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Genome-wide association study for udder health traits of Thai dairy
cattle using weighted single-step approach with random regression test-
day model
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ABSTRACT: Genome-wide association studies (GWAS) are a powerful tool to identify genomic regions and variants
associated with phenotypes. However, only limited mutual confirmation from different studies is available. The
objectives of this study were to identify genomic regions associated with udder health trait in Thai dairy cattle, and to
identify genes and pathways that may influence this trait. The studied data set contained 82,378 monthly test-day
somatic cell score (TD-SCS). A density of single nucleotide polymorphisms (SNPs) panel (BovineSNP50 BeadChip, Illumina
Inc., San Diego, CA, USA) was used for genotyping. A total of 41,930 SNPs from 632 animals that had both genotypes
and phenotypes were used for analysis. Effects of SNPs were estimated by a weighted single-step GWAS (WssGWAS),
which back-solved the genomic BLUP from single-step genomic best linear unbiased prediction (ssGBLUP) using single-
trait random regression test-day models. Genomic regions that explained 0.5 percent or more of the total genetic
variance were selected for further analyses of candidate genes. The main genomic regions associated with SCS were
located on chromosomes BTA 11, BTA 16 and BTA 21. Many genomic regions explained a small fraction of the genetic
variance, indicating polygenic inheritance of the studied trait. We compared the results with databases (NCBI, Genecards
and UniProt) and found 21 reported QTLs related to SCS. A large member of Interleukin superfamily (IL1A, IL1B, IL1F10,
IL36A, IL36B, IL36G and IL37) IL1 receptors (IL36RN and IL1RN) as well as other genes (MIA3, RCOR1, TRAF3, CDC42BPB,
EXOC3L4, TNFAIP2, PPP1R13B, TAF1A, TRNAT-UGU, TRNAC-GCA, HHIPL2 and NCK2) related to immunity significantly
influencing SCS were identified. The biological networks including the immunological pathway such as lymphocyte
activation are closely related to SCS. The candidate genes identified in this study can be used as target genes in studies
of gene expression.

Keywords: somatic cell score; Thai dairy cattle; random regression model; WssGWAS
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Tagden nmsanawesduuwadlesndnazdiehlilaundulsasuusnavanas Jaaztivanuansznuainaugydens
iAsugAaniAnainnislikandntiuuanas (Seegers et al, 2003) Suruwadleudndudnvusieuaudisfunaisg
(polygenic) Fsldsunansznuaniladonansens wavvansdu Jaudasduiinansenuiisndniessenisuanteantesdnune
(Snelling et al., 2013) MIUSUUTIAUNTIANITHALLATUINT WioufuNTARERNRLENITNRE 1 TNTUAINNTAIIANISAALIA
winunsniauls (Rupp and Boichard, 2003)

TunAlssER U SR AE ona 283 uw (genomic selection, GS) eﬁawmaﬁqmiﬁmﬁaﬂmm']mswauﬁ’uﬁ:ﬁiuu
(genomic estimated breeding values, GEBVs) ‘U@dﬁm’ilwiazﬁﬁﬁlﬁmﬂmsﬂimﬁuﬁuﬁqﬂﬁﬁiuu (genomic evaluation) 310
nslideyadlun Sawfudeyailulng wardeyanugussia (Meuwissen et al, 2001) ldnaeunfuiBnsinmsgu uazinesile
ﬁéwé’zgﬁw%%U‘L%‘Iumiﬂ%’wgq1/1'1ﬂﬁuqﬂssmaﬂﬂummﬁmmmﬁ’]L%‘aﬂ,umsﬁwmLmumsé’mLﬁammwﬁxuaﬂwmwszLwﬂ,u
290U Wy Ussinaanigonning wauian avsnwerandng Trduaud oeanside dfuaa usesuaud wesui wazuszine
aunuAiude (Silva et al, 2014) vadl lesananuimiegemndfiinnnaluladlulasesisd Tagnssuunain
u,mﬂGhamwaﬁuqﬂiimmaﬂiﬂumiwéffsmmmﬁwlé’ﬂ%’qazﬁi’wmummLLasﬁi’]mQﬂaqa&msiaLﬁaq (31n1MUNNTT 500 ABARTIHE
falud e 2533 \Hudzanm 50 aoaanstedaluilagty) annsnduungluuumeiugnssuveslauuuiasdaldiaus 2900
SNPs (Bovine3K Genotyping Beadchip, Illumina®) §i 777,000 SNPs (BovineHD Genotyping BeadChip, Illumina®) AIBUARY
vhasTunweslauy dadu msAnvauduiudidenleduilun (genome-wide association study, GWAS) Faneenism
Aruduiusszrisn iUl Use AT omeyaRugnTIn (W SNPs) MavisdluniuitTulndfaulaveasadnd (Hayes and
Goddard, 2010) Ingn15n52amANALUTUTIMTUgNITY viFouniiwesduuinufdueuuiluiifiduistesiliie
nsasuntasesiilulng Johansson et al, 2010) FanangiduasdunnsujuRdmsunisszysiunis SNPs Aeteeiu
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quantitative trait loci (QTL) #3e8ufiidnSnadidnfny (Zhang et al, 2016) WlorSouifisuiunagnsmsviunuil QTL LUy
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Fufuuwdy nmsfnwanuduiusieiluaddeldiuieuiiddgisludugmanismseaeuauulsusiudaaing (causal
variants) fifldvnaiisadnios warlunsimuaudnafidueuulundsdinsuusiudsanmaiiuauas (Hirschhomn and Daly,
2005) FalsFumssonsuesanevnsindueieslondnlunissey QTL werinamduevudluniintesiuillulnd waxd
mdilulifisazuendnuusBaiinaiiaemonls Wudnuuzguaimsiuy Tasmshusuiivinafduevuilun vio QTL

deidq q dnmsAnwenuduiusidenloduilualngldisnsuuuduneuderiidnisdrsimin(weishted single-step
genome-wide association, WssGWAS) fiviauslag Wang et al. (2012) 18uiinsiigaelinisussidiudvinaves SNPs 910

GEBV #ilsannnisviiuneidadunvulusioadludunaulfsdiifvign (single-step genomic best linear unbiased prediction,

q
= ¥

ssGBLUP) (Aguilar et al., 2010) lagldvayaillulvd doyadlulnl uazfiugusyiivesdnimieidomiauiulutunouien
Bnstlaunsaihluvssendldiulumaniianududou wu Winanisanasswuugu Idegraliuss@ninin lngianiznsiiueg

o o=

nugnssuilunvesanwasninsinilulndseilies (Kang et al, 2017) uaganunsaldlaiu SNPs NlianuwUsUTIulimingy &

' v
ddyﬂ

dsmaliifnanuwiugilunsusyanamaninaves SNPs 1By (Wang et al., 2012) Frudlovunadsyannsvesdn il
Tulnduagdlulndfvunmdn uazsinmsmuaudnuusilulndlne QTL Afdnswavuialuguds WssGWAS 91avialdingnis
GWAS wuudaLin Msfnwiaanfildldisnisddmivdnvusdfmuddymansvgialuladafliun Snvuednsins
L3gLAULe Saswanile g wazUsmanielulansns (Fragomeni et al,, 2014; Wang et al,, 2014) 8as1n15iaseyiAuln
LLasé’miWLLaﬂLﬂfaiuqﬂi (Howard et al, 2015) sadusznaulusaulusiiunaesiaus (Zhou et al, 2019) nsalusululaide
(Lernos et., 2016) dnwazanlulaido (Siva et al, 2017, 2019) Anwazmamsduiuglulanssns (Fragomeni et al,, 2014)
é“ﬂwmswmﬂ’ﬁﬁuﬁuﬁfluiﬂlﬁa (Irano et al., 2016; Melo et al., 2017) é’ﬂwmzﬁwL%@LLazmuwmﬂiaﬂquﬂi (Daniele et al., 2018)
TsAwnunsniay (Tiezzi et al., 2015) LLazmmﬁﬂuﬂﬁﬁiaé‘lﬂﬂlﬁa (Valente et al., 2016)

nsUsgliuAMaiugNIsusEAuUssmad msuan vazguamwnuuvedauulnglaaiunisiaglfluea Junaasunis
0ANBEKUVEY (random regression test-day model, RR-TDM) lagldtayaillulnduasdoyanususein @t wavams,
2563) uaviiiefinsnaNNaTsEWING RR-TOM WriuAssuuuTumeuiendauiendn single-step random regression test-day
model (SS-RR-TDM) lunsvuesvsiugnasuilus thasnduisfagyinlildnsviuefuduganniu feafianas uazdwmals
nsnweuduTuddeulsshudluniiusyavs amitau

[ 1 ' o w =

Foyausvnafidueuuiluniifeadesiudnvazgunmsinuuvesdszannsiaunlvelutiigiudfegedsdnin n1sfinw

kY

AsalifTngUszasdiiodunuinafdueuuiluniiiisrdesiudnuarguamsinu laun avuuueadlauniin (somatic cell

score, SCS) Tuuszannslaunlne uazldusnafdueuudlunildssymmBusaznalnnislivive1vesdunidn Swanednvue

SCS

= =
SN1IANEYI

oD

=

dayalulnd Wususzid uazdlulnd
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Joyanldlunisdnwassilidudeyawadlanfnluiunageu (test-day somatic cell count, TD-SCC, 1000wa4/43)
sedveilaudingluseunisliuuasusnildguinuiiegnnnisunensnsfidedeunmssmadunedoulu aawie
mMeszTueanideanila AengTusan AMANaNs karn1ARzIuAn S1uIU 132, 294, 219, 451 wag 245 sy aud1nu walul

ATIATLATIYNALLAT BITLATITY0IAUTENBUUIUN waziadlagu1fndnlul® (MilkoScan™, FOSS) ARBnanTeninaLfiou

I3

neAdnew 2536 fadeudiuian 2560 Nyrusliluszuupudeyalauuvesddnmalulag@inmnisudndadnd nsuuadng

wasanuuladanisteyaiiielidulunudeuladsieluilfie ongraengnasiusnagsening 20 G 48 Wwew Tuliuudiinliey
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5¥MI19 5 WA 305 Ju i’uwmaam%&uﬁﬂagﬁwdw 5 619 60 Juvdinaen U%umﬁwuﬂmwiazi’uagjiwdw 199 45 Alansu uyl
lausavinoslitayatuiunaasustgiioy 5 Juiin wasmvualilveyasglundun1sdnnisiieniu (contemporary groups)
oghatien 5 tuiin uenanilllaimunazdemaunenus wasdoyaiususy TRazgniudounduly 3 $101y mendenisdnnig
Yoyaaziidoya TD-SCC dmdumsanudiuau 82,378 Teyannulauu 13,737 1 sududeyaiuduse Rvedaiiisadesty
Tafilnanansiuau 32,743 f 1i9991ns1uau SCC Apud1afiaziinisuanuasuuuly (skewed distribution) Jagnudandu
pzluUlgadlauAnluiunngou (test-day somatic cell score, TD-SCS) aua@un1s TD-SCS=log2 (TD-SCC/100) + 3 (Ali and

Shook 1980) wielvideyaianumanganlun1siasen

Table 1 Number of animals and records used in this study

ltems Number of animals and records
Animals in pedigree 32,743
Animals with records 13,737
Test-day records 82,378
Genotyped animals 632
Bulls 142
Cows 490
SNP information 41,930

¥ =

tayailulndlaannnisnsiamdeyaninuunnsitamisiugnssuluseduiluudie Illumina BovineSNP50 BeadChip
(Ilumina Inc., San Diego, CA, USA) 7ivfiuniasdu 2 @$1uau 54,609 SNPs) n3e 11099u 3 (@51uau 53,218 SNPs) Inevisaes

a3 Tull SNPs Muilauriud i 50,908 SNPs lnadaya SNPs #ilfazaadriunisaiuauannin (quality control) Feiiansan

U

o '

# call rate > 0.9 dmsuits SNPs uaz3lundnd aufidadages (minor allele frequency, MAF) > 0.05 N39BNINELAA
Hardy-Weinberg (A uuansinassninsanudiiannndy uasanudfidunn) <0.15 nsnageuANTALEITENINgiButignvay
(parent-progeny conflict) uanannil SNP filimsusumimdeeglulaslulenmeaar laildgninuldlunisinses mendsan
nsmIUANANAN fideya SNPs Ailvded miunnsiinsiesd $1uu 41,930 SNPs 9ndnidy 632 f (Table 1) MsaruAu
AAM SNPs uazfogaiusiiunislaeldlusunas PREGSFO0 (Misztal, 2018) asdeavasyadoyaillifuansmuaziBon
13T Table 1

nsAasvidaya

1. nsiungANISHENRUSI LN (GEBV)

AduUsyansn1sanneyEduved GEBV (random regression coefficient of GEBV) wasdnudazddmsuusiasanuaeile

o '
o a

WU SRAUINMITIATIEITeIRUsENeUALUSUTIMaEAILUSUT I WeldlunsuseliuAnananiugtun Tneld

WnsuuuvTuRsuAgIINluwaTUNAFEUNISaNnBEL UL (SS-RR-TDM) Jwnsigvifiazanuaesie BLUPFIO software family

v

(Misztal et al,, 2018) §1 SS-RR-TDM ansnsaidieulviegluguvesiuningleiad:
y = X;b; +X;b, + Vh + Za + Wp + e, (1)
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Toed y iunnmesvestudin sCs Tufunaaey; by Wunninedvesdvinaiifuszuuissenauseiadonsiives T-
gananasn; b, Wunnneivesidilszavinisannesasil 184 Legendre polynomials (LPs) idausglunguiug-nguegd
aaom; h Wunnnesvesdvdnaduiilesnn ga--ifeunndey; a uay p iunnwesvesduuszavisnisonnesuuuduues LPs 7
Foutuneludvsnaiiosniugnssy uazdvinaiesandandennnns muddu; uar e unnmesvesdvinavean
AENALAADY LYISND X1, X5, V, Z uaz W {u incidence matrices HaonndostudvEnaiina g sy drvuves LPs daudu
AuUstusmvestiadonsd uaztadvdy Aduanainiulius (OIM) aufisimuslag Gengler wazaniy (1999) nsnwnasiild
LPs &sufi 2 (constant, linear, and quadratic) Fal@aniSeuidiaudsuiiuandieiu Tnefinnsanaindl log-likelihoods GR
ﬁqm A1 Akaike’s information criteria (AIC: Burnham and Anderson 2002) u,a:mwmmiﬂswmaamﬂmamLﬂé‘lauﬁ’wqm way
19 LPs drduifiriudmiudvEnanisannosuuunsilazuuugy

Fuvsvesdvsnavesanuamaadeugnauydlitawiniusasanslrusieanaududeuvedlung auydliamswa

wuvduinrdinszarguuuiniisneanadewindu 0 warlaswadmnunusysiusauvestuaanmua i dusadl

h] [I0hm 0 0 0]
al|_| 0 H®G, 0 0 |

Varp —| 0 0 1Q P, Ol 2)
el | o 0 0 162

Taefl Gg woz Py iluuming 3 x 3 anuuUsusiudanvesdulszaninisonnesdudmivdvdnaiiesaniugnssy
wagdninaidosainaninuindounns muadu, H idunindanuduiusmaiugnssuiidaudasannssuiues
ANUFUNUSIEnI19dn I lunus Used® (numerator relationship matrix, A ) fuAMud 1 us 193Uy (genomic-based
relationship matrices, G), I WWunsndiondnual (Identity matrix), @ vJu Kronecker product operation, O'ﬁtm Wuay
wUsUsIUT s U-ilounndeu uaz o3 HuenuulsuniumesrunaaAdeuy

Aunifuves H Srsndudmivaumssuuunauannsadoulddad

0
T(aG + BA2) ' — wAZ;)
Tagil A Aewnindarudiiusseninedniluiuduss Sidwiudninnd; A,y Wumedndauduiusseninednily

_ _ 0

H 1= A 1 + [ 3)
0

WugUseIRdmsudninitlulnd o, B, w wer T Julladudinimin a wex B luandiliiowdndestlym singularity Tnedia

Wiy 0.95 uag 0.05 MUa1AU (VanRaden, 2008) wn3nd G gnasnadumuisnisves VanRaden (2008) fisil:

ZDZ
G=— 22 4
232 pi(1-pi)’ @

e Z feownsndues SNPs fiuSuatmuaunsada 1ng AA, Aa uay aa A1 -1, 0, wag 1 muadu; D Aewnsng
LLm‘mmemmmmaﬁmﬂ’ﬂa%’m%’ummLmiﬂiqumaa SNPs (3uusn D = I); m Aesuiuiaieamuns SNPs way p; e
puASadaves SNPs 7 i

NAGNSIINASLAFNATSIMANENDIN SS-RR-TDM (mﬁmﬁxﬁmémmmaaLLUUfcjmm GEBV) aziluAuamumIniswas
fusTlundsarsryinduiiugiunsnded 305 u Feluriniswaiuslund 305 Sufstmuslfiludadovesrms nauiug
sevreTulsiundl 5 8¢ 305 aufiedurelag Jamrozik et al (1997)

2. msAnwanuduiudidoulodduilun (GWAS)
nsAnwanuduiusidealoduilusiinseilagld3dnsuuutune i ifinsaranimin(WssGWAS) Sninaves
SNPs 138 SNP effect (1) JufwaINaINNsEUILNNSILEA (teration) Adefufiasunelag Wang et al (2014) argganmunls

postGSf90 (Aguilar et al.,, 2014) lnglduuudnassdaduneriuiuildlunisussiiuesdusenauauwdsysiu lneaguuaa
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BOWAWIT postGSFO0 azuAaunsidsurnsnauiugilun (ag: GEBY d1miu SCS 91 305 Tuladie) filaA1uiaunaina
duUszAnsn1sannesuudNYed GEBY 103dniuiazdaain SS-RR-TOM Tuidudviznaves SNPs Aiiansanldrnuudsusiumied

Tuy (0%) sawiunuiiesuneliluauns:

ag] [ZDZ' ZD' ,

[u]‘ DZ’' D ]0“ (5)
dnSnavasiar SNPs launa1nn1swAgunIs:

u= DZ'G'a, (6)

dlo u Wunawesvedrinaves SNPs; ag \WunAmesues GEBVs wazdermunsy q lafunlSieunthiung,

TusoULINTRINTZUIUNTILEN ﬁ'm’mmmhﬂﬁauﬁgﬂﬂ%’uimaLwiaz SNPs fimuindu 2p;(1 — p;) waz D =T Tuns
dseudill fnsaduddisimiinuedng G Ssnsdidausauves SNPs Amaniilfasgnunuiidsanuulsusuiiintuats
dielviuinafidueiluniddvinagsterundsunumeaiugnssuesdnuaeiiulfidunung sty fudussdusen suves D
gnunueeiy Dy = W Tnefl u fedndnaves SNPs lunsvurumsusasaiewnth aantu Sviswaves SNPs adq
Tndldsunisiiasananadiimdnuesnd G auaunis (6) Aldsisnudnedu dmsuiesunelnsassenvostuneuntsu
gannsngldmusuneuan ‘Scenario 17 Tu Wang et al. (2012)

FMTUNTELINMTINTIEULIN ArsasmTndmiuusiay SNPs Sty 1 Faaneaanadn SNPs wavaaditnain
Wil (\wu GBLUP sﬁ'y’umamﬁsrsl,wummg'm) dmsunisvhanaiiely (seufl 2, seuil 3, wa) edasthwiin Wuenuudsusiu
yaausaz SNPs iruwalngldavinannmsunuiivaludadadivsaduldanmsiugneuntni uasaudsadaiiug (Wang et
al. 2012) lumsvheusavaSsandraiminues SNPs avhluldlunsadraunsng G viledurnidn GEBY lusl wazdszanaue
Svisnaves SNPs Snass

Tunisldaruns wwsnves WssGBLUP Wang et al. (2012) Wur1n31A13AUIAA1E 29U A SNPsaIn@NATS
dicts1)= ﬁ%t)Zpi(l - pi) %aé"wﬁﬂmﬂammiﬁm%’umiﬁﬂmmmmLLUiUs’JumMuqmimaq additive locus (Falconer
and Mackay, 1996) oenslsfinu Lourenco et al. (2017) wanslhifiuinisdldannsadngs conversence lunseltdnwadinas
AIUANMEEUIINIUMETEFT %38 polygenic trait dewniidniminananiuly dafunsaanion sps AdlunnsAnuads

1341438 non-linear A aufiosunelilag VanRaden (2008):

B,
df(g4qy- CTE@ )
Taofl CT \Judrnsiimuaunmsifoavuannisnssaisuuund; |ﬁ]-| Juaduysalvesdvdnaves SNP fiuszanale
& %U SNPs 71 j uaz sd (3) ) ﬁaf-ﬁ%ﬁmmummgmma%’mma%maqﬁw%wasum SNPs fiUszanails nsehaimingaeds non-
linear A vilsin1sAIautg convergence lad LLawﬁm?{mmﬁqm% (Garcia et al,, 2018) 1lpsa1nnsUasuLUasAan
dhmiingeangnirialnsesiianlutissewing 5 wasiardimdmwes CT tnslunsAnwadsildsinundn CT wihty 1.125 aa
Legarra et al. (2018) waz VanRaden (2008)
3. mMsuunUsIuRdueuLdlun (Genomic region identification)
LﬁaqmﬂmimmmﬁLmvﬁa@i’wmeﬁagjuuﬁugmmm SNPs 1fign envdamaliiAnnssuniunienisussdiuais
ALl g 18n5dIusEnINes U SNPs LLasﬁﬂuaué’miﬁﬁﬁiuimﬂﬁmqﬂ (Wang et al,, 2014) wannil SNPs ﬁagjs‘f%mﬂa

fnfuanailen Linkage disequilibrium (LD) figesie quantitative trait locus (QTL) tieafulunss SNPs Afiannumuiuyugs

(High-density SNPs panel) Fsagdawarilsianiues QTL agnszaelusia SNP visvualuuTnadisien LD g (Fan et al, 2011)
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9’1”;&1Lmﬁ'yﬁLam‘mﬁ’lmﬁﬂuuﬁlﬂﬁ%wﬁuﬁ’wum 1-Mb (non-overlapping window) @ a1 udadiuvesainuulsUsiums
wugnssuluusazuTniivszneumetheedluy s 1 Mb azgnduauarldifiessyuinumdueuudluy Wesniin
WRraung1nsle SNPs 1iea9 lun1sfiansansauan SNPs fianzan wazsiuausevlunszurunisaug eiinsmageum
Anadsvesusamidlunilivudeutuannssuiunsaugidesiuag SNPs fiwansnaifu (10, 15, 20, 30 way 40 SNPs)
AT WssGWAS Tnefiansanainmaaanugnéesiiuriada (realized accuracies) vosrnmuanusalunisyiuneg (predictive
ability, Cor(GEBV, TBV)) wazA10afd (bias, TBV = b0 + bl x GEBV) 493 GEBV (Legarra et al., 2008; Garcia et al., 2018) lag
ANNLADESURINTUTENUBEWATBY SNPs (Wang et al., 2014) Tneideadu lumsanuniissaaulafiayldnadnsainnisiue
adsdl 2 freuFumiivinedlundifsiuiu SNP flegindusgiwaiies 20 SNP inslianuaasalumsmamsainniigaua
A inflation tiesfian uazifinmuafiosvesnsUszanadviwaves SNP aniign

YovazvosnuulsUTumaiugnssufiesunelasuinaminieiluniiuseneudie SNPs Adeldesiudl 1 auiiosuie
Tae Wang et al (2014) i Aruaadleail

20 o
var(a;) varXi-,zjlj

2 2
Oa Oa

’ (8)

'
o ' =

Tned a; AoAmnsiugnIsuvasusnamiallund i fivszneuldsae SNP legfndustnwiailias 20 SNPs, 02 fie

Y
v

AU TUT UM NI TIYaVIR, Z; Fionniapsyas SNP fusummuewdsadal j dmiudniiomun uas §; Aedvinaves
SNP 9 j eluusnamieadlund i (Zhang et al., 2010)

etz uunuinaddueuuiluiifienudidyfedesiudnvasiléfne awdonuinamiamedludiliiudeu
1 (Non-overlapping windows) fifis1uau 20 SNPs %"ammma%mﬂmmufdiﬂsaumaﬂ’uﬁqﬂﬁmﬁwmlé’%’aaaz 0.5 %38
11NN MULNUINTANYIVBY Fragomeni et al. (2014), Irano et al. (2016), Lemos et al. (2016), Oliveira et al. (2017), Silva
et al. (2017), Lee et al,, (2019), Zhou et al. (2019) uaz Oliveira et al. (2019) & sfia15u U IT NI NI A Inuzd MU
fnguszasdvosnsAnwiadeil LAZUAAIFULUUNT M Manhattan plot ¥8anmLUsUTIuMeRugNIsuveseiosmsneiedune
Tneusnamduevuilunmaniiagld enuplot 5.2 (Williams and Kelley, 2019)
4. msszyBuiiiieatas (Gene annotation)

nsszyBuilegniglunsiaruinafiduevuilunildidenuds qaiduduiargnduanveatiining wlfiadosdonn
Map Viewer wa3giutaya NCBI feyausznau UMD 3.1 iduusniiénsds
(https://www.ncbi.nlm.nih.gov/projects/mapview/map_search.cgi?taxid=9913&build=104.0) waz sTuﬁ‘szqiﬁ"ﬁ?wm OH]
nynaoukunsdvdulagligudoyaienas uazgudoyaasnsusdu (NCBI-https: /Awww.ncbinlm.nih.gov/, Genecards-

https://www.genecards.org/ tagUniprot-https:/ /www.uniProt.org/) iielins Ui minvesduiiieiteswadnuag AN

5. N5AATIZNLATETBLAZNAINNI9T21INE19898U (Gene network and pathway analysis)
sedevesduiiszyldaziunliifierhnmsiiesgiinietevedulaslduvadoyaseulall GeneMania (Warde-Farley
et al, 2010) daumsinszsivihiiuaznalnimadrinevesduiidvinasednvasidnuazsiiunsneldgudeyaasisus
DAVID (The Database for Annotation, Visualization and Integrated Discovery (Huang et al., 2009a, 2009b) Wenn1skUang
1084 Gene ontology (Go) 3Usznaudie 3 NTzUINNTT AR NT2UIUNIINITIAMN (Biological processes) B3 UsENOUTDT

\wad (Cellular components) LLawﬁwﬁizﬁdmaqa (Molecular function)


https://www.ncbi.nlm.nih.gov/projects/mapview/map_search.cgi?taxid=9913&build=104.0
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nMssuunUumBueuuiTun waznnsssyduitieades
nsfnweadutusidenleduilunifinisdaimnuuuduneuder (WssGBLUP) Tuadsil vilfsranansansiaaon
warszyUTnumSueuuluy warliuinamdueuudlunildssymiwmimeduiiieadesiudnvazvosaunmdi fe
A1 SCS Tagldura SNP anuvuwiuunasludssrnstaudlnedmsuynlasiulausianie nsmuuudndulivaniiosazainy
wUsUTIMTUgNTINvRATaLNg SNPs TiesurelasfiuudueuudluniliviudeutusazUszneusae 20 SNP A
Figure 1 uazlfaguuinamduouuilunfiesuisdnduvesmuulsusnumsiugnssuiiunniian (Fesas 0.5 viounnin) uag
Juilddquisadostudnvueidanuilily Table 2 usnafiduevuilunainsoeduisamnuuUsUsumstugnssildunnis
0.6% penslsimuuinamisuouudlundninaesunglddesndt 0.5% (Figure 1) waruinaananinssangluiiesiug Faued
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Figure 1 Manhattan plots of the additive genetic variance explained by windows of 20 adjacent SNPs for SCS in Thai
dairy cattle
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Table 2 Summary of the windows that explained the most of genetic variance for somatic cell score in Thai dairy

cattle, with a list of annotated genes in the proximity of each window

Window Regions Var Chr Start, bp Stop (bp)  Genes”

(nonoverlapping) (%)Y

27928-27947 0.6 16 26671488 27692042  TRNAT-UGU, HHIPL2, TAF1A, MIA3, AIDA, BROX,
FAM1778B, DISP1, LOC100336644, TLR5, SUSD4,
CCDC185, CAPN8

20925-20944 0.6 11 45736640 46794995  NCK2, LOC101903923, LOC786288, TTL, POLR1B,
CHCHD5, LOC107132936, SLC20A1, LOC101903687,
NT5DC4, CKAP2L, IL1A, LOC107132933,
LOC101904177, IL1B, IL37, LOC104973371, IL36G,
IL36A, IL36B, IL36RN, IL1F10, IL1RN, PSD4, PAX8

34820-34839 0.5 21 68751694 70050042  LOC100847464, TRNAI-AAU, LOC787175, TRNAC-
GCA, ZNF839, CINP, LOC101902499, TECPRZ,
ANKRD9, RCOR1, LOC783220, TRAF3, AMN,
CDC42BPB, LOC101902932, LOC104975451,
EXOC3L4, LOC615559, TNFAIP2, LOC100301250,
LOC107131330, LOC509029, LOC100139514, EIF5,
MARK3, CKB, TRMT61A, BAG5, APOPT1, KLC1,
XRCC3, ZFYVE21, PPP1R13B

YGenomic variance absorbed by 20-SNP moving windows obtained using single-step genomic-BLUP
2/Any genes with start and stop positions within the window were considered. Genes linked to SCS are in bold font while novel candidate

genes are bold and underlined

Ushamdueuudluniiisades warddnsnagsio SCS cﬁzaaaﬂfuu 3 lasluley lawn BTA 16 (10 26,671,488 fi
27,692,042 bp) BTA 11 (311 45,736,640 9 46,794,995 bp uaw BTA 21 (310 68,751,694 1 70,050,042 bp) Fanuinil 52 8

' '
% o a A

peiiseanu wag 19 Bundalalamuuaunuinmihnndeau Eunvuduaieg LOC) (Figure 1 wag Table 2) S1uiuguninuly

1Y [

UshamdueuuiluumanideiSouiisunadng ugudeya (NCBI, Genecards waz UniProt) wuind 21 Judifisreauin
Aendeafiu SCS

wadlwaninluuulsznoufeeadiboywinuy uaswadlussuugdduiu (Alhussien and Dang, 2018) Tagnsfinwn
pdetl wuddimsssyBuiistninieidestugiduiu msdniau wienafviuuwsadluinafidueSuniiisadesiudnuae
SCS Sumani Idun Melanoma Inhibitory Activity Family, Member 3 (MIA3) FavihmiiieuauesdUszneunsusnisad
wansoenlull el el uunensanisandewuatise (Bergstralh et al., 2007, Rossetti et al., 2016) gulungqy Interleukin
superfamily L% 1 Interleukin 1, alpha (IL1A), interleukin 1, beta (IL1B), interleukin 1 family, member 10 (IL1F10),
interleukin 36, alpha (IL36A), interleukin 36, beta (IL36B), Interleukin 36, gamma (IL36G) wag interleukin 37 (IL37) wag

ssulalalay IL1 @y interleukin 1 receptor antagonist (ILIRN) W&y interleukin 36 receptor antagonist (IL36RN) 9NATII
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wuvlasllen BTA 11 Bumanifunumardglumaneuaussesgifuiusiingzas uaenszuiun1sn1sdnau (Benveniste,
2014; Queen et al,, 2019) REST corepressor 1 (RCOR1) iAgdastunsimihilunisidsuudasweseadsinidonsadull
loruiind warn1smavaussron1sonLEU (Yao et al., 2015; Xiong et al., 2020) TNF receptor-associated factor 3 (TRAF3) &
unumddglunalnniedrinervesmsairiagiauiuluwadifeyfaves funvesla (Song et al, 2017) CDCA2 binding
protein kinase beta (CDC4 2BPB), exocyst complex component 3-like 4 (EXOC3L4) wag tumor necrosis factor, alpha-
induced protein 2 (TNFAIP2) fldauifisadestunisvudsnieluead wazeuniniiinsnsanuluusnad lunfiieadestu
sruugiduiuuiniialulauileaalndvaauin (Porat-Shliom et al., 2013; de Klerk et al., 2018) protein phosphatase
1, regulatory subunit 138 (PPP1R13B) iudanszdunsyiamuves ps3 dadummunasluszuuniduiu wagnszuaunisme
vouaaa (Mitchell et al,, 2002; Liu et al., 2005) waz TATA box binding protein (TBP)-associated factor, RNA polymerase
|, A (TAF1A) \uBuiimueunisiindiuauveusad uasfidaufeitesiuuzifasum (Bergstralh et al, 2007, Rossetti et al.,
2016)

uenni lunguuszansfifinundsmmanududy q ffanudelesiu SCS winvhdiaudiiudifstestuliinm
wavesrUsznavtulunsinusy %) 9NAIDE LB transfer RNA threonine (anticodon UGU) (TRNAT-UGU), transfer RNA
cysteine (anticodon GCA) (TRNAC-GCA), HHIP-like 2 (HHIPL2) wagNCK adaptor protein 2 (NCK2) (Venturini et al., 2014
da Costa Barros et al., 2018; Johnston et al,, 2018; Oliveira et al., 2018)

Mnuamiteadsinuiituiiisvinadednuaraunmiuns iy 21 Su Eusmunlu Table 2) St hdnusd
Hudnunedieuaudedunansiu lnedduasiufinumilousumenudu 4 deunthilulaulsadlifiAedosiudnume
5Cs aionaiiornussmnstaunvesinefienuiofestulsyanslauloadlnyd egslsimuduuisiianuunnsianta

ULEINUSIU 9 N9TLlD991NANNLANA1YDIUTEYINTN AN B NS Nasan1Tuanieanvesdu (Oliveira et al,, 2019) 310

)
v '

nsfnwadaiideditaiiesain Bovine UMD 3.1 fimsnensiaitugnssuainlafenudideimesadeinnuunndisaniluuves
lauuleadla endaegratu nMsunsnuagymely (insertion/deletion: INDEL) wasa1duLua IAnuwansnafiuga 48,537,190 Lud
n3luuiiaviun (Koks et al, 2013) ?fﬂawdqmalﬁlﬁmmwmmmLﬂﬁauﬁm%’umﬁmﬁwﬁsﬁagaﬁiumLﬁamﬁ%mm Vet
038U warnasvyBuiidenlodld Fiduismsmiums warssyBurngutoyailuiesssrinslulssmalyeLes
N93ATZRATaYIBLAZNAlANITIIN1VB B

MTIATIEILATETI8Y38U (network analysis) :nT1edeBuiimuaudnuurgunmduslaglilusunsy GeneMania
A Figure 2 wuiiiia3etnefuiinanseansautudiam 29 Ju (26.97%) wagduiiufduiussmiudiuiu 141 919ms Bu
wandidnluapiendestunalansirinessuunfduuuesnsuiaead wu A) nalnnsirineifedestunemaism c3
(C3 complement pathway) silauiAgadesiunsiiviunueiiFe B) lassaadsfeuiiAsaiunsvudsansiudorinead
WUU Exocytosis (Exocyst complex) C) natnn13823me1 I-kappaB kinase/NF-kappaB signaling fifiaad gadestuszuy
NIANAUVEEREN WU NTTUIUNMTENEU N150ETATDNLAE NITANTeIsEUURANNY Mswdawad Jusiu nalnmnedyine
Suqinuitu D) n1suUuLad (Cell proliferation) wag E) n13dudsnisiadoufiuaznisyngnueasadusis (inhibition of cell
migration and invasion)

Table 3 uansnalnynadningvesnguiudmiu scs Tnsldduiissyldmunusinsosuisanuudsusiumaiusnssy
Hemunvosusazunuiduevuiluy (Table 2) nalnmsdaingrdnlngdudunisdunuiuiifstestussuugiduiu
(immunological mechanism) N3EUIUANSENLEU (inflammation) wagnsinLe (infection) Wy nalnnsdsdayanaildlalsla

fidudonans (cytokine-mediated signaling pathway, GO: 0019221) N15AIUANLTIUINVBINITHANTUMBSAIAU-6 (positive
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regulation of interleukin-6, GO: 0032755) n15v 1A LA a'ld (fever generation, GO: 0001660) N1SUYUE I@150DNUBDALTAR
(exocytosis, GO: 0006887) Msmuasdsauvesnalnmsdsdyanuiltlelaladifudenars (negative regulation of cytokine-
mediated signaling pathway, GO: 0001960) N1SAUANBIVBITFUUNNANY (immune response, GO: 0006955) Nalnn13ne
vougaakuunlu (intrinsic apoptotic signaling pathway, GO: 0097193) nalnnisdsdqa1an1ua15U toll-like receptor
(toll-like receptor signaling pathway, GO: 0002224 ) msmuqm%wmﬂuaﬂﬁiymm I-kappaB kinase/NF-kappaB (positive
regulation of I-kappaB kinase/NF-kappaB signaling, GO: 0043123) n153UA35U interleukin-1 (interleukin-1 receptor binding,
GO: 0005149) wazAanssulalalatl (cytokine activity, GO: 0005125) nalavsdainendu 4 Rerdestunisutaead (positive
regulation of cell division, GO: 0051781) N1508A 5% @ ‘Wuuq AS54 (transcription from RNA polymerase | promoter, GO:
0006360) waznIzUIUNITVBILaa (cellular process)(extracellular space, GO: 0005615; exocyst, GO: 0000145; ARF guanyl-
nucleotide exchange factor activity, GO: 0005086)
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0 A. C3 complement pathway

B. Exocyst complex

o @ aPre afm
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b @ E. Inhibition of cell migration
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T
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C. I-/kappaB kinase/NF-kappaB

Figure 2 Gene network produced using GeneMANIA for udder health. The network consists of candidate genes and

related genes (29 genes, circles) connected by 141 interactions (edges).



KHON KAEN AGRICULTURE JOURNAL 49 (2): 491-508 (2021)./d0i:10.14456/kaj.2021.43.

503

Table 3 Pathways identified by the Database for Annotation, Visualization and Integrated Discovery (DAVID version

6.7) in gene ontology (GO) term

ltems Gene count P -value GENES

GO 0019221: cytokine-mediated 9 5.30E-10 IL1A, IL1B, IL1F10, IL1RN, IL36RN,

signaling pathway IL36A, IL36B, IL36G, IL37

GO 0032755: positive regulation of 3 5.10E-03 IL1A, IL36A, IL36B

interleukin-6 production

GO 0001660: fever generation 2 5.30E-03 IL1A, IL1B

GO 0006887: exocytosis 3 6.70E-03  MIA3, TNFAIP2, EXOC3L4

GO 0001960: negative regulation of 2 1.60E-02  IL1RN, IL36RN

cytokine-mediated signaling pathway

GO 0051601: exocyst localization 2 1.90E-02  TNFAIP2, EXOC3L4

GO 0006955: immune response 4 2.00E-02 IL1A, IL1B, IL36A, IL36B

GO 0097193: intrinsic apoptotic 2 3.70E-02 APOPT1, PPP1R13B

signaling pathway

GO 0006360: transcription from RNA 2 3.70E-02 POLR1B, TAF1A

polymerase | promoter

GO 0002224: toll-like receptor 2 3.70E-02 TRAF3, TLR5

signaling pathway

GO 0043123: positive regulation of |- 3 4.50E-02  IL1A, IL1B, SLC20A1

KappaB kinase/NF-kappaB signaling

GO 0051781: positive regulation of 2 6.50E-02  IL1A, IL1B

cell division

GO 0005615: extracellular space 11 9.10E-05 AMN, CKB, IL1A, IL1B, IL1F10, IL1RN,
IL36RN, IL36A, IL36B, IL36G, IL37

GO 0000145: exocyst 2 3.70E-02 TNFAIP2, EXOC3L4

GO 0005149: interleukin-1 receptor 9 5.40E-19 IL1A, IL1B, IL1F10, IL1RN, IL36RN,

binding IL36A, IL36B, IL36G, IL37

GO 0005125: cytokine activity 9 1.30E-09  IL1A, IL1B, IL1F10, IL1RN, IL36RN,
IL36A, IL36B, IL36G, IL37

GO 0005086: ARF guanyl-nucleotide 2 5.50E-02  TNFAIP2, EXOC3L4

exchange factor activity

GO 0000149: SNARE binding 2 9.40E-02 TNFAIP2, EXOC3L4
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