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บทคัดย่อ: การศึกษาความสัมพันธ์ท่ัวท้ังจีโนม (GWAS) เป็นเครื่องมือท่ีมีประสิทธิภาพในการระบุบรเิวณดีเอ็นเอบนจีโนม และความผันแปร
ทางพันธุกรรมที่เกี่ยวข้องกับลักษณะฟีโนไทป์ การศึกษาครั้งนี้มีวัตถุประสงค์เพื่อ จำแนกบริเวณดีเอ็นเอบนจีโนมที่เกี่ยวข้องกับลักษณะ
สุขภาพเต้านมในประชากรโคนมไทย และใช้บริเวณดีเอ็นเอบนจีโนมที่ได้ระบุหายีนและกลไกทางชีววิทยาของยีนที่มีอิทธิพลต่อลักษณะ
เหล่านี้ ชุดข้อมูลที่ศึกษาประกอบด้วยข้อมูลคะแนนเซลล์โซมาติกในวันทดสอบ (TD-SCS) รายเดือน จำนวน 82,378 บันทึก ข้อมูลจีโนไทป์
ได้จากการตรวจหาข้อมูลความแตกต่างทางพันธุกรรมในระดับจีโนม  (SNPs) ด้วย Illumina BovineSNP50 BeadChip (Illumina Inc., 
San Diego, CA, USA) มีจำนวน SNPs ที่เข้าวิเคราะห์ทั้งหมด 41,930 SNPs จากสัตว์ที ่มีข้อมูล SNPs และฟีโนไทป์จำนวน 632 ตัว 
ประเมินอิทธิพลของ SNPs (SNP effect) โดยใช้วิธีการแบบขั้นตอนเดียวท่ีมีการถ่วงน้ำหนัก (WssGWAS) ด้วยโมเดลวันทดสอบการถดถอย
แบบสุ่ม เพื่อระบุหายีนที่สำคัญเกี่ยวข้องกับลักษณะที่ศึกษาจะใช้บริเวณดีเอ็นเอบนจีโนมที่ได้อธิบายความแปรปรวนทางพันธุกรรมทั้งหมด
ร้อยละ 0.5 หรือมากกว่า บริเวณดีเอ็นเอบนจีโนมหลักที่เกี่ยวข้องกับคะแนนเซลล์โซมาติก (SCS) พบอยู่บนโครโมโซม BTA 11, BTA 16 
และ BTA 21 บริเวณจีโนมหลายแห่งได้อธิบายถึงความแปรปรวนทางพันธุกรรมเพียงเล็กน้อย ซึ่งบ่งชี้ถึงการถ่ายทอดทางพันธุกรรมของ
ลักษณะที่ศึกษาที่ควบคุมด้วยยีนหลายยีน เมื่อเปรียบเทียบผลลัพธ์กับฐานข้อมูล (NCBI, Genecards และ UniProt) พบว่ามี 21 ยีนที่มี
รายงานเกี่ยวข้องกับภูมิคุ้มกัน และมีอิทธิพลต่อ SCS อย่างมีนัยสำคัญ เช่น ยีนในกลุ่ม Interleukin superfamily (IL1A, IL1B, IL1F10, 
IL36A, IL36B, IL36G, IL37) ตัวรับไซโตไคน์ IL1 (IL36RN, IL1RN) รวมทั้งยีนอื่น ๆ (MIA3, RCOR1, TRAF3, CDC42BPB, EXOC3L4, 
TNFAIP2, PPP1R13B, TAF1A, TRNAT-UGU, TRNAC-GCA, HHIPL2, NCK2 เครือข่ายและกลไกทางชีววิทยาของยีนสำหรับ SCS ส่วน
ใหญ่ยืนยันการค้นพบยีนท่ีเกี่ยวข้องกับระบบภูมิคุ้มกัน กระบวนการอักเสบ การติดเชื้อ และการแบ่งเซลล์ ยีนที่ระบุได้ในการศึกษานี้สามารถ
ใช้เป็นยีนเป้าหมายในการศึกษาการแสดงออกของยีน 
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ABSTRACT: Genome-wide association studies (GWAS) are a powerful tool to identify genomic regions and variants 
associated with phenotypes. However, only limited mutual confirmation from different studies is available. The 
objectives of this study were to identify genomic regions associated with udder health trait in Thai dairy cattle, and to 
identify genes and pathways that may influence this trait.  The studied data set contained 82,378 monthly test-day 
somatic cell score (TD-SCS). A density of single nucleotide polymorphisms (SNPs) panel (BovineSNP50 BeadChip, Illumina 
Inc., San Diego, CA, USA) was used for genotyping. A total of 41,930 SNPs from 6 3 2  animals that had both genotypes 
and phenotypes were used for analysis. Effects of SNPs were estimated by a weighted single-step GWAS (WssGWAS), 
which back-solved the genomic BLUP from single-step genomic best linear unbiased prediction (ssGBLUP) using single-
trait random regression test-day models. Genomic regions that explained 0.5 percent or more of the total genetic 
variance were selected for further analyses of candidate genes. The main genomic regions associated with SCS were 
located on chromosomes BTA 11, BTA 16 and BTA 21. Many genomic regions explained a small fraction of the genetic 
variance, indicating polygenic inheritance of the studied trait. We compared the results with databases (NCBI, Genecards 
and UniProt) and found 21 reported QTLs related to SCS. A large member of Interleukin superfamily (IL1A, IL1B, IL1F10, 
IL36A, IL36B, IL36G and IL37) IL1 receptors (IL36RN and IL1RN) as well as other genes (MIA3, RCOR1, TRAF3, CDC42BPB, 
EXOC3L4 , TNFAIP2 , PPP1R13B, TAF1A, TRNAT-UGU, TRNAC-GCA, HHIPL2  and NCK2 ) related to immunity significantly 
influencing SCS were identified. The biological networks including the immunological pathway such as lymphocyte 
activation are closely related to SCS. The candidate genes identified in this study can be used as target genes in studies 
of gene expression. 
Keywords: somatic cell score; Thai dairy cattle; random regression model; WssGWAS 
 
บทนำ 

สุขภาพเต้านม เป็นลักษณะที่มีความสำคัญทางเศรษฐกิจ และมีผลต่อการทำกำไรจากอุตสาหกรรมการเลี้ยงโคนมทั้งโดยตรงและ
โดยอ้อม การลดลงของจำนวนเซลล์โซมาติกจะช่วยทำให้โคนมเป็นโรคเต้านมอักเสบลดลง  ซึ่งจะช่วยลดผลกระทบจากความสูญเสียทาง
เศรษฐกิจที ่เกิดจากการให้ผลผลิตน้ำนมลดลง (Seegers et al., 2003) จำนวนเซลล์โซมาติกเป็นลักษณะที ่ควบคุมด้วยยีนหลายคู่ 
(polygenic) ซึ่งได้รับผลกระทบจากปัจจัยหลายอย่าง และหลายยีน ซึ่งแต่ละยีนมีผลกระทบเพียงเล็กน้อยต่อการแสดงออกของลักษณะ 
(Snelling et al., 2013) การปรับปรุงด้านการจัดการและโภชนาการ พร้อมกับการคัดเลือกพันธุกรรมอย่างเข้มข้นสามารถจำกัดการเกิดโรค
เต้านมอักเสบได้ (Rupp and Boichard, 2003) 

ในทศวรรษที่ผ่านมาการคัดเลือกด้วยจีโนม (genomic selection, GS) ซึ่งหมายถึงการคัดเลือกจากค่าการผสมพันธุ ์จ ีโนม 
(genomic estimated breeding values, GEBVs) ของสัตว์แต่ละตัวที่ได้จากการประเมินพันธุกรรมจีโนม (genomic evaluation) จาก
การใช้ข้อมูลจีโนม ร่วมกับข้อมูลฟีโนไทป์ และข้อมูลพันธุ์ประวัติ (Meuwissen et al., 2001) ได้กลายมาเป็นวิธีการมาตรฐาน และเครื่องมือ
ที่สำคัญสำหรับใช้ในการปรับปรุงทางพันธุกรรมของโคนมจนเกิดความสำเร็จในการพัฒนาแทนการคัดเลือกแบบดั้งเดิมในหลายประเทศใน
ปัจจุบัน เช่น ประเทศสหรัฐอเมริกา แคนาดา สหราชอาณาจักร นิวซีแลนด์ ออสเตรเลีย ฝรั่งเศส เนเธอร์แลนด์ เยอรมนี และประเทศ
สแกนดิเนเวีย (Silva et al., 2014) ทั้งนี้ เนื่องจากความก้าวหน้าอย่างรวดเร็วที่เกิดจากเทคโนโลยีไมโครอะเรย์ โดยการจำแนกความ
แตกต่างทางพันธุกรรมของโคนมรายตัวสามารถทำได้ครั้งละจำนวนมากและมีราคาถูกลงอย่างต่อเนื่อง (จากราคามากกว่า 500 ดอลล่าร์ต่อ
ตัวในปีพ.ศ. 2533 เป็นปะมาณ 50 ดอลล่าร์ต่อตัวในปัจจุบัน)  สามารถจำแนกรูปแบบทางพันธุกรรมของโคนมแต่ละตัวได้ตั้งแต่ 2,900 
SNPs (Bovine3K Genotyping Beadchip, Illumina®) ถึง 777,000 SNPs (BovineHD Genotyping BeadChip, Illumina®) ครอบคลุม
ทั่วทั้งจีโนมของโคนม ดังนั้น การศึกษาความสัมพันธ์เชื่อมโยงในจีโนม (genome-wide association study, GWAS) ซึ่งหมายถึงการหา
ความสัมพันธ์ระหว่างความผันแปรของเครื่องหมายทางพันธุกรรม (เช่น SNPs) ทั่วทั้งจีโนมกับฟีโนไทป์ที่สนใจของตัวสัตว์ (Hayes and 
Goddard, 2010) โดยการตรวจหาความแปรปรวนทางพันธุกรรม หรือตำแหน่งของยีนบริเวณดีเอ็นเอบนจีโนมที่มีส่วนเกี่ยวข้องทำให้เกิด
การเปลี่ยนแปลงของฟีโนไทป์ (Johansson et al., 2010) จึงกลายเป็นจริงในทางปฏิบัติสำหรับการระบุตำแหน่ง SNPs ที่เกี่ยวข้องกับ 
quantitative trait loci (QTL) หรือยีนที่มีอิทธิพลที่สำคัญ (Zhang et al., 2016) เมื่อเปรียบเทียบกับกลยุทธ์การทำแผนที่ QTL แบบ



KHON KAEN AGRICULTURE JOURNAL 49 (2): 491-508 (2021)./doi:10.14456/kaj.2021.43. 493  

ดั้งเดิมแล้ว การศึกษาความสัมพันธ์ทั่วทั้งจีโนมมีข้อได้เปรียบที่สำคัญทั้งในด้านอำนาจการตรวจสอบความแปรปรวนเชิงสาเหตุ  (causal 
variants) ที่มีอิทธิพลเพียงเล็กน้อย และในการกำหนดบริเวณดีเอ็นเอบนจีโนมซึ่งมีการแปรผันเชิงสาเหตุที่แคบลง (Hirschhorn and Daly, 
2005) จึงได้รับการยอมรับอย่างกว้างขวางว่าเป็นเครื่องมือหลักในการระบุ QTL และบริเวณดีเอ็นเอบนจีโนมที่เกี่ยวข้องกับฟีโนไทป์ และมี
ความเป็นไปได้ที่เราจะแยกลักษณะเชิงปริมาณที่ถ่ายทอดได ้เช่นลักษณะสุขภาพเต้านม โดยการทำแผนที่บริเวณดีเอ็นเอบนจีโนม หรือ QTL 

เมื่อเร็ว ๆ นี้การศึกษาความสัมพันธ์เชื่อมโยงในจีโนมโดยใช้วิธีการแบบขั้นตอนเดียวที่มีการถ่วงน้ำหนัก(weighted single-step 
genome-wide association, WssGWAS) ที่นำเสนอโดย Wang et al. (2012) เป็นวิธีการที่ช่วยให้การประเมินอิทธิพลของ SNPs จาก 
GEBV ที่ได้จากการทำนายเชิงเส้นแบบไม่มีอคติในขั้นตอนเดียวที่ดีที ่สุด (single-step genomic best linear unbiased prediction, 
ssGBLUP) (Aguilar et al., 2010) โดยใช้ข้อมูลฟีโนไทป์ ข้อมูลจีโนไทป์ และพันธุ์ประวัติของสัตว์ที่เกี่ยวข้องพร้อมกันในขั้นตอนเดียว 
วิธีการนี้สามารถนำไปประยุกต์ใช้กับโมเดลที่มีความซับซ้อน เช่น โมเดลการถดถอยแบบสุ่ม ได้อย่างมีประสิทธิภาพ โดยเฉพาะการทำนาย
พันธุกรรมจีโนมของลักษณะที่มีการวัดฟีโนไทป์ต่อเนื่อง (Kang et al., 2017) และสามารถใช้ได้กับ SNPs ที่มีความแปรปรวนที่ไม่เท่ากัน ซึ่ง
ส่งผลให้เกิดความแม่นยำในการประมาณค่าอิทธิพลของ SNPs มากยิ่งข้ึน (Wang et al., 2012) ดังนั้นเมื่อขนาดประชากรของสัตว์ที่มีทั้งฟี
โนไทป์และจีโนไทป์มีขนาดเล็ก และมีการควบคุมลักษณะฟีโนไทป์โดย QTL ที่มีอิทธิพลขนาดใหญ่แล้ว WssGWAS อาจทำงานได้ดีกวา่วิธี 
GWAS แบบดั้งเดิม การศึกษาล่าสุดที่ได้ใช้วิธีการนี้สำหรับลักษณะที่มีความสำคัญทางเศรษฐกิจในปศุสัตว์ได้แก่ ลักษณะอัตราการ
เจริญเติบโต อัตราแลกเนื้อ น้ำหนักตัว และปริมาณเนื้อในไก่กระทง (Fragomeni et al., 2014; Wang et al., 2014) อัตราการเจริญเติบโต
และอัตราแลกเนื้อในสุกร (Howard et al., 2015) องค์ประกอบโปรตีนในน้ำนมของโคนม (Zhou et al., 2019) กรดไขมันในโคเนื้อ 
(Lemos et., 2016) ลักษณะซากในโคเนื้อ (Silva et al., 2017, 2019) ลักษณะทางการสืบพันธุ์ในไก่กระทง (Fragomeni et al., 2014) 
ลักษณะทางการสืบพันธุ์ในโคเนื้อ (Irano et al., 2016; Melo et al., 2017) ลักษณะน้ำเช้ือและขนาดครอกในสุกร (Daniele et al., 2018) 
โรคเต้านมอักเสบ (Tiezzi et al., 2015) และความเร็วในการต่อสู้ในโคเนื้อ (Valente et al., 2016) 

การประเมินค่าทางพันธุกรรมระดับประเทศสำหรับลักษณะสุขภาพเต้านมของโคนมไทยได้ดำเนินการโดยใช้โมเดลวันทดสอบการ
ถดถอยแบบสุ่ม (random regression test-day model, RR-TDM) โดยใช้ข้อมูลฟีโนไทป์และข้อมูลพันธุ์ประวัติ (สายัณห์ และคณะ, 
2563) และเมื่อมีการผสมผสานระหว่าง RR-TDM เข้ากับวิธีการแบบขั้นตอนเดียวซึ่งเรียกว่า single-step random regression test-day 
model (SS-RR-TDM) ในการทำนายค่าทางพันธุกรรมจีโนม น่าจะเป็นวิธีท่ีจะทำให้ได้การทำนายท่ีแม่นยำมากขึ้น มีอคติลดลง และส่งผลให้
การศึกษาความสัมพันธ์เช่ือมโยงในจีโนมมีประสิทธิภาพที่ดีขึ้น 

ข้อมูลบริเวณดีเอ็นเอบนจีโนมที่เกี่ยวข้องกับลักษณะสขุภาพเต้านมของประชากรโคนมไทยในปัจจุบันยังมีอยู่อย่างจำกัด การศึกษา
ครั้งนี้มีวัตถุประสงค์เพื่อจำแนกบริเวณดีเอ็นเอบนจีโนมที่เกี่ยวข้องกับลักษณะสุขภาพเต้านม  ได้แก่ คะแนนเซลล์โซมาติก (somatic cell 
score, SCS) ในประชากรโคนมไทย และใช้บริเวณดีเอ็นเอบนจีโนมที่ได้ระบุหาหายีนและกลไกทางชีววิทยาของยีนที่มีอิทธิพลต่อลักษณะ 
SCS 

 
วิธีการศึกษา 
ข้อมูลฟีโนไทป์ พันธ์ประวัติ และจีโนไทป์ 

ข้อมูลที่ใช้ในการศึกษาครั้งนี้เป็นข้อมูลเซลล์โซมาติกในวันทดสอบ (test-day somatic cell count, TD-SCC, 1000เซลล์/ซีซี) 
รายตัวของแม่โคนมไทยในรอบการให้นมครั้งแรกที่ได้สุ่มเก็บตัวอย่างจากฟาร์มเกษตรกรผู้เลี้ยงโคนมทั่วประเทศเป็นรายเดือนใน ภาคเหนือ 
ภาคตะวันออกเฉียงเหนือ ภาคตะวันออก ภาคกลาง และภาคตะวันตก จำนวน 132, 294, 219, 451 และ 245 ฟาร์ม ตามลำดับ แล้วนำไป
ตรวจวิเคราะห์ด้วยเครื ่องวิเคราะห์องค์ประกอบน้ำนม และเซลล์โซมาติกอัตโนมัติ (MilkoScan™, FOSS) คลอดลูกระหว่างเดือน
พฤศจิกายน 2536 ถึงเดือนมีนาคม 2560 ที่รวบรวมไว้ในระบบฐานข้อมูลโคนมของสำนักเทคโนโลยีชีวภาพการผลิตปศุสัตว์ กรมปศุสัตว์ 
หลังจากนั้นได้จัดการข้อมูลเพื่อให้เป็นไปตามเงื่อนไขดังต่อไปนี้คือ อายุคลอดลูกครั้งแรกอยู่ระหว่าง 20 ถึง 48 เดือน วันให้นมจำกัดใหอ้ยู่
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ระหว่าง 5 และ 305 วัน วันทดสอบครั้งแรกอยู่ระหว่าง 5 ถึง 60 วันหลังคลอด ปริมาณน้ำนมในแต่ละวันอยู่ระหว่าง 1 ถึง 45 กิโลกรัม แม่
โคแต่ละตัวต้องมีข้อมูลในวันทดสอบอย่างน้อย 5 บันทึก และกำหนดให้มีข้อมูลอยู่ในกลุ่มการจัดการเดียวกัน (contemporary groups) 
อย่างน้อย 5 บันทึก นอกจากน้ีแม่โคทั้งหมดจะต้องทราบพ่อพันธุ์ และข้อมูลพันธุ์ประวัติจะถูกสืบย้อนกลับไป 3 ช่ัวอายุ ภายหลังการจัดการ
ข้อมูลจะมีข้อมูล TD-SCC สำหรับการศึกษาจำนวน 82,378 ข้อมูลจากแม่โคนม 13,737 ตัว ร่วมกับข้อมูลพันธุ์ประวัติของโคที่เกี่ยวข้องกับ
โคที่ให้ผลผลิตจำนวน 32,743 ตัว เนื่องจากจำนวน SCC ค่อนข้างที่จะมีการแจกแจงแบบเบ้ (skewed distribution) จึงถูกแปลงเป็น
คะแนนเซลล์โซมาติกในวันทดสอบ (test-day somatic cell score, TD-SCS) ตามสมการ TD-SCS=log2 (TD-SCC/100) + 3 (Ali and 
Shook 1980) เพื่อให้ข้อมูลมีความเหมาะสมในการวิเคราะห์ 

 
Table 1 Number of animals and records used in this study 
Items Number of animals and records 
Animals in pedigree 32,743 
Animals with records 13,737 
Test-day records 82,378 
Genotyped animals 632 
   Bulls 142 
   Cows 490 
SNP information 41,930 

 
ข้อมูลจีโนไทป์ได้จากการตรวจหาข้อมูลความแตกต่างทางพันธุกรรมในระดับจีโนมด้วย  Illumina BovineSNP50 BeadChip 

(Illumina Inc., San Diego, CA, USA) ที่เป็นเวอร์ชัน 2 (มีจำนวน 54,609 SNPs) หรือ เวอร์ชัน 3 (มีจำนวน 53,218 SNPs) โดยทั้งสอง
เวอร์ชันมี SNPs ที่เหมือนกันจำนวน 50,908 SNPs โดยข้อมูล SNPs ที่ได้จะต้องผ่านการควบคุมคุณภาพ (quality control) ซึ่งพิจารณา
ด้วย call rate > 0.9 สำหรับทั้ง SNPs และจีโนมสัตว์ ความถี่อัลลีลย่อย (minor allele frequency, MAF) > 0.05 การออกจากสมดุล 
Hardy-Weinberg (ความแตกต่างระหว่างความถี่ท่ีคาดหวัง และความถี่ที่สังเกต) <0.15 การทดสอบความขัดแย้งระหว่างคู่พ่อแม่ลูกหลาน 
(parent-progeny conflict) นอกจากนี้ SNP ที่ไม่ทราบตำแหน่งหรืออยู่ในโครโมโซมเพศจะไม่ได้ถูกนำมาใช้ในการวิเคราะห์ ภายหลังจาก
การควบคุมคุณภาพ มีข้อมูล SNPs ที่เหลือสำหรับการวิเคราะห์ จำนวน 41,930 SNPs จากสัตว์จำนวน 632 ตัว (Table 1) การควบคุม
คุณภาพ SNPs และตัวอย่างนั้นดำเนินการโดยใช้โปรแกรม PREGSF90 (Misztal, 2018) รายละเอียดของชุดข้อมูลที่ใช้ดังแสดงรายละเอียด
ไว้ใน Table 1 
การวิเคราะห์ข้อมูล 
1. การทำนายค่าการผสมพันธุจีโนม (GEBV) 

ค่าสัมประสิทธ์ิการถดถอยสุ่มของ GEBV (random regression coefficient of GEBV) ของสัตว์แต่ละตัวสำหรับแต่ละลักษณะที่ได้
นั้น เริ่มต้นจากการวิเคราะห์หาองค์ประกอบความแปรปรวนและความแปรปรวนร่วม เพื่อใช้ในการประเมินค่าการผสมพันธุ์จีโนม โดยใช้
วิธีการแบบขั้นตอนเดียวจากโมเดลวันทดสอบการถดถอยแบบสุ่ม (SS-RR-TDM) วิเคราะห์ทีละลักษณะด้วย BLUPF90 software family 
(Misztal et al., 2018) ซึ่ง SS-RR-TDM สามารถเขียนให้อยู่ในรูปของเมตริกซ์ได้ดังนี้: 

𝐲 = 𝐗1𝐛1 + 𝐗2𝐛2 + 𝐕𝐡 + 𝐙𝐚 + 𝐖𝐩 + 𝐞,    (1) 
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โดยที่ 𝐲 เป็นเวกเตอร์ของบันทึก SCS ในวันทดสอบ; 𝐛1 เป็นเวกเตอร์ของอิทธิพลที่เป็นระบบซึ่งประกอบด้วยปัจจัยคงที่ของ ปี-
ฤดูกาลคลอด; 𝐛2 เป็นเวกเตอร์ของค่าสัมประสิทธิ์การถดถอยคงที่ ของ Legendre polynomials (LPs) ที่ซ้อนอยู่ในกลุ่มพันธุ์-กลุ่มอายทุี่
คลอด; 𝐡 เป็นเวกเตอร์ของอิทธิพลสุ่มเนื่องจาก ฝูง-ปี-เดือนทดสอบ; 𝐚 และ 𝐩 เป็นเวกเตอร์ของสัมประสิทธ์ิการถดถอยแบบสุ่มของ LPs ที่
ซ้อนกันภายในอิทธิพลเนื่องจากพันธุกรรม และอิทธิพลเนื่องจากสิ่งแวดล้อมถาวร ตามลำดับ ; และ 𝐞 เป็นเวกเตอร์ของอิทธิพลของความ
คลาดเคลื่อน เมทริกซ์ 𝐗1, 𝐗2, 𝐕, 𝐙 และ 𝐖 เป็น incidence matrices ที่สอดคล้องกับอิทธิพลที่กล่าวมาข้างต้น ลำดับของ LPs ซึ่งเป็น
ค่าแปรผันร่วมของปัจจัยคงที่ และปัจจัยสุ่ม ที่คำนวณจากวันให้นม (DIM) ตามที่กำหนดโดย Gengler และคณะ (1999) การศึกษาครั้งนี้ใช้ 
LPs ลำดับที่ 2 (constant, linear, and quadratic) ซึ่งได้จากเปรียบเทียบลำดับที่แตกต่างกัน โดยพิจารณาจากค่า log-likelihoods สูง
ที่สุด ค่า Akaike’s information criteria (AIC: Burnham and Anderson 2002) และความแปรปรวนของความคลาดเคลื่อนต่ำสุด และ
ใช้ LPs ลำดับเดียวกันสำหรับอิทธิพลการถดถอยแบบคงที่และแบบสุ่ม  

ตัวแปรของอิทธิพลของความคลาดเคลื่อนถูกสมมุติให้มีค่าเท่ากันตลอดการให้นมเพื่อลดความซับซ้อนของโมเดล สมมุติให้อิทธิพล
แบบสุ่มว่ามีกระจายแบบปกติด้วยค่าเฉลี่ยเท่ากับ 0 และโครงสร้างความแปรปรวนร่วมของโมเดลกำหนดให้เป็นดังนี้ 

Var [

𝐡
𝐚
𝐩
𝐞

] =

[
 
 
 
𝐈σhtm

2 𝟎 𝟎 𝟎

𝟎 𝐇 ⊗ 𝐆0 𝟎 𝟎
𝟎 𝟎 𝐈 ⊗ 𝐏0 𝟎

𝟎 𝟎 𝟎 𝐈σe
2]
 
 
 

    (2) 

โดยที่ 𝐆0 และ 𝐏0 เป็นเมทริกซ์ 3 × 3 ความแปรปรวนร่วมของสัมประสิทธิ์การถดถอยสุ่มสำหรับอิทธิพลเนื่องจากพันธุกรรม 
และอิทธิพลเนื่องจากสภาพแวดล้อมถาวร ตามลำดับ , 𝐇 เป็นเมตริกซ์ความสัมพันธ์ทางพันธุกรรมที ่ดัดแปลงจากการรวมกันของ
ความสัมพันธ์ระหว่างสัตว์ในพันธ ุ ์ประวัติ  (numerator relationship matrix, 𝐀 ) กับความสัมพันธ์ทางจีโนม (genomic-based 
relationship matrices, 𝐆), 𝐈 เป็นเมทริกซ์เอกลักษณ์ (Identity matrix), ⊗ เป็น Kronecker product operation, σhtm

2  เป็นความ
แปรปรวนร่วมของฝูง-ปี-เดือนทดสอบ และ σe

2 เป็นความแปรปรวนร่วมของความคลาดเคลื่อน 
ค่าผกผันของ 𝐇 ซึ่งจำเป็นสำหรับสมการตัวแบบผสมสามารถเขียนได้ดังนี้: 

𝐇−1 = 𝐀−1 + [
0 0
0 τ(α𝐆 + β𝐀𝟐𝟐)

−1 −  ω𝐀22
−1],   (3) 

โดยที่ 𝐀 คือเมตริกซ์ความสัมพันธ์ระหว่างสัตว์ในพันธุ์ประวัติสำหรับสัตว์ทุกตัว; 𝐀22 เป็นเมตริกซ์ความสัมพันธ์ระหว่างสัตวใ์น
พันธุ์ประวัติสำหรับสัตว์ท่ีมีจีโนไทป์ α, β, ω และ τ เป็นปัจจัยถ่วงน้ำหนัก α และ β เป็นค่าที่ให้เพื่อหลีกเลี่ยงปัญหา singularity โดยมีค่า
เท่ากับ 0.95 และ 0.05 ตามลำดับ (VanRaden, 2008) เมตริกซ์ 𝐆 ถูกสร้างขึ้นตามวิธีการของ VanRaden (2008) ดังนี้: 

𝐆 =
𝐙𝐃𝐙′

2∑ pi
m
i=1 (1−pi)

 ,      (4) 

โดยที่ 𝐙 คือเมตริกซ์ของ SNPs ที่ปรับค่าตามความถี่อัลลีล โดย AA, Aa และ aa มีค่า −1, 0, และ 1 ตามลำดับ; 𝐃 คือเมตริกซ์
แนวทแยงมุมของค่าถ่วงน้ำหนักสำหรับความแปรปรวนของ SNPs (เริ่มแรก 𝐃 =  𝐈);  m คือจำนวนเครื่องหมาย SNPs และ pi คือ
ความถี่อัลลีลของ SNPs ที่ i 

ผลลัพธ์จากการแก้สมการโมเดลผสมจาก SS-RR-TDM (ค่าสัมประสิทธ์ิการถดถอยแบบสุ่มของ GEBV) จะนำไปคำนวณค่าการผสม
พันธุ์จีโนมซึ่งจะระบุว่าเป็นพื้นฐานการผลิตที่ 305 วัน ดังนั้นค่าการผสมพันธุ์จีโนมที่ 305 วันจึงกำหนดให้เป็นค่าเฉลี่ยของค่าการผสมพนัธุ์
ระหว่างวันให้นมที่ 5 ถึง 305 ตามที่อธิบายโดย Jamrozik et al (1997)  
2. การศึกษาความสัมพันธ์เชื่อมโยงในจีโนม (GWAS) 

การศึกษาความสัมพันธ์เชื่อมโยงในจีโนมวิเคราะห์โดยใช้วิธีการแบบขั้นตอนเดียวที่มีการถ่วงน้ำหนัก(WssGWAS) อิทธิพลของ 
SNPs หรือ SNP effect (u) นั้นคำนวณมาจากกระบวนการวนซ้ำ (iteration) คล้ายกับที่อธิบายโดย Wang et al (2014) ด้วยซอฟต์แวร์ 
postGSf90 (Aguilar et al., 2014) โดยใช้แบบจำลองเชิงเส้นเดียวกันกับที่ใช้ในการประเมินองค์ประกอบความแปรปรวน  โดยสรุปแล้ว
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ซอฟต์แวร์ postGSf90 จะแก้สมการเปลี่ยนค่าการผสมพันธุ์จีโนม (ag: GEBV สำหรับ SCS ที่ 305 วันเฉลี่ย) ที่ได้คำนวณมาจากค่า
สมัประสิทธ์ิการถดถอยแบบสุ่มของ GEBV ของสัตว์แต่ละตัวจาก SS-RR-TDM ไปเป็นอิทธิพลของ SNPs ที่พิจารณาใช้ความแปรปรวนทางจี
โนม (σu

2 ) ร่วมกันตามที่อธิบายไว้ในสมการ: 

[
𝐚𝐠

𝐮
]=[𝐙𝐃𝐙′ 𝐙𝐃′

𝐃𝐙′ 𝐃
]σu

2      (5) 

อิทธิพลของแต่ละ SNPs ได้มาจากการแก้สมการ: 
𝐮 =  𝐃𝐙′𝐆−𝟏𝐚𝐠      (6) 

เมื่อ u  เป็นเวคเตอร์ของอิทธิพลของ SNPs; ag เป็นเวคเตอร์ของ GEBVs และข้อกำหนดอื่น ๆ ได้กำหนดไว้ก่อนหน้านี้แล้ว 
ในรอบแรกของกระบวนการวนซ้ำ ค่าความแปรปรวนท่ีถูกปรับโดยแต่ละ SNPs มีค่าเท่ากับ  2pi(1 − pi) และ 𝐃 = 𝐈  ในการ

วนซ้ำรอบถัดไป มีการสร้างค่าถ่วงน้ำหนักเมตริกซ์ 𝐆 ซึ่งการมีส่วนร่วมของ SNPs ที่คาดหวังไว้จะถูกแทนที่ด้วยความแปรปรวนที่เกิดขึ้นจริง 
เพื่อให้บริเวณดีเอ็นเอจีโนมที่มีอิทธิพลสูงต่อความแปรปรวนทางพันธุกรรมของลักษณะเห็นได้เด่นชัดมากยิ่งขึ้น ดังนั้นองค์ประกอบของ 𝐃 

จะถูกแทนค่าด้วย Dii =
2pi(1−pi)u

2

m
  โดยที ่u คืออิทธิพลของ SNPs ในกระบวนการวนซ้ำครั้งก่อนหน้า จากนั้น อิทธิพลของ SNPs ครั้ง

ใหม่ได้รับการพิจารณาจากค่าถ่วงน้ำหนักเมตริกซ์ 𝐆 ตามสมการ (6) ที่ได้รายงานข้างต้น สำหรับคำอธิบายโดยละเอียดของขั้นตอนการวน
ซ้ำสามารถดูได้ตามขั้นตอนจาก ‘Scenario 1’ ใน Wang et al. (2012) 

สำหรับกระบวนการวนซ้ำรอบแรก ค่าถ่วงน้ำหนักสำหรับแต่ละ SNPs มีค่าเท่ากับ 1 ซึ่งหมายความว่า SNPs ทั้งหมดมีน้ำหนัก
เท่ากัน (เช่น GBLUP ขั้นตอนเดียวแบบมาตรฐาน) สำหรับการทำซ้ำครั้งต่อไป (รอบท่ี 2, รอบที่ 3, ฯลฯ) ค่าถ่วงน้ำหนัก เป็นความแปรปรวน
ของแต่ละ SNPs ที่คำนวณโดยใช้อิทธิพลจากการแทนที่เบสในอัลลีลที่ประเมินได้จากการวนซ้ำก่อนหน้าน้ี และความถี่อัลลีลนั้นๆ (Wang et 
al. 2012) ในการทำซ้ำแต่ละครั้งค่าถ่วงน้ำหนักของ SNPs จะนำในใช้ในการสร้างเมตริกซ์ 𝐆 เพื่อคำนวณค่า GEBV ใหม่ และประมาณค่า
อิทธิพลของ SNPs อีกครั้ง 

ในการใช ้งานคร ั ้ งแรกของ WssGBLUP Wang et al. (2012) แนะนำว ่าควรคำนวณค่าถ ่วงน ้ำหน ัก SNPsจากสมการ 
di(t+1)

∗ = û(t)
2 2pi(1 − pi) ซึ่งอ้างอิงจากสมการสำหรับการคำนวณความแปรปรวนทางพันธุกรรมของ additive locus (Falconer 

and Mackay, 1996) อย่างไรก็ตาม Lourenco et al. (2017) แสดงให้เห็นว่าวิธีนี้ไม่สามารถเข้าถึง convergence ในกรณีที่ลักษณะมีการ
ควบคุมด้วยยีนจำนวนหลายตัว หรือ polygenic trait เนื่องจากมีถ่วงน้ำหนักมากเกินไป ดังนั้นการถ่วงน้ำหนัก SNPs ที่ใช้ในการศึกษาครั้ง
นี้จึงใช้วิธี non-linear A ตามที่อธิบายไว้โดย VanRaden (2008):  

di(t+1)
∗ = CT

|âj|

sd(â)
−2      (7) 

โดยที่ CT เป็นค่าคงที่ควบคุมการเบี่ยงเบนจากการกระจายแบบปกติ ; |âj| เป็นค่าสัมบูรณ์ของอิทธิพลของ SNP ที่ประมาณได้
สำหรับ SNPs ที ่j และ sd (â) ) คือค่าเบี่ยงเบนมาตรฐานของเวกเตอร์ของอิทธิพลของ SNPs ที่ประมาณได้ การถ่วงน้ำหนักด้วยวิธี non-
linear A ทำให้การคำนวณเข้าสู่ convergence ได้ดี และหลีกเลี่ยงค่าที่สุดขีด (Garcia et al., 2018) เนื่องจากการเปลี่ยนแปลงค่าถ่วง
น้ำหนักสูงสุดถูกจำกัดโดยค่าต่ำสุดในช่วงระหว่าง 5 และเลขชี้กำลังของ CT โดยในการศึกษาครั้งนี้ได้กำหนดค่า CT เท่ากับ 1.125 ตาม 
Legarra et al. (2018) และ VanRaden (2008) 
3. การจำแนกบริเวณดีเอ็นเอบนจีโนม (Genomic region identification) 
  เนื่องจากการตรวจหาบริเวณหรือตำแหน่งที่อยู่บนพื้นฐานของ SNPs เดี่ยวๆ อาจส่งผลให้เกิดการรบกวนหรือการประเมินค่าต่ำ
เกินไป เพราะว่าอัตราส่วนระหว่างจำนวน SNPs และจำนวนสัตว์ที่มีจีโนไทป์มีค่าสูง (Wang et al., 2014) นอกจากนี้ SNPs ที่อยู่ตำแหน่ง
ติดกันอาจมีค่า Linkage disequilibrium (LD) ที่สูงต่อ quantitative trait locus (QTL) เดียวกันในแผง SNPs ที่มีความหนาแน่นสูง 
(High-density SNPs panel) ซึ่งจะส่งผลทำให้อิทธิของ QTL จะกระจายไปทั่ว SNP ทั้งหมดในบริเวณที่มีค่า LD สูง (Fan et al., 2011) 
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ด้วยเหตุนี ้บริเวณหน้าต่างจีโนมที่ไม่ได้ซ้อนทับกันขนาด  1-Mb (non-overlapping window) ซึ่งเป็นสัดส่วนของความแปรปรวนทาง
พันธุกรรมในแต่ละบริเวณที่ประกอบด้วยหน้าต่างจีโนม กว้าง 1 Mb จะถูกคำนวณและใช้เพื่อระบุบริเวณดีเอ็นเอบนจีโนม เนื่องจากมีความ
เหมาะสมกว่าการใช้ SNPs เดี่ยวๆ ในการพิจารณาจำนวน SNPs ที่เหมาะสม และจำนวนรอบในกระบวนการวนซ้ำ ได้มีการทดสอบหา
ค่าเฉลี่ยของบริเวณหน้าต่างจีโนมที่ไม่ทับซ้อนกันจากกระบวนการวนซ้ำด้วยจำนวน SNPs ที่แตกต่างกัน (10, 15, 20, 30 และ 40 SNPs) 
ตามวิธี WssGWAS โดยพิจารณาจากค่าตามความถูกต้องที่แท้จริง (realized accuracies) ของค่าความสามารถในการทำนาย (predictive 
ability, Cor(GEBV, TBV)) และค่าอคติ (bias, TBV = b0 + b1 × GEBV) ของ GEBV (Legarra et al., 2008; Garcia et al., 2018) และ
ความเสถียรของการประมาณอิทธิพลของ SNPs (Wang et al., 2014) โดยเบื้องต้น ในการศึกษานี้เราตัดสินใจที่จะใช้ผลลัพธ์จากการวนซ้ำ
ครั้งท่ี 2 ด้วยบริเวณหน้าต่างจีโนมที่มีจำนวน SNP ที่อยู่ติดกันอย่างต่อเนื่อง 20 SNP เพราะให้ความสามารถในการคาดการณ์มากที่สุดและ
เกิด inflation น้อยที่สุด และเกิดความเสถียรของการประมาณอิทธิพลของ SNP มากที่สุด 

ร้อยละของความแปรปรวนทางพันธุกรรมที่อธิบายโดยบริเวณหน้าต่างจีโนมที่ประกอบด้วย SNPs ที่ต่อเนื่องกันท่ี i ตามที่อธิบาย
โดย Wang et al (2014) i คำนวณได้ดังนี้: 

var(ai)

σa
2  =

var∑ zj
20
j=1 ûj

σa
2 ,      (8) 

 โดยที่ ai คือค่าทางพันธุกรรมของบริเวณหน้าต่างจีโนมที่ i ที่ประกอบไปด้วย SNP ที่อยู่ติดกันอย่างต่อเนื่อง 20 SNPs, σa
2 คือ

ความแปรปรวนทางพันธุกรรมทั้งหมด, zj คือเวกเตอร์ของ SNP ที่ปรับค่าตามความถี่อัลลีลที่ j สำหรับสัตว์ท้ังหมด และ ûj คืออิทธิพลของ 
SNP ที ่j ภายในบริเวณหน้าต่างจีโนมที่ i (Zhang et al., 2010) 
 เพื่อท่ีจะจำแนกบริเวณดีเอ็นเอบนจีโนมที่มีความสำคัญเกี่ยวข้องกับลักษณะที่ได้ศึกษา จะเลือกบริเวณหน้าต่างจีโนมที่ไม่ทับซ้อน
กัน (Non-overlapping windows) ที่มีจำนวน 20 SNPs ซึ่งสามารถอธิบายความแปรปรวนทางพันธุกรรมทั้งหมดได้ร้อยละ 0.5 หรือ
มากกว่า ตามเกณฑ์การศึกษาของ Fragomeni et al. (2014), Irano et al. (2016), Lemos et al. (2016), Oliveira et al. (2017), Silva 
et al. (2017), Lee et al., (2019), Zhou et al. (2019) และ Oliveira et al. (2019) ซึ ่งพิจารณาแล้วว่าเป็นเกณฑ์ที ่เหมาะสำหรับ
วัตถุประสงค์ของการศึกษาครั้งนี้ และแสดงรูปแบบกราฟ Manhattan plot ของความแปรปรวนทางพันธุกรรมของเครื่องหมายที่อธิบาย
โดยบริเวณดีเอ็นเอบนจีโนมเหล่านี้โดยใช้ gnuplot 5.2 (Williams and Kelley, 2019) 
4. การระบุยีนที่เกี่ยวข้อง (Gene annotation) 

การระบุยีนที่อยู่ภายในแต่ละบริเวณดีเอ็นเอบนจีโนมที่ได้เลือกแล้ว (จุดเริ่มต้นและจุดสิ้นสุดของหน้าต่าง) จะใช้เครื่องมือจาก 

Map Viewer ของฐานข้อมูล NCBI ด้วยชุดประกอบ UMD 3.1 เป็นแผนที่อ้างอิง  

(https://www.ncbi.nlm.nih.gov/projects/mapview/map_search.cgi?taxid=9913&build=104.0) และย ีนท ี ่ระบ ุได ้ท ั ้ งหมดจะ

ตรวจสอบผ่านการสืบค้นโดยใช้ฐานข้อมูลเอกสาร และฐานข้อมูลสาธารณะอื่นๆ (NCBI-https: //www.ncbi.nlm.nih.gov/, Genecards-

https://www.genecards.org/ และUniprot-https:/ /www.uniProt.org/) เพื่อให้ทราบถึงหน้าท่ีของยีนที่เกี่ยวข้องต่อลักษณะที่ศึกษา 

5. การวิเคราะห์เครือข่ายและกลไกทางชีววิทยาของยีน (Gene network and pathway analysis)  

รายชื่อของยีนที่ระบุได้จะนำมาใช้เพื่อทำการวิเคราะห์เครือข่ายของยีนโดยใช้แหล่งข้อมูลออนไลน์ GeneMania (Warde-Farley 

et al., 2010) ส่วนการวิเคราะห์หน้าท่ีและกลไกทางชีววิทยาของยีนที่มีอิทธิพลต่อลักษณะที่ศึกษาจะดำเนินการภายใต้ฐานข้อมูลสาธารณะ 

DAVID (The Database for Annotation, Visualization and Integrated Discovery (Huang et al., 2009a, 2009b) เลือกการแปลผล

โดยใช้ Gene ontology (Go) ซึ่งประกอบด้วย 3 กระบวนการ คือ กระบวนการทางชีวภาพ (Biological processes) องค์ประกอบของ

เซลล์ (Cellular components) และหน้าท่ีระดับโมเลกุล (Molecular function) 

https://www.ncbi.nlm.nih.gov/projects/mapview/map_search.cgi?taxid=9913&build=104.0
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ผลการศึกษาและวิจารณ์ 
การจำแนกบริเวณดีเอ็นเอบนจีโนม และการระบุยีนที่เกี่ยวข้อง 

การศึกษาความสัมพันธ์เช่ือมโยงในจีโนมที่มีการถ่วงน้ำหนักแบบขั้นตอนเดียว (WssGBLUP) ในครั้งนี้ ทำให้เราสามารถตรวจสอบ
และระบุหาบริเวณดีเอ็นเอบนจีโนม และใช้บริเวณดีเอ็นเอบนจีโนมที่ได้ระบุหาตำแหน่งของยีนท่ีเกี่ยวข้องกับลักษณะของสุขภาพเต้านม คือ
ค่า SCS โดยใช้แผง SNP ความหนาแน่นปานกลางในประชากรโคนมไทยสำหรับทุกโครโมโซมร่างกาย กราฟแมนฮัตตันได้แสดงร้อยละความ
แปรปรวนทางพันธุกรรมของเครื่องหมาย SNPs ที่อธิบายโดยมีบริเวณดีเอ็นเอบนจีโนมที่ไม่ทับซ้อนกันและประกอบด้วย  20 SNP ตาม 
Figure 1 และได้สรุปบริเวณดีเอ็นเอบนจีโนมที่อธิบายสดัส่วนของความแปรปรวนทางพันธุกรรมที่มากท่ีสุด (ร้อยละ 0.5 หรือมากกว่า) และ
ยีนที่สำคัญเกี่ยวข้องกับลักษณะที่ศึกษาไว้ใน Table 2 บริเวณดีเอ็นเอบนจีโนมสามารถอธิบายความแปรปรวนทางพันธุกรรมได้มากถึง 
0.6% อย่างไรก็ตามบริเวณดีเอ็นเอบนจีโนมส่วนใหญ่อธิบายได้น้อยกว่า 0.5% (Figure 1) และบริเวณเหล่านี้กระจายไปท่ัวท้ังจีโนม ซึ่งบ่งช้ี
ว่าลักษณะนี้เป็นลักษณะที่ควบคุมด้วยยนีหลายยีน (polygenic) จากท่ัวท้ังจีโนม ซึ่งมีส่วนร่วมสำคัญที่ทำให้เกิดการแปรปรวนทางพันธุกรรม 
บริเวณดีเอ็นเอบนจีโนมหลักท่ีเกี่ยวข้องกับ SCS พบอยู่บนโครโมโซม BTA 11, BTA 16 และ BTA 21 
 

 
Figure 1 Manhattan plots of the additive genetic variance explained by windows of 20 adjacent SNPs for SCS in Thai 

dairy cattle 
 
 
 
 
 
 
 
 



KHON KAEN AGRICULTURE JOURNAL 49 (2): 491-508 (2021)./doi:10.14456/kaj.2021.43. 499  

Table 2  Summary of the windows that explained the most of genetic variance for somatic cell score in Thai dairy 
cattle, with a list of annotated genes in the proximity of each window 

Window Regions 
(nonoverlapping) 

Var 
(%)1/ 

Chr Start, bp Stop (bp) Genes2/ 

27928-27947 0.6 16 26671488 27692042 TRNAT-UGU, HHIPL2, TAF1A, MIA3, AIDA, BROX, 
FAM177B, DISP1, LOC100336644, TLR5, SUSD4, 
CCDC185, CAPN8 

20925-20944 0.6 11 45736640 46794995 NCK2, LOC101903923, LOC786288, TTL, POLR1B, 
CHCHD5, LOC107132936, SLC20A1, LOC101903687, 
NT5DC4, CKAP2L, IL1A, LOC107132933, 
LOC101904177, IL1B, IL37, LOC104973371, IL36G, 
IL36A, IL36B, IL36RN, IL1F10, IL1RN, PSD4, PAX8 

34820-34839 0.5 21 68751694 70050042 LOC100847464, TRNAI-AAU, LOC787175, TRNAC-
GCA, ZNF839, CINP, LOC101902499, TECPR2, 
ANKRD9, RCOR1, LOC783220, TRAF3, AMN, 
CDC42BPB, LOC101902932, LOC104975451, 
EXOC3L4, LOC615559, TNFAIP2, LOC100301250, 
LOC107131330, LOC509029, LOC100139514, EIF5, 
MARK3, CKB, TRMT61A, BAG5, APOPT1, KLC1, 
XRCC3, ZFYVE21, PPP1R13B 

1/Genomic variance absorbed by 20-SNP moving windows obtained using single-step genomic-BLUP 
2 /Any genes with start and stop positions within the window were considered. Genes linked to SCS are in bold font while novel candidate 
genes are bold and underlined 

 
บริเวณดีเอ็นเอบนจีโนมที่เกี่ยวข้อง และมีอิทธิพลสูงต่อ SCS ตั้งอยู ่บน 3 โครโมโซม ได้แก่ BTA 16 (จาก 26,671,488 ถึง 

27,692,042 bp) BTA 11 (จาก 45,736,640 ถึง 46,794,995 bp และ BTA 21 (จาก 68,751,694 ถึง 70,050,042 bp) ซึ่งพบว่ามี 52 ยีน
ที่เคยมีรายงาน และ 19 ยีนที่ยังไม่ได้กำหนดบทบาทหน้าที่ที่ชัดเจน (ยีนที่ขึ้นต้นด้วย LOC) (Figure 1 และ Table 2) จำนวนยีนที่พบใน
บริเวณดีเอ็นเอบนจีโนมเหล่านี้เมื่อเปรียบเทียบผลลัพธ์กับฐานข้อมูล (NCBI, Genecards และ UniProt) พบว่ามี 21 ยีนที่มีรายงานว่า
เกี่ยวข้องกับ SCS 

เซลล์โซมาติกในน้ำนมประกอบด้วยเซลล์เยื่อบุเต้านม และเซลล์ในระบบภูมิคุ้มกัน (Alhussien and Dang, 2018) โดยการศึกษา
ครั้งนี้ พบว่ามีการระบุยีนที่รู้จักว่าเกี่ยวข้องกับภูมิคุ้มกัน การอักเสบ หรือการเพิ่มจำนวนเซลล์ในบริเวณดีเอ็นเอจีโนมที่เกี่ยวข้องกับลักษณะ 
SCS ยีนเหล่านี้ ได้แก่ Melanoma Inhibitory Activity Family, Member 3 (MIA3) ซึ่งทำหน้าที่ควบคุมองค์ประกอบภายนอกเซลล์ที่
แสดงออกในเนื้อเยื ่อเต้านมภายหลังการติดเชื ้อแบคทีเรีย (Bergstralh et al., 2007, Rossetti et al., 2016) ยีนในกลุ่ม Interleukin 
superfamily เ ช ่ น  Interleukin 1, alpha (IL1A), interleukin 1, beta (IL1B), interleukin 1 family, member 10 (IL1 F10 ), 
interleukin 36, alpha (IL36A), interleukin 36, beta (IL36B), Interleukin 36, gamma (IL36G) และ interleukin 37 (IL37) และ
ตัวรับไซโตไคน์ IL1 เช่น interleukin 1 receptor antagonist (IL1RN) และ interleukin 36 receptor antagonist (IL36RN) ถูกตรวจ
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พบบนโครโมโซม BTA 11 ยีนเหล่านี้มีบทบาทสำคัญในการตอบสนองของภูมิคุ้มกันชนิดเจาะจง และกระบวนการการอักเสบ (Benveniste, 
2014; Queen et al., 2019) REST corepressor 1 (RCOR1) เกี่ยวข้องกับการทำหน้าที่ในการเปลี่ยนแปลงของเซลล์เม็ดเลือดขาวลิมโฟ
ไซต์ชนิดบี และการตอบสนองต่อการอักเสบ (Yao et al., 2015; Xiong et al., 2020) TNF receptor-associated factor 3 (TRAF3) มี
บทบาทสำคัญในกลไกทางชีววิทยาของการสร้างภูมิคุ ้มกันในเซลล์เยื ่อบุผิวของเ ต้านมของโค (Song et al., 2017) CDC42 binding 
protein kinase beta (CDC42BPB), exocyst complex component 3-like 4 (EXOC3L4 ) และ  tumor necrosis factor, alpha-
induced protein 2 (TNFAIP2) มีส่วนเกี่ยวข้องกับการขนส่งภายในเซลล์ และก่อนหน้านี้มีการตรวจพบในบริเวณจี โนมที่เกี่ยวข้องกับ
ระบบภูมิคุ้มกันแต่กำเนิดในโคนมโฮลสไตน์ของแคนาดา (Porat-Shliom et al., 2013; de Klerk et al., 2018) protein phosphatase 
1, regulatory subunit 13B (PPP1R13B) เป็นตัวกระตุ้นการทำงานของ p53 ซึ่งเป็นตัวควบคุมในระบบภูมิคุ้มกัน และกระบวนการตาย
ของเซลล์ (Mitchell et al., 2002; Liu et al., 2005) และ TATA box binding protein (TBP)-associated factor, RNA polymerase 
I, A (TAF1A) เป็นยีนที่ควบคุมการเพิ่มจำนวนของเซลล์ และมีส่วนเกี่ยวข้องกับมะเร็งเต้านม (Bergstralh et al., 2007, Rossetti et al., 
2016)  

นอกจากน้ี ในกลุ่มประชากรที่ศึกษายังตรวจพบยีนอ่ืน ๆ ที่มีความเชื่อมโยงกับ SCS แต่พบว่ามีความสัมพันธ์เกี่ยวข้องกับปริมาณ
และองค์ประกอบน้ำนมในการศึกษาอ่ืน ๆ ยกตัวอย่าง เช่น transfer RNA threonine (anticodon UGU) (TRNAT-UGU), transfer RNA 
cysteine (anticodon GCA) (TRNAC-GCA), HHIP-like 2 (HHIPL2) และNCK adaptor protein 2 (NCK2) (Venturini et al., 2014; 
da Costa Barros et al., 2018; Johnston et al., 2018; Oliveira et al., 2018) 

จากผลการวิจัยครั้งนี้พบว่ามียีนท่ีมีอิทธิพลต่อลักษณะสุขภาพเต้านมจำนวน 21 ยีน (ยีนตัวหนาใน Table 2) ซึ่งบ่งช้ีว่าลักษณะนี้
เป็นลักษณะที่ควบคุมด้วยยีนหลายยีน โดยมียีนหลายยีนที่พบเหมือนกับรายงานอื่น ๆ ก่อนหน้านี้ในโคนมโฮลสไตน์ที่เกี่ยวข้องกับลักษณะ 
SCS ทั้งนี้อาจเนื่องจากประชากรโคนมของไทยมีความเกี่ยวข้องกับประชากรโคนมโฮลสไตน์ อย่างไรก็ตามยีนบางตัวมีความแตกต่างจากโค
นมสายพันธุ์อื่น ๆ ทั้งนี้เนื่องจากความแตกต่างของประชากรที่ศึกษามีอิทธิพลต่อการแสดงออกของยีน  (Oliveira et al., 2019) จาก
การศึกษาครั้งน้ีมีข้อจำกัดเนื่องจาก Bovine UMD 3.1 มีการถอดรหัสพันธุกรรมจากโคเนื้อพันธุ์เฮียร์ฟอร์ดซึ่งมีความแตกต่างจากจีโนมของ
โคนมโฮลสไตน์ ยกตัวอย่างเช่น การแทรกและหายไป (insertion/deletion: INDEL) ของลำดับเบส มีความแตกต่างกันถึง 48,537,190 เบส
จากจีโนมทั้งหมด (Koks et al., 2013) ซึ่งอาจส่งผลให้เกิดความคลาดเคลื่อนสำหรับการวิเคราะห์ข้อมูลจีโนมเพื่อหาตำแหน่ง ทำนายหน้าที่
ของยีน และการระบุยีนที่เช่ือมโยงได้ ดังนั้นจึงควรหาตำแหน่ง และระบุยีนจากฐานข้อมูลจีโนมของประชากรในประเทศไทยเอง 
การวิเคราะห์เครือข่ายและกลไกทางชีววิทยาของยีน  

การวิเคราะห์เครือข่ายของยีน (network analysis) จากรายชื่อยีนที่ควบคุมลักษณะสุขภาพเต้านมโดยใช้โปรแกรม GeneMania 
ตาม Figure 2 พบว่ามีเครือข่ายยีนที่แสดงออกร่วมกันจำนวน 29 ยีน (26.97%) และยีนที่มีปฏิสัมพันธ์ร่วมกันจำนวน 141 รายการ ยีน
เหล่านี้ส่วนใหญ่เกี่ยวข้องกับกลไกทางชีววิทยาระบบภูมิคุ้มกันและการแบ่งเซลล์ เช่น A) กลไกทางชีววิทยาที่เกี่ยวข้องกับคอมพลีเมนท์ C3 
(C3 complement pathway) ซึ่งมีความเกี่ยวข้องกับการเก็บกินแบคทีเรีย B) โครงสร้างเชิงซ้อนที่เกี่ยวกับการขนส่งสารผ่านเยื่อหุ้มเซลล์
แบบ Exocytosis (Exocyst complex) C) กลไกทางชีววิทยา I-kappaB kinase/NF-kappaB signaling ที่ม ีความเกี ่ยวข้องกับระบบ
ภูมิคุ้มกันหลายอย่าง เช่น กระบวนการอักเสบ การอยู่รอดของเซลล์ การพัฒนาของระบบภูมิคุ้มกัน การแบ่งเซลล์ เป็นต้น กลไกทางชีววิทยา
อื่นๆที่พบเช่น D) การแบ่งเซลล์ (Cell proliferation) และ E) การยับยั้งการเคลื่อนที่และการบุกรุกของเซลล์มะเร็ง ( Inhibition of cell 
migration and invasion) 

Table 3 แสดงกลไกทางชีววิทยาของกลุ่มยีนสำหรับ SCS โดยใช้ยีนที่ระบุได้ตามเกณฑ์การอธิบายความแปรปรวนทางพันธุกรรม
ทั้งหมดของแต่ละบริเวณดีเอ็นเอบนจีโนม (Table 2) กลไกทางชีววิทยาส่วนใหญ่ยืนยันการค้นพบยีนที่เกี ่ยวข้องกับระบบภูมิคุ้มกัน 
(immunological mechanism) กระบวนการอักเสบ (inflammation) และการติดเช้ือ (infection) เช่น กลไกการส่งสัญญาณที่ใช้ไซโตไคน์
ที่เป็นสื่อกลาง (cytokine-mediated signaling pathway, GO: 0019221) การควบคุมเชิงบวกของการผลิตอินเตอร์ลิวคิน-6 (positive 
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regulation of interleukin-6, GO: 0032755) การทำให ้ เก ิดไข ้  ( fever generation, GO: 0001660) การขนส ่งสารออกนอกเซลล์ 
(exocytosis, GO: 0006887) การควบคุมเชิงลบของกลไกการส่งสัญญาณที่ใช้ไซโตไคน์ท่ีเป็นสือ่กลาง (negative regulation of cytokine-
mediated signaling pathway, GO: 0001960) การตอบสนองของระบบภูมิคุ้มกัน (immune response, GO: 0006955) กลไกการตาย
ของเซลล์แบบภายใน (intrinsic apoptotic signaling pathway, GO: 0097193) กลไกการส่งสัญญาณผ่านตัวรับ toll-like receptor  
(toll-like receptor signaling pathway, GO: 0002224 ) การควบคุมเชิงบวกของสัญญาณ I-kappaB kinase/NF-kappaB (positive 
regulation of I-kappaB kinase/NF-kappaB signaling, GO: 0043123) การจับตัวรับ interleukin-1 (interleukin-1 receptor binding, 
GO: 0005149) และกิจกรรมไซโตไคน์ (cytokine activity, GO: 0005125) กลไกทางชีววิทยาอื่น ๆ เกี่ยวข้องกับการแบ่งเซลล์ (positive 
regulation of cell division, GO: 0051781) การถอดรห ั สพ ั นธ ุ ก ร รม  (transcription from RNA polymerase I promoter, GO: 
0006360) และกระบวนการของเซลล ์(cellular process)(extracellular space, GO: 0005615; exocyst, GO: 0000145; ARF guanyl-
nucleotide exchange factor activity, GO: 0005086) 
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Figure 2 Gene network produced using GeneMANIA for udder health. The network consists of candidate genes and 

related genes (29 genes, circles) connected by 141 interactions (edges). 
 
 
 
 
 
 



KHON KAEN AGRICULTURE JOURNAL 49 (2): 491-508 (2021)./doi:10.14456/kaj.2021.43. 503  

Table 3 Pathways identified by the Database for Annotation, Visualization and Integrated Discovery (DAVID version 
6.7) in gene ontology (GO) term 

Items Gene count P -value GENES 
     GO 0019221: cytokine-mediated 
     signaling pathway 

9 5.30E-10 IL1A, IL1B, IL1F10, IL1RN, IL36RN, 
IL36A, IL36B, IL36G, IL37 

     GO 0032755: positive regulation of 
     interleukin-6 production 

3 5.10E-03 IL1A, IL36A, IL36B 

     GO 0001660: fever generation 2 5.30E-03 IL1A, IL1B 
     GO 0006887: exocytosis 3 6.70E-03 MIA3, TNFAIP2, EXOC3L4 
     GO 0001960: negative regulation of  
     cytokine-mediated signaling pathway 

2 1.60E-02 IL1RN, IL36RN 

     GO 0051601: exocyst localization 2 1.90E-02 TNFAIP2, EXOC3L4 
     GO 0006955: immune response 4 2.00E-02 IL1A, IL1B, IL36A, IL36B 
     GO 0097193: intrinsic apoptotic 
     signaling pathway 

2 3.70E-02 APOPT1, PPP1R13B 

     GO 0006360: transcription from RNA 
     polymerase I promoter 

2 3.70E-02 POLR1B, TAF1A 

     GO 0002224: toll-like receptor 
     signaling pathway 

2 3.70E-02 TRAF3, TLR5 

     GO 0043123: positive regulation of I- 
     KappaB kinase/NF-kappaB signaling 

3 4.50E-02 IL1A, IL1B, SLC20A1 

     GO 0051781: positive regulation of  
     cell division 

2 6.50E-02 IL1A, IL1B 

     GO 0005615: extracellular space 11 9.10E-05 AMN, CKB, IL1A, IL1B, IL1F10, IL1RN, 
IL36RN, IL36A, IL36B, IL36G, IL37 

     GO 0000145: exocyst 2 3.70E-02 TNFAIP2, EXOC3L4 
     GO 0005149: interleukin-1 receptor 
     binding 

9 5.40E-19 IL1A, IL1B, IL1F10, IL1RN, IL36RN, 
IL36A, IL36B, IL36G, IL37 

     GO 0005125: cytokine activity 9 1.30E-09 IL1A, IL1B, IL1F10, IL1RN, IL36RN, 
IL36A, IL36B, IL36G, IL37 

     GO 0005086: ARF guanyl-nucleotide 
     exchange factor activity 

2 5.50E-02 TNFAIP2, EXOC3L4 

     GO 0000149: SNARE binding 2 9.40E-02 TNFAIP2, EXOC3L4 
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สรุป 
เมื่อทำการศึกษาความสัมพันธ์ทั่วทั้งจีโนมโดยใช้บันทึกวันทดสอบสำหรับลักษณะสุขภาพเต้านม (SCS) ในประชากรโคนมไทย 

โดยรวมแล้วบริเวณดีเอ็นเอบนจีโนมที่สำคัญ และเกี่ยวข้องกับ SCS พบอยู่บนโครโมโซม BTA 11, BTA 16 และ BTA 21 ซึ่งมีทั้งยีนที่เคยมี
รายงาน และยีนที่ยังไม่ได้กำหนดบทบาทหน้าที่ที่ชัดเจน (ยีนท่ีขึ้นต้นด้วย LOC) เมื่อเปรียบเทียบผลลัพธ์กับฐานข้อมูลพบว่ามี มี 21 ยีนที่มี
รายงานเกี่ยวข้องกับภูมิคุ้มกัน การอักเสบ หรือการเพิ่มจำนวนเซลล์ ที่มีอิทธิพลต่อ SCS อย่างมีนัยสำคัญ เช่น ยีนในกลุ่ม Interleukin 
superfamily (IL1A, IL1B, IL1F10, IL36A, IL36B, IL36G, IL37) ตัวรับไซโตไคน์ IL1 (IL36RN, IL1RN) รวมทั้งยีนอื่น ๆ (MIA3, RCOR1, 
TRAF3, CDC42BPB, EXOC3L4, TNFAIP2, PPP1R13B, TAF1A, TRNAT-UGU, TRNAC-GCA, HHIPL2, NCK2 เครือข่ายและกลไกทาง
ชีววิทยาของยีนสำหรับ SCS ส่วนใหญ่ยืนยันการค้นพบยีนท่ีเกี่ยวข้องกับระบบภูมิคุ้มกัน กระบวนการอักเสบ การติดเช้ือ และการแบ่งเซลล์ 
ยีนที่ระบุได้จากการศึกษานี้ไม่เพียงแต่จะช่วยยืนยันสำหรับการค้นพบที่มีมาก่อนหน้านี้ แต่ยังสำรวจพบยีนชุดใหม่ที่เกี่ยวข้องกับ SCS ซึ่งจะ
นำไปสู่ความรู้เกี่ยวกับข้อมูลพื้นฐานทางโครงสร้างพันธุกรรมของประชากรของลักษณะที่ศึกษา และสามารถใช้เป็นยีนเป้าหมายในการศึกษา
การแสดงออกของยีน  

อย่างไรก็ตามเพื่อตรวจสอบความถูกต้องของการค้นพบในครั้งนี้ จำเป็นจะต้องมีการวิจัยเพิ่มเติมโดยอาศัยข้อมูลที่มากขึ้นทั้งใน
ส่วนของจำนวนสัตว์ ฟีโนไทป์ และจีโนไทป์ 
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