov, T., Kimber, S., Kennedy, I.R., Kookana, R.S., & Van Zwieten, L. (2016). Impact of herbicides on soil biology and function. *Advances in Agronomy*, 136, 133-220.

Saikia, R., Gogoi, D.K., Mazumder, S., Yadav, A., Sarma, R.K., Bora, T.C., & Gogoi, B.K. (2011). *Brevibacillus laterosporus* strain BPM3, a potential biocontrol agent isolated from a natural hot water spring of Assam, India. *Microbiological Research*, 166(3), 216-225.

Salerno, C.M., & Sagardoy, M.A. (2003). Antagonistic activity by *Bacillus subtilis* against *Xanthomonas campestris* pv. *glycines* under controlled conditions. *Spanish Journal of Agricultural Research*, 1(2), 55-58.

Santoyo, G., Orozco-Mosqueda, M.D.C., & Govindappa, M. (2012). Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of *Bacillus* and *Pseudomonas*: a review. *Biocontrol Science and Technology*, 22(8), 855-872.

Schreiter, S., Babin, D., Smalla, K., & Grosch, R. (2018). Rhizosphere competence and biocontrol effect of *Pseudomonas* sp. RU47 independent from plant species and soil type at the field scale. *Frontiers in Microbiology*, 9, 97.

Shafi, J., Tian, H., & Mingshan, J. (2017). *Bacillus* species as versatile weapons for plant pathogens: a review. *Biotechnology & Biotechnological Equipment*, 31(3), 446-459.

Saggese, A., Culurciello, R., Casillo, A., Corsaro, M.M., Ricca, E., & Baccigalupi, L. (2018). A marine isolate of *Bacillus pumilus* secretes a pumilacidin active against *Staphylococcus aureus*. *Marine drugs*, 16(6), 180.

Sugita, H., Hirose, Y., Matsuo, N., & Deguchi, Y. (1998). Production of the antibacterial substance by *Bacillus* sp. strain NM 12, an intestinal bacterium of Japanese coastal fish. *Aquaculture*, 165(3-4), 269-280.

Todorova, S., & Kozhuharova, L. (2010). Characteristics and antimicrobial activity of *Bacillus subtilis* strains isolated from soil. *World Journal of Microbiology and Biotechnology*, 26(7), 1207-1216.

Usman, S., Kundiri, A., & Nzamouhe, M. (2017). Effects of organophosphate herbicides on biological organisms in soil medium-A Mini Review. *Journal of Ecology and Toxicology*, 1, 102.

Uzair, B., Kausar, R., Bano, S.A., Fatima, S., Badshah, M., Habiba, U., & Fasim, F. (2018). Isolation and molecular characterization of a model antagonistic *Pseudomonas aeruginosa* divulging *in vitro* plant growth promoting characteristics. *BioMed Research International*. <https://doi.org/10.1155/2018/ 6147380>

Wang, T., Liang, Y., Wu, M., Chen, Z., Lin, J., & Yang, L. (2015). Natural products from *Bacillus subtilis* with antimicrobial properties. *Chinese Journal of Chemical Engineering*, 23(4), 744-754.

Weller, D.M. (2007). *Pseudomonas* biocontrol agents of soilborne pathogens: looking back over 30 years. *Phytopathology*, 97(2), 250-256.

Yáñez Mendizábal, V., Viñas, I., Usall, J., Torres, R., Solsona, C., Abadias, M., & Teixidó, N. (2012a). Formulation development of the biocontrol agent *Bacillus subtilis* strain CPA-8 by spray-drying. *Journal of Applied Microbiology*, 112(5), 954-965.

Yáñez Mendizábal, V., Viñas, I., Usall, J., Torres, R., Solsona, C., Abadias, M., & Teixidó, N. (2012b). Production of the postharvest biocontrol agent *Bacillus subtilis* CPA-8 using low cost commercial products and by-products. *Biological Control*, 60(3), 280-289.

Ye, Y.F., Li, Q.Q., Gang, F., Yuan, G.Q., Miao, J.H., & Lin, W. (2012). Identification of antifungal substance (Iturin A 2) produced by *Bacillus subtilis* B47 and its effect on southern corn leaf blight. *Journal of Integrative Agriculture*, 11(1), 90-99.