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ABSTRACT: Fertilizer use unmatched with nutrient requirements of rice and ignored existing nutrients in soils affects
yields, production cost and environmental impacts of rice growing systems. The present study aimed to compare
the effects of precision fertilizer use based on recommendations of All-ricel application versus fertilizer use based
on farmer’s experience on agricultural and economic traits and environmental impacts of rice growing systems in
Petchaburi province. Results revealed that yield components (grains/spike, 1,000-grain weight, filled grain percentage
and non-filled grain percentage) and production cost did not differ (P>0.05) between the two fertilization regimes.
The All-ricel rice yielded relatively more grains (142 kg/rai) by 20% (P<0.05), resulting in improved economic returns
(1,187 Baht/rai) by 81% (P<0.05). In addition, environmental impact indicators (climate change, acidification potential
and marine eutrophication potential) of the All-ricel rice relatively lowered (P<0.05) by 20, 27 and 25%, respectively.
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Thus, precision fertilizer use recommended by All-ricel application is to be one of the most promising options to
maximize productivity while minimized the environmental impacts of rice growing systems.
Keywords: rice; All-ricel application; agricultural trait; economic trait; environmental impact
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Figure 1 Elementary flows and system boundaries of rice farming systems in the present study
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Table 1 Environmental indicators used in the present study

Impact category Units Source

Climate Change ke CO, equivalent Myhre et al. (2013)

Acidification Potential molc H" equivalent Posch et al. (2008); Seppals et al. (2006)
Freshwater Eutrophication Potential ke P equivalent Struijs et al. (2009)

Marine Eutrophication Potential ke N equivalent Struijs et al. (2009)

" CO, = carbon dioxide; molc = mole of charge; H* = hydrogen ion; N = nitrogen; P = phosphorus
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InsgnideyannsaianasiUTouiisuauuanmweAnfne o sendnessuunstadens 2 suuuulaeldisng
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20 WlawtsuAumslaemuisinunsns (F) egndlsinn 'giJqumﬂeiﬂsﬁumﬂsmﬁuﬁy’a 2 sUnuuliifinasieduuiindesi

Pnudnd 1,000 WaA Sevarvaians wavsesazuauudnay (Table 2)

Table 2 Yield components and grain yield of rice received fertilizers recommended by the All-ricel application (All-

ricel) and based on farmer’s experience (F)

All-ricel F
P-value All-rice1/F (%)
(mean+SD)  (mean+SD)
Grain per spike 77.35£12.60  67.09+9.11 ns 15.29
1,000-grain weight (g) 2790+1.95  28.10+1.67 ns -0.71
Filled grain (%) 73.28+9.05  70.92+8.89 ns 3.33
Non filled grain (%) 26.72+9.05 32.41+14.54 ns -17.56
Grain yield (kg/rai) 8541172 7124212 * 20

ns = non-significant and * = significant at a level of 0.05
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Table 3 Cost components and returns of rice received fertilizers recommended by the All-ricel application (All-

ricel) and based on farmer’s experience (F)

All-ricel F
(baht/rai) P-value Change rate (%)
(mean+SD) (mean+SD)
Total cost 3,983+943 4,060+800 ns -2
Variable cost 2,449+306 2,526+330 ns -3
Fixed cost 1,533+775 1,533+775 - -
Total revenue 6,635+1,683 5,525+1,830 * 20
Net profit 2,653+1,881 1,466+2,215 * 81

ns = non-significant and * = significant at a level of 0.05

Change rate (%) = [(Cost or return of All-ricel - Cost or return of F)/ Cost or return of F] x 100

3. HANTENUNNAUTIWINTON
nstadens 2 suwuuldvihlirdsiinisvuidouresunasidaunneeiy (P>0.05) winslddenumuugiives
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WMALNIVDIUIANAT (P<0.05) Faway 20 27 uay 25 muaau WeliguiunisldlenuiBinumsns (Table 4)

Table 4 Environmental indicators of rice received fertilizers recommended by the All-ricel application (All-ricel)

and based on farmer’s experience (F) (on a per kg standard grain basis)

All-ricel F
(mean+SD) (mean+SD) P-value All-ricel/F (%)
Climate Change 0.90+0.19 1.13+£0.24 ** -20
Acidification Potential 1.26+2.20 1.73+3.90 * -27
Freshwater Eutrophication
Potential 2.10+6.00 2.60+1.10 ns -19
Marine Eutrophication Potential 1.80+3.00 2.40+3.00 o -25

ns = non-significant; * = significant at a level of 0.05; ** = significant at a level of 0.01 and *** = significant at a level of 0.001
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