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การเกิดดีเอ็นเอเมทิลเลชั่นในอ้อยภายใต้สภาพขาดน�้ำ 
DNA Methylation in Sugarcane Genotypes under Water Deficit Stress
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บทคัดย่อ
ดเีอน็เอเมทลิเลชัน่เป็นกลไกหนึง่ทีเ่ก่ียวข้องกับการควบคมุการแสดงออกของยีนท่ีพืชใช้ตอบสนองต่อสภาพ

แวดล้อมท่ีไม่เหมาะสม ดงัน้ันจงึได้มกีารใช้เทคนคิ MSAP เพ่ือตรวจสอบผลของการขาดน�ำ้ต่อระดบัและรปูแบบของ
การเกิดดีเอ็นเอเมทิลเลชั่นในใบอ้อย โดยการชักน�ำให้อ้อยพันธุ์ก�ำแพงแสน 94-13 และโคลนก�ำแพงแสน 01-11-6  
ได้รบัสภาพขาดน�ำ้เป็นระยะเวลา 12 ชัว่โมง 1  3 และ 5 วัน โดยการเตมิสารละลาย PEG 6000 ทีร่ะดบัความเข้มข้น 
16 เปอร์เซน็ต์ ลงในอาหารเพาะเลีย้ง ตรวจสอบความผนัแปรของการเตมิหมูเ่มทลิให้ดเีอน็เอและจ�ำนวนแถบดเีอน็เอที่
ถูกเตมิหมูเ่มทิล โดยใช้ MSAP ไพรเมอร์ พบว่าการขาดน�ำ้กระตุน้ให้เกิดการเปลีย่นแปลงระดบัและรปูแบบของดีเอน็เอ
เมทิลเลชัน่ในจโีนมอ้อยได้ จ�ำนวนแถบดเีอน็เอทีถู่กเตมิหมูเ่มทิลทัง้หมดจากจ�ำนวนแถบดเีอน็เอทีเ่กิดขึน้ทัง้หมดคดิเป็น 
64.2 และ 65.1 เปอร์เซน็ต์ ในโคลนก�ำแพงแสน 01-11-6 และพันธ์ุก�ำแพงแสน 94-13 ตามล�ำดบั และมจี�ำนวนของแถบ
ดเีอน็เอท่ีถกูเตมิหมูเ่มทลิ รปูแบบที ่4 ในโคลนก�ำแพงแสน 01-11-6 คงท่ี แต่ในพันธ์ุก�ำแพงแสน 94-13 มจี�ำนวนเพ่ิม
ขึน้เมือ่เปรยีบเทียบกับสภาพควบคมุ เปรยีบเทยีบรปูแบบการเปลีย่นแปลงของแถบดเีอน็เอท่ีถูกเตมิหมูเ่มทลิ พบการ
เปลีย่นแปลงทีแ่ตกต่างกันในอ้อยทัง้สองสายพันธ์ุ โดยโคลนก�ำแพงแสน 01-11-6 มรีะดบัการเกิดดเีมทลิเลชัน่เพ่ิมขึน้ 
ขณะทีพั่นธ์ุก�ำแพงแสน 94-13 มรีะดบัการเกิดเมทลิเลชัน่เพ่ิมขึน้ เมือ่ได้รบัสภาพขาดน�ำ้ เมือ่เปรยีบเทยีบล�ำดบันิวคลี
โอไทด์ของแถบดีเอ็นเอท่ีให้ความแตกต่างของรูปแบบเมทิลเลชั่น พบว่ามีความเหมือนกับล�ำดับนิวคลีโอไทด์ของยีน 
NADH-plastoquinone oxidoreductase subunit K (ndhK), ยีน hexokinase-1 และ ยีน ribosomal RNA

ค�ำส�ำคัญ : ดีเอ็นเอเมทิลเลชั่น อ้อย สภาพขาดน�้ำ MSAP

Abstract 
DNA methylation is one of the process involved in the regulation of gene expression in plant’s 

response to environmental stresses. Hence, methylation-sensitive amplified polymorphisms (MSAP) were 
used to evaluate the effect of water deficit stress on the extent and patterns of DNA methylation in  
sugarcane leaves.  Sugarcane cultivar KPS 94-13 and KPS 01-11-6 plantlets were subjected to water 
deficit stress for 12 h, 1, 3 and 5 days by adding 16% PEG 6000 into culture medium. Changes in DNA 
methylation and polymorphism in methylated DNA were assessed by using selective MSAP primer  
combinations. Water deficit induced genome-wide DNA methylation polymorphisms accounted for 64.2 
% and 65.1% of the total bands at all time-points in KPS 01-11-6 and KPS 94-13, respectively. The number 
of hyper-methylated band (type IV) was stable in KPS 01-11-6 but increased considerably in   KPS 94-13 
in comparison with the control. The changes in cytosine methylation banding patterns between control and 
water deficit stress were compared. These finding indicated that alteration in DNA methylation under  
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water deficit stress occurred in two sugarcane genotypes. The water deficit stress induced more DNA 
demethylation than DNA methylation in KPS 01-11-6 whereas the level of DNA methylation was increased 
in KPS 94-13. Based on the BLAST results of polymorphic methylated fragments, the cloned fragments 
showed significant homology to known sequences of NADH-plastoquinone oxidoreductase subunit K 
(ndhK) gene, hexokinase-1 gene and ribosomal RNA gene.

Keywords: DNA methylation, sugarcane, water deficit, MSAP 

ค�ำน�ำ
อ้อย (Saccharum spp.) เป็นพืชที่สามารถเจริญเติบโตได้ดีในแถบอากาศร้อนและชุ่มชื้น ประเทศไทยจึง

เป็นประเทศหนึ่งท่ีมีพ้ืนที่และสภาพอากาศที่เหมาะสมในการเพาะปลูกอ้อย ยกเว้นภาคใต้ท่ีมีฝนตกชุกและอากาศ
ร้อนตลอดปี (ประเสริฐ, 2551) จากการศึกษาความต้องการใช้น�้ำของอ้อย พบว่าอ้อยมีความต้องการใช้น�้ำประมาณ 
120 ลูกบาศก์เมตรต่อตัน คิดเป็น 8,400 ลูกบาศก์เมตรต่อฤดูกาล ซึ่งถือว่าใช้น�้ำในการผลิตมากเป็นอันดับ 2 รองจาก
ข้าว ทั้งนี้ขึ้นอยู่กับสรีรวิทยาและพันธุกรรมของอ้อยแต่ละสายพันธุ์ รวมถึงปัจจัยจากสภาพแวดล้อม (เจษฎา, 2553) 
การขาดน�้ำจึงเป็นปัญหาส�ำคัญท่ีมีผลต่อการเจริญเติบโตของอ้อยตั้งแต่การงอกของเมล็ดจนถึงการให้ผลผลิต ใน
สภาวะทีอ้่อยต้องประสบกบัสภาวะเครยีดจากการขาดน�ำ้จะเกดิการตอบสนองในหลายระดับ เริม่ตัง้แต่การตอบสนอง
ในระดบัโมเลกุลต่อเนือ่งไปถึงการเปลีย่นแปลงในระดบัสรรีวทิยาและสณัฐานวิทยา ตามล�ำดบั ดงัเช่นในรายงานวจิยั
ที่พบว่ามีการเปลี่ยนแปลงของอ้อยในระดับสัณฐานวิทยา (Silva et al., 2008) ระดับสรีรวิทยา (Cha-um and  
Kirdmanee, 2009) และระดับโมเลกุลตามล�ำดับ (Rodrigues et al., 2009)

กระบวนการเติมหมู่เมทิลให้กับดีเอ็นเอ (ดีเอ็นเอเมทิลเลชั่น) เป็นการเปลี่ยนแปลงของดีเอ็นเอที่พบได้ในสิ่ง
มีชีวิตจ�ำพวกยูคาริโอต เกิดจากการย้ายหมู่เมทิล (-CH

3
) จาก S-adenosyl-2-methionine (SAM) ไปยังไนโตรจีนัส

เบสของ   นวิคลโีอไทด์ ทีพ่บมากในจโีนมของพืชชัน้สงูมกัจะเกิดไซโตซนีเมทิลเลชัน่ในต�ำแหน่งท่ีมกีารเรยีงตัวของเบส
แบบ 5’-CG-3’  5’-CNG-3’และ 5’-CNN-3’ โดยที่ N อาจเป็นเบสอะดีนีน (A) หรือเบสไซโตซีน (C) หรือเบสไทมีน (T) 
โดยอาศัยการท�ำงานของเอนไซม์ดีเอ็นเอเมทิลทรานสเฟอเรส (DNA methyltransferase 1; Dnmt 1) ซึ่งจะเกี่ยวข้อง
กับการเกิดดีเอ็นเอเมทิลเลชั่นที่บริเวณ CG และเอนไซม์โครโมเมทิลเรส (chromomethylase 3; CMT 3) ซึ่งสัมพันธ์
กับการเกิดดีเอ็นเอเมทิลเลชั่นท่ีบริเวณ CNG นอกจากน้ียังมีกระบวนการน�ำหมู่เมทิลออกจากต�ำแหน่งท่ีเกิด 
เมทิลเลชัน่ โดยอาศยัการท�ำงานของเอนไซม์ไกลโคซเิลส (glycosylase) ซึง่เรยีกกระบวนการนีว่้าดเีอน็เอดเีมทลิเลชัน่  
(DNA demethylation) (Valledor et al., 2007; Sahu et al., 2013; Khan et al., 2015) ดีเอ็นเอเมทิลเลชั่นที่เกิดขึ้น
ในจีโนมของพืชและสัตว์มีบทบาทส�ำคัญต่อเสถียรภาพของจีโนม (genome stability) และการควบคุมการแสดงออก
ของยีนซึ่งจะส่งผลต่อการเจริญและการพัฒนาของท้ังพืชและสัตว์ โดยพบว่าดีเอ็นเอเมทิลเลชั่นยับย้ังหรือลดการจับ
กันของทรานสครปิชัน่แฟคเตอร์ (transcription factor) ทีบ่รเิวณโพรโมเตอร์ของยีนและเกีย่วข้องกับการเปลีย่นแปลง
โครงสร้างของโครมาตินเพ่ือควบคุมการแสดงออกของยีน (Diéguez et al., 1997; Cao and Jacobsen, 2002;  
Calladine et al., 2004) กระบวนการดเีอน็เอเมทิลเลชัน่ยังมผีลต่อการปรบัตวัและตอบสนองของพืชต่อสภาพแวดล้อม
ไมเ่หมาะสมตา่ง ๆ  ตัวอย่างเช่น สภาพขาดน�ำ้กระตุ้นใหร้ะดับการเกิดดเีอ็นเอเมทิลเลชั่นเพิม่ขึ้นในรากของ  ถัว่ลันเตา 
(Labra et al., 2002) หรือถั่วลูกไก่ (chickpea) สายพันธุ์ทนหนาวที่ได้รับอุณหภูมิ 4 องศาเซลเซียส นาน 6 วัน พบว่า
รูปแบบการเกิดดีเอ็นเอเมทิลเลชั่นเปลี่ยนแปลงไป คือเกิดแบบดีเมทิลเลชั่นเพิ่มขึ้นเมื่อเทียบกับสายพันธุ์ไม่ทนหนาว 
(Rakei    et al., 2016) และในงานวจิยัทีศ่กึษาเรือ่งการเตมิหมูเ่มทลิในส่วนของอนิทรอนของยีน ZmGST ในใบข้าวโพด
นั้น เมื่อปลูกเลี้ยงต้นข้าวโพดในสารละลายธาตุอาหารสูตร Hoagland ที่เติม PEG (Polyethylene Glycol) และเกลือ
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โซเดียมคลอไรด์เป็นเวลา 24 ชั่วโมง พบว่าเกิดกระบวนการดีเมทิลเลชั่นเพ่ิมขึ้น และมีผลให้ยีน ZmGST 
 มีการแสดงออกเพิ่มขึ้น (Tan, 2010)

เทคนคิหน่ึงทีถู่กน�ำมาใช้กันอย่างกว้างขวางในการศกึษารปูแบบการเกิดดเีอน็เอเมทลิเลชัน่ท่ีเบสไซโตซนีของ
สิง่มชีวิีต คอืเทคนิค Methylation-sensitive amplification polymorphism หรอื MSAP เน่ืองจากเป็นเทคนิคท่ีสามารถ
ตรวจสอบการเกิดดเีอน็เอเมทิลเลชัน่ได้ท่ัวท้ังจโีนม โดยไม่จ�ำเป็นต้องทราบข้อมลูล�ำดับนิวคลีโอไทด์ของส่ิงมชีวิีตชนิด
นั้นมาก่อน (Xu et al., 2000) ซึ่งเทคนิคน้ีอาศัยคุณสมบัติของเอนไซม์ตัดจ�ำเพาะท่ีมีความสามารถในการตัดสาย
ดเีอน็เอบรเิวณต�ำแหน่งจดจ�ำได้ต่างกัน ท�ำให้ได้ชิน้ดีเอน็เอท่ีมขีนาดต่างกัน เมือ่มรีปูแบบการเกิดดีเอน็เอเมทิลเลชัน่ท่ี
แตกต่างกัน (Xiong   et al., 1999) การศึกษาว่าการเติมหมู่เมทิลให้ดีเอ็นเอมีระดับและรูปแบบท่ีมีความแตกต่างกัน
หรอืไม่ในอ้อยพันธ์ุทีท่นแล้งได้ต่างกัน จะเป็นหนึง่ในข้อมลูประกอบการศกึษากลไกระดบัเหนือพันธุกรรมและพันธุกรรม
ในการควบคุมการแสดงออกของยีนท่ีเก่ียวข้องกับการทนแล้งในอ้อยต่อไป ดังน้ัน ในการศึกษาครั้งน้ีมีวัตถุประสงค์
เพ่ือตรวจสอบระดบัและรปูแบบการเตมิหมูเ่มทลิให้ดเีอน็เอภายหลงัได้รบัสภาวะขาดน�ำ้ในอ้อย 2 สายพันธ์ุด้วยเทคนิค 
MSAP และทราบล�ำดบันวิคลโีอไทด์ของแถบดเีอน็เอทีเ่กิดดเีอน็เอเมทลิเลชัน่หรอืดเีมทิลเลชัน่อนัเป็นผลเน่ืองมาจาก
สภาพขาดน�้ำ

อุปกรณ์และวิธีการทดลอง
1.  การสร้างสภาวะขาดน�้ำแก่อ้อยและการสกัดแยกดีเอ็นเอ

น�ำส่วนใบม้วนจากส่วนยอดของอ้อยพันธุ์ก�ำแพงแสน 94-13 ที่อายุ 6 เดือน ซึ่งเป็นพันธุ์ทนแล้ง มาชักน�ำให้
เกิดแคลลัสบนอาหารแข็งสูตร MS (Murashige and Skoog’s, 1962) ที่เติมสารควบคุมการเจริญเติบโต 2,4-D ความ
เข้มข้น  3 มิลลิกรัมต่อลิตร ซูโครส 20 กรัมต่อลิตร และนํ้ามะพร้าว 10 เปอร์เซ็นต์โดยปริมาตร พีเอช 5.7 เพาะเลี้ยง
ในที่มืด อุณหภูมิ 25±2 องศาเซลเซียส จากนั้นชักน�ำให้เกิดยอดบนอาหารสูตร MS ที่เติมซูโครส 20 กรัมต่อลิตร และ
นํา้มะพร้าว 10 เปอร์เซน็ต์โดยปรมิาตร เพาะเลีย้งในสภาพทีม่แีสงสว่าง 16 ชัว่โมงต่อวัน อณุหภูม ิ25±2 องศาเซลเซยีส
เป็นเวลา 6 สัปดาห์ ส่วนอ้อยโคลนก�ำแพงแสน 01-11-6 ซึ่งมีลักษณะไม่ทนแล้ง (ได้รับความอนุเคราะห์ต้นอ้อยใน
สภาพเพาะเลี้ยงเน้ือเย่ือจากฝ่ายปฏิบัติการวิจัยและเรือนปลูกพืชทดลอง คณะเกษตร ก�ำแพงแสน) น�ำอ้อยท้ังสอง
พันธุ์มาเพิ่มปริมาณต้นและรากในอาหารสูตร MS ที่เติม NAA (Naphthaleneacetic acid) ความเข้มข้น 5 มิลลิกรัม
ต่อลิตร เติมซูโครส 20 กรัมต่อลิตร พีเอช 5.7 จนได้ต้นอ้อยที่มียอดและรากสมบูรณ์ใช้เวลาประมาณ 6 เดือน สร้าง
สภาพขาดน�้ำให้กับต้นอ้อย โดยย้ายต้นอ้อยที่สมบูรณ์มาเพาะเลี้ยงบนอาหารเหลว    สูตร MS ที่เติม NAA ความเข้ม
ข้น 5 มิลลิกรัมต่อลิตร และซูโครสเข้มข้น 20 กรัมต่อลิตร ร่วมกับการเติมสารละลาย PEG 6000 ความเข้มข้น  
16 เปอร์เซ็นต์ ท�ำให้มีค่าพลังงานความเข้มข้นของน�้ำในอาหารเหลวสูตร MS มีค่าประมาณ -1,000 กิโลพาสคาล เป็น
ระยะเวลา 12 ชั่วโมง 1  3 และ 5 วัน เก็บตัวอย่างใบอ้อยทั้งสองพันธุ์ที่อยู่ในสภาพควบคุมและสภาพขาดน�้ำมาสกัด
แยก  ดีเอ็นเอ โดยประยุกต์จากวิธีการของ Aljanabi et al. (1999)
2.  การตรวจสอบลายพิมพ์ดีเอ็นเอด้วยเทคนิค MSAP

วิธีการ MSAP ประยุกต์จาก Xu et al. (2000) โดยปรับความเข้มข้นดีเอ็นเออ้อยแต่ละตัวอย่างให้มีความเข้ม
ข้นเท่ากับ 200 นาโนกรัม แล้วจึงน�ำมาตัดด้วยเอนไซม์ตัดจ�ำเพาะ 2 ชุดคือ EcoRI กับ HpaII และ EcoRI กับ MspI 
(Promega, USA) ร่วมกับ 1X SuRE/Cut Buffer A (Roche Life Science, USA) บ่มที่อุณหภูมิ 37 องศาเซลเซียส 
นาน 12 ชัว่โมง เช่ือมต่อ ดเีอน็เอกับ adapter จากนัน้เพ่ิมปรมิาณดเีอน็เอด้วยเทคนคิพีซอีาร์ใน 2 ขัน้ตอน คอื ปฏิกิรยิา 
pre-selective amplification ด้วยไพรเมอร์ ER (5’- GACTGCGTACCAATTC + A -3’) และไพรเมอร์ HM  
(5’- ATCATGAGTCCTGCTCGG -3’) เจือจางผลผลิตพีซีอาร์ที่ได้ 20 เท่าด้วยน�้ำกลั่น เพื่อเป็นต้นแบบในการเพิ่ม
ปริมาณดีเอ็นเอในขั้นตอน selective amplification โดยใช้ไพรเมอร์ ER+3 ได้แก่ ACT AAC ACC AAG และ AGG 
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ไพรเมอร์ HM+3 ได้แก่ GAC GGC GAC และ TAA และ HM+4 ได้แก่ TCCA TTTC และ TCAC รวมคู่ไพรเมอร์ที่เป็น 
ER จับคู่กับ HM ทั้งสิ้น 35 คู่ ตรวจสอบผลผลิตพีซีอาร์ท่ีได้ในโพลีอะครีลาไมด์เจล ความเข้มข้น 5 เปอร์เซ็นต์  
และตรวจสอบแถบดีเอ็นเอที่ได้โดยการย้อมเจลด้วยวิธี silver staining (Sanguinefti et al., 1994) จากนั้นคัดเลือก
เฉพาะคู่ไพรเมอร์ที่ให้แถบดีเอ็นเอท่ีให้ความแตกต่างท่ีชัดเจนระหว่างสภาพควบคุมและสภาพขาดน�้ำในแต่ละสาย
พันธุ์ รวมถึงความแตกต่างระหว่างสายพันธุ์
3.  การบันทึกผลลายพิมพ์ดีเอ็นเอ

บันทึกข้อมูลแถบดีเอ็นเอที่ปรากฏจากตัวอย่างอ้อยท้ังสองพันธุ์ โดยบันทึกเป็น 1 เมื่อปรากฏแถบดีเอ็นเอ 
และเป็น 0 เมื่อไม่ปรากฏแถบดีเอ็นเอ โดยบันทึกแยกกันตามชุดของการตัดด้วยเอนไซม์ EcoRI-HpaII (H)  
และ EcoRI-MspI (M) จากน้ันแปลงผลข้อมลูแถบดเีอน็เอทีบ่นัทึกได้ตามรปูแบบของแถบดเีอน็เอท่ีเกิดขึน้ทลีะต�ำแหน่ง 
โดยบันทึกเป็นรูปแบบ 1 เมื่อพบแถบดีเอ็นเอปรากฏในช่อง H และ M กล่าวคือ ไม่มีการเติมหมู่เมทิลที่เบสไซโตซีน
ของต�ำแหน่งจดจ�ำ 5’-CCGG-3’/5’-GGCC-3’ (non-methylated state) บันทึกเป็นรูปแบบ 2 เมื่อพบแถบดีเอ็นเอ
ปรากฏเฉพาะในช่อง H เนื่องจากเกิดการเติมหมู่เมทิลท่ี external cytosine ในสายดีเอ็นเอสายใดสายหน่ึง  
คือ 5’-mCCGG-3’/3’-GGCC-5’ หรือ 5’-mCmCGG-3’/5’-GGCC-3’ (hemi-methylated state) บันทึกเป็นรูปแบบ 3 
เมื่อพบแถบดีเอ็นเอปรากฏเฉพาะในช่อง M ซึ่งเกิดจากการเติมหมู่เมทิลที่ external cytosine ทั้งสองสายของดีเอ็นเอ 
คือ 5’-CmCGG -3’/3’-GGCmC-5’ (fully methylated state) และรูปแบบ 4 เมื่อไม่ปรากฏแถบดีเอ็นเอในช่อง H  
และ M คือเกิดการเติมหมู ่เมทิลท่ี external และ internal cytosine ท้ังสองสายของดีเอ็นเอท่ีต�ำแหน่ง   
5’-mCmCGG-3’/3’-GGCmCm-5’ (hyper methylated state) 
4  การโคลนเพื่อหาล�ำดับนิวคลีโอไทด์ของลายพิมพ์ดีเอ็นเอ

ตัดแถบดีเอ็นเอท่ีมีรูปแบบของการเกิดเมทิลเลชั่นท่ีแตกต่างกันระหว่างสภาพควบคุมกับสภาพขาดน�้ำหรือ
ระหว่างสายพันธุ์ ส่งวิเคราะห์ล�ำดับนิวคลีโอไทด์ของชิ้นส่วนดีเอ็นเอท่ีสนใจ (บริษัท SolGent, Korea) น�ำล�ำดับ 
นิวคลีโอไทด์ของชิ้นส่วนดีเอ็นเอที่โคลนได้เปรียบเทียบกับล�ำดับนิวคลีโอไทด์ในฐานข้อมูล NCBI (National Center 
for Biotechnology Information)

ผลการทดลองและวิจารณ์
1.  การวิเคราะห์รูปแบบลายพิมพ์ดีเอ็นเอและปริมาณการเติมหมู่เมทิล

ตรวจสอบลายพิมพ์ดีเอ็นเอของอ้อยโคลนก�ำแพงแสน 01-11-6 และพันธุ์ก�ำแพงแสน 94-13 ที่ได้รับสภาพ
ขาดน�้ำเป็นเวลา 12 ชั่วโมง 1  3 และ 5 วัน ด้วยเทคนิค MSAP โดยใช้ไพรเมอร์ จ�ำนวน 35 คู่ จากน้ันคัดเลือก 
ไพรเมอร์ที่ให้แถบดีเอ็นเอท่ีแตกต่างกันระหว่างสภาพควบคุมเทียบกับสภาพขาดน�้ำในแต่ละสายพันธุ์ท่ีให้ผลชัดเจน
ได้จ�ำนวน 10 คู่ไพรเมอร์ น�ำข้อมูลแถบดีเอ็นเอในแต่ละรูปแบบมาวิเคราะห์หาความผันแปรของการเติมหมู่เมทิลให้
ดีเอ็นเอ (methylation polymorphism) พบว่า เกิดแถบดีเอ็นเอในรูปแบบที่ 1 ถึง 4 ทั้งหมด 1,130 และ 1,395 แถบ 
จ�ำนวนแถบดีเอ็นเอที่ถูกเติมหมู่เมทิลทั้งหมด 725 และ   908 แถบ คิดเป็น 64.2 และ 65.1 เปอร์เซ็นต์จากจ�ำนวนแถบ
ดีเอ็นเอทั้งหมด (% MSAP) ในอ้อยโคลนก�ำแพงแสน 01-11-6 และพันธุ์ก�ำแพงแสน 94-13 ตามล�ำดับ โดยเกิดได้ทั้ง
ในสภาพควบคมุและสภาพขาดน�ำ้ (ตารางท่ี 1) การเกิดเมทิลเลชัน่ในอ้อยโคลนก�ำแพงแสน 01-11-6 ในสภาพควบคุม 
มี % MSAP เท่ากับ 66.4 เปอร์เซ็นต์ ใกล้เคียงกับในสภาพขาดน�้ำ ซึ่งมี % MSAP เฉลี่ยจากทุกระยะการขาดน�้ำ 63.6 
เปอร์เซ็นต์ ขณะที่อ้อยพันธุ์ก�ำแพงแสน 94-13 มี % MSAP 58.8 เปอร์เซ็นต์ ในสภาพควบคุมและมีแนวโน้มสูงขึ้นเมื่อ
ได้รับสภาพขาดน�้ำยาวนานข้ึน คือเฉลี่ยจากทุกระยะการขาดน�้ำเท่ากับ 66.7 เปอร์เซ็นต์ จากการศึกษาการเติมหมู่
เมทลิให้ดีเอน็เอในพืชอืน่ พบว่ามคีวามแตกต่างกันไปตามชนิดและสภาพเครยีดท่ีพืชได้รบั เช่น ในข้าวโพดพันธ์ุ w9816 
ซึ่งเป็นพันธุ์ทนหนาว มี % MSAP อยู่ในช่วง 32 ถึง 35 เปอร์เซ็นต์ ใกล้เคียงกันระหว่างสภาพควบคุมและเมื่อได้รับ
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อุณหภูมิต�่ำ (Shan et al., 2013) ในข้าวที่เผชิญกับสภาพเครียดจากความเค็ม พบว่ามีความแตกต่างกันระหว่างพันธุ์
ทีใ่ช้ทดสอบ โดยพันธ์ุ pokkali ซึง่ทนเคม็ ม ี% MSAP 57.6 เปอร์เซน็ต์ในสภาพควบคมุ และสงูข้ึนเป็น 65.3 เปอร์เซน็ต์
เมื่อปลูกเลี้ยงในสารละลายท่ีเติมเกลือโซเดียมคลอไรด์ 15 วัน ต่างกับรูปแบบการตอบสนองของพันธุ์ข้าว IR29 ซึ่ง
เป็นพันธุ์ไม่ทนเค็มที่มี  % MSAP 51.7 เปอร์เซ็นต์ ลดลงจากสภาพควบคุม (59.3 เปอร์เซ็นต์) (Karan et al., 2012) 
หรือในฝ้ายสายพันธุ์ YZ1 ซึ่งมี % MSAP ในสภาพควบคุม 41.2 เปอร์เซ็นต์ และลดลงเป็น 34.5 เปอร์เซ็นต์ เมื่อได้รับ
สภาพเค็ม (Xue-Lin et al., 2009) ซึ่งการที่อ้อยมีปริมาณการเกิดไซโตซีนเมทิลเลชั่นสูงกว่าพืชอ่ืน อาจเนื่องมาจาก
ความแตกต่างของชนิดพืช สายพันธุ์ ชนิดของเน้ือเย่ือ รวมถึงปัจจัยจากสภาพแวดล้อมท่ีพืชได้รับท่ีแตกต่างกัน  
(Pan et al., 2011) 

น�ำข้อมลูแถบดเีอน็เอทีบ่นัทกึได้มาวเิคราะห์รปูแบบการเกิดดเีอน็เอเมทลิเลชัน่ พบว่าอ้อยทัง้สองสายพันธ์ุมี
การเกดิ  ดเีอน็เอเมทิลเลชัน่ในรปูแบบที ่1 มากทีส่ดุ ท้ังในสภาพควบคุมและสภาพขาดน�ำ้ รองลงมาได้แก่การเกดิแถบ
ดีเอ็นเอของรูปแบบที่ 4 และรูปแบบที่ 2 พบได้น้อยที่สุด สอดคล้องกับการศึกษาการเกิดดีเอ็นเอเมทิลเลชั่นในหลาย
พืช เช่น ข้าว (Wang et al., 2015b) สบู่ด�ำ (Mastan et al., 2012) หรือผักกาดก้านขาว (rapeseed)  
(Gao et al., 2014) ที่พบว่า แถบดีเอ็นเอของรูปแบบที่ 1 เป็นแบบท่ีพบมากที่สุด แสดงให้เห็นว่าบริเวณ CCGG  
ซึ่งเป็นต�ำแหน่งตัดของเอนไซม์ส่วนใหญ่ไม่มีการเติม หมู่เมทิล นอกจากน้ียังพบว่าสภาพขาดน�้ำกระตุ้นให้เกิดการ
เปลี่ยนแปลงรูปแบบการเกิดดีเอ็นเอเมทิลเลชั่นในทิศทางเดียวกันในอ้อยทั้งสองสายพันธุ์ กล่าวคือแถบดีเอ็นเอในรูป
แบบท่ี 2 มจี�ำนวนไม่แตกต่างกัน และแถบดเีอน็เอในรปูแบบท่ี 3 มจี�ำนวนลดลง เมือ่เปรยีบเทียบระหว่างสภาพควบคมุ
และเมื่อได้รับสภาพขาดน�้ำยาวนานขึ้น ขณะที่อ้อยทั้งสองพันธุ์มีการเกิด เมทิลเลชั่น รูปแบบที่ 4 แตกต่างกัน โดยใน
อ้อยโคลนก�ำแพงแสน 01-11-6 แถบดีเอ็นเอในรูปแบบที่ 4 มีจ�ำนวนค่อนข้างคงที่ แต่ในอ้อยพันธุ์ก�ำแพงแสน  
94-13 ซึ่งเป็นพันธุ์ทนแล้งมีการเกิดแถบดีเอ็นเอในรูปแบบที่ 4 เพิ่มขึ้นเมื่อขาดน�้ำมากขึ้น (ตารางที่ 1) แสดงให้เห็นว่า 
สภาพขาดน�้ำกระตุ้นให้เกิดท้ังกระบวนการเติมหมู่เมทิลให้กับดีเอ็นเอ และน�ำหมู่เมทิลออกจากต�ำแหน่งท่ีเกิดเมทิล
เลชั่น ซึ่งแตกต่างกันในอ้อยต่างสายพันธุ์ สอดคล้องกับผลการศึกษารูปแบบการเกิดดีเอ็นเอเมทิลเลชั่นในพืชภายใต้
สภาพเครียดแบบต่าง ๆ ซึ่งมีความแตกต่างกันไปตามชนิดและพันธุ์พืช ดังเช่นในงานวิจัยของ Shan et al. (2013) ที่
พบว่า การเปลี่ยนแปลงดีเอ็นเอเมทิลเลช่ันในรูปแบบท่ี 4 เป็นรูปแบบหลักท่ีมีผลให้จ�ำนวนแถบดีเอ็นเอลดลง ท�ำให้
เกิดสภาพ  ดีเมทิลเลชั่น ภายใต้สภาพเครียดจากความหนาวเย็นในข้าวโพด หรือในการศึกษาพันธุ์ข้าวภายใต้สภาพ
เครียดจากความเค็ม ข้าวพันธุ์ทนเค็ม พบการเกิดแถบดีเอ็นเอในรูปแบบที่ 3 ลดลงและแบบที่ 4 เพิ่มขึ้น ขณะที่พันธุ์
ไม่ทนเค็ม มีจ�ำนวนแถบดีเอ็นเอในรูปแบบที่ 3 เพิ่มขึ้น และรูปแบบที่ 4 ลดลง (Karan et al., 2012)
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Table 1 DNA methylation changes in leaves under control and different levels of water deficit stress  
               conditions.

Pattern KPS 01-11-6 KPS 94-13

0 
hour

12 
hours

1 
day

3 
days

5 
days

0
 hour

12 
hours

1 
day

3
days

5 
days

1 76 79 87 82 81 115 93 92 110 77

2 35 32 24 44 42 44 39 42 38 56

3 44 43 41 38 32 49 37 48 55 41

4 71 72 74 62 71 71 110 97 76 105

Total site 1/ 226 226 226 226 226 279 279 279 279 279

MSAP (%) 2/ 66.4 65.0 61.5 63.7 64.2 58.8 66.7 67.0 60.6 72.4

Non methylated band 
(%) 3/

33.6 35.0 38.5 36.3 35.8 41.2 33.3 33.0 39.4 27.6

Hemi methylated band 
(%) 4/

15.5 14.2 10.6 19.5 18.6 15.8 14.0 15.1 13.6 20.1

Fully methylated band 
(%) 5/

50.9 50.9 50.9 44.2 45.6 43.0 52.7 52.0 47.0 52.3

1/ Total site = 1+2+3+4
2/ MSAP (%) = [(2+3+4)/(1+2+3+4)] x 100
3/ Non-methylated ratio (%) = [(1)/(1+2+3+4)] x 100
4/ Hemi methylated ratio (%) = [(2)/(1+2+3+4)] x 100
5/ Fully methylated ratio (%) = [(3+4)/(1+2+3+4)] x 100

2.  การเปลี่ยนแปลงรูปแบบการเกิดดีเอ็นเอเมทิลเลชั่นภายใต้สภาพขาดน�้ำ 
น�ำข้อมูลแถบดีเอ็นเอจากท้ัง 10 คู่ไพรเมอร์ ที่บันทึกได้มาเปรียบเทียบรูปแบบการเปล่ียนแปลงของแถบ

ดีเอ็นเอที่เกิดขึ้นระหว่างสภาพควบคุมและสภาพขาดน�้ำ พบการเปลี่ยนแปลง 15 รูปแบบ ซึ่งสามารถแบ่งรูปแบบการ
เปลี่ยนแปลงออกเป็น 3 กลุ่ม ได้แก่ กลุ่มที่ 1 มีรูปแบบของแถบดีเอ็นเอเหมือนกันทั้งในสภาพควบคุมและสภาพขาด
น�้ำ (no change) แทนด้วยสัญลักษณ์ A ถึง D กลุ่มที่ 2 มีรูปแบบการเปลี่ยนแปลงของแถบดีเอ็นเอเป็นแบบดีเมทิล
เลชั่น (demethylation) แทนด้วยสัญลักษณ์ E ถึง J และกลุ่มที่ 3 มีรูปแบบการเปลี่ยนแปลงแถบดีเอ็นเอเป็นแบบเมทิ
เลชั่น (methylation) แทนด้วยสัญลักษณ์ K ถึง P (ตารางที่ 2) ผลการเปรียบเทียบรูปแบบการเปลี่ยนแปลงการเกิดดี
เอ็นเอเมทิลเลชั่นในสภาพขาดน�้ำเทียบกับสภาพควบคุมจากท้ัง 10 คู่ไพรเมอร์ พบว่าในอ้อยโคลนก�ำแพงแสน  
01-11-6 ภายใต้สภาพขาดน�้ำ มีเปอร์เซ็นต์การเปลี่ยนแปลงแบบ no change อยู่ในช่วง 39.8 ถึง 48.2 เปอร์เซ็นต์ 
ขณะที่พันธุ์ก�ำแพงแสน 94-13 มีเปอร์เซ็นต์การเปลี่ยนแปลงอยู่ในช่วง 38.0 ถึง 50.9 เปอร์เซ็นต์ เมื่อได้รับสภาพขาด
น�้ำยาวนานขึ้นอ้อยทั้งสองพันธุ์มีเปอร์เซ็นต์การเปลี่ยนแปลงแบบ no change ลดลง 

ในส่วนของรูปแบบการเปลี่ยนแปลงของแถบดีเอ็นเอแบบเมทิลเลชั่นหรือดีเมทิลเลชั่น เมื่อได้รับสภาพขาด
น�้ำกระตุ้นให้อ้อยโคลนก�ำแพงแสน 01-11-6 มีเปอร์เซ็นต์การเปลี่ยนแปลงแบบดีเมทิลเลชั่น เท่ากับ 24.3  29.2 34.1 
และ 31.9 เปอร์เซ็นต์ มีเปอร์เซ็นต์การเปลี่ยนแปลงแบบเมทิลเลชั่น เท่ากับ 27.4 29.2 25.7 และ 28.3 เปอร์เซ็นต์ ขณะ
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ที่อ้อยพันธุ์ก�ำแพงแสน 94-13 มีเปอร์เซ็นต์การเปลี่ยนแปลงแบบดีเมทิลเลชั่น เท่ากับ 16.5  19.7  25.8 และ 22.6 
เปอร์เซ็นต์ มีเปอร์เซ็นต์การเปลี่ยนแปลง แบบเมทิลเลชั่น เท่ากับ 34.1  29.4  29.4 และ 39.4 เปอร์เซ็นต์ภายใต้สภาพ
ขาดน�ำ้ที ่12 ชัว่โมง 1  3 และ 5 วัน ตามล�ำดบั    การเปลีย่นแปลงแบบดเีมทลิเลชัน่ แบบ H เป็นแบบทีม่กีารเปลีย่นแปลง
มากที่สุดในอ้อยทั้งสองพันธุ์ คือในสภาพควบคุมเกิดแถบดีเอ็นเอในรูปแบบที่ 3 (fully methylated state) เมื่อได้รับ
สภาพขาดน�ำ้มผีลให้ระดบัเมทิลเลชัน่ลดลงเป็นแบบท่ี 2 (hemi-methylated state) คดิเป็นเปอร์เซน็ต์การเปลีย่นแปลง
จากจ�ำนวนต�ำแหน่งที่พบที่ 12 ชั่วโมงถึง 5 วัน เท่ากับ 75 เปอร์เซ็นต์ ในอ้อยโคลนก�ำแพงแสน 01-11-6 และ 66.7 
เปอร์เซ็นต์ ในพันธุ์ก�ำแพงแสน 94-13 ขณะที่การเปลี่ยนแปลงแบบเมทิลเลชั่นแบบ O เป็นแบบที่มีการเปลี่ยนแปลง
มากที่สุดในพันธุ์ก�ำแพงแสน 01-11-6 ซึ่งในสภาพควบคุมเกิดแถบดีเอ็นเอในรูปแบบที่ 2 เมื่อได้รับสภาพขาดน�้ำมีผล
ให้ระดับเมทิลเลชั่นเพ่ิมขึ้นเป็นแบบไฮเปอร์เมทิลเลชั่น (hyper methylation) คือเกิดแถบดีเอ็นเอในรูปแบบท่ี 4 คิด
เป็นเปอร์เซ็นต์การเปลี่ยนแปลงเท่ากับ 64.7 เปอร์เซ็นต์ ส่วนพันธุ์ก�ำแพงแสน 94-13 การเกิดเมทิลเลชั่นแบบ M เป็น
แบบ ที่มีการเปลี่ยนแปลงมากที่สุด ซ่ึงในสภาพควบคุมไม่พบการเติมหมู่เมทิลที่เบสไซโตซีนของต�ำแหน่งจดจ�ำของ
เอนไซม์ตดัจ�ำเพาะ คอืเกิดแถบดเีอน็เอในรปูแบบที ่1 เมือ่ได้รบัสภาพขาดน�ำ้มผีลให้ระดบัเมทลิเลชัน่เพ่ิมขึน้เป็นแบบ
ไฮเปอร์เมทิลเลชั่น คือเกิดแถบดีเอ็นเอในรูปแบบที่ 4 คิดเป็นเปอร์เซ็นต์การเปลี่ยนแปลงเท่ากับ 37.9 เปอร์เซ็นต์

จากการเปลี่ยนแปลงรูปแบบการเกิดดีเอ็นเอเมทิลเลชั่นหรือดีเมทิลเลชั่นท่ีเกิดข้ึน พบว่าในอ้อยโคลน
ก�ำแพงแสน 01-11-6 สภาพขาดน�ำ้ท�ำให้ระดบัของการเกิดเมทิลเลชัน่ลดลง คือมกีารเปลีย่นแปลงแบบดเีมทลิเลชัน่มา
กกว่าแบบเมทิลเลชั่น ขณะที่อ้อยพันธุ์ก�ำแพงแสน 94-13 สภาพขาดน�้ำชักน�ำให้เกิดการเปลี่ยนแปลงแบบเมทิลเลชั่น
สงูกว่าแบบดเีมทลิเลชัน่ รปูแบบการเปลีย่นแปลงดงักล่าวสอดคล้องกับงานวิจยัในฝ้ายภายใต้สภาพเครยีดจากความ
เคม็ โดยฝ้ายสายพันธ์ุ YZ1 มเีปอร์เซน็ต์การเปลีย่นแปลงแบบเมทิลเลชัน่สงูขึน้เมือ่ความเข้มข้นของเกลอืโซเดยีมคลอ
ไรด์เพิ่มขึ้น (Xue-Lin et al., 2009) และในฝ้ายสายพันธุ์ทนเค็ม (CCRI35 และ Zhong07) มีระดับของการเกิดเมทิล
เลชัน่เพ่ิมขึน้ ขณะทีพั่นธ์ุไม่ทนเคม็ (CCRI12) เกิดการเปลีย่นแปลงแบบดเีมทลิเลชัน่ คอืมรีะดบัของการเกิดเมทิลเลชัน่
ลดลง เมื่อระดับความเค็มเพิ่มขึ้น (Wang et al., 2015a) 
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Table 2 Analysis of DNA methylation patterns under water deficit stress conditions.

Pattern Class

C1/ S1/ KPS 01-11-6 KPS 94-13

H M H M
12 

hours
1

day
3 

days
5 

days
12 

hours
1

day
3 

days
5 

days

No change

A 1 1 1 1 49 49 46 47 75 72 77 53

B 1 0 1 0 6 3 7 7 10 11 8 15

C 0 1 0 1 16 10 13 9 10 17 8 5

D 0 0 0 0 38 32 25 27 43 42 32 33

% 48.2 41.6 40.3 39.8 49.5 50.9 44.8 38.0

Demethylation

E 1 0 1 1 12 11 12 6 4 8 8 3

F 0 1 1 1 7 8 13 10 10 10 15 10

G 0 0 1 1 11 19 11 18 4 6 10 11

H 0 1 1 0 3 8 6 12 4 8 10 12

I 0 0 1 0 12 5 23 18 13 11 10 10

J 0 0 0 1 10 15 12 8 11 12 19 17
% 24.3 29.2 34.1 31.9 16.5 19.7 25.8 22.6

Methylation

K 1 1 1 0 11 8 8 5 12 12 10 19

L 1 1 0 1 6 8 10 10 10 10 17 14

M 1 1 0 0 10 11 12 14 18 17 11 29

N 1 0 0 1 11 8 3 5 6 5 11 5

O 1 0 0 0 6 13 13 17 24 20 17 21

P 0 1 0 0 18 18 12 13 25 18 16 22

% 27.4 29.2 25.7 28.3 34.1 29.4 29.4 39.4
1/ C: control, S: water deficit stress, H and M represents digestion with EcoRI/HpaII, and EcoRI/MspI, respectively.,  

Ascore of 1 and 0 represents the presence and absence of bands, respectively.

3.  การวิเคราะห์ล�ำดับนิวคลีโอไทด์ของแถบดีเอ็นเอที่ถูกเติมหมู่เมทิล
โคลนแถบดเีอน็เอทีม่รีปูแบบของการเกิดดเีอน็เอเมทิลเลชัน่ท่ีแตกต่างกันระหว่างสภาพควบคุมกับสภาพขาด

น�้ำหรือระหว่างสายพันธุ์อ้อย จากการใช้คู่ไพรเมอร์ 10 คู่ เมื่อวิเคราะห์ล�ำดับนิวคลีโอไทด์ แล้วน�ำมาเปรียบเทียบกับ
ฐานข้อมูล NCBI พบว่าล�ำดับนิวคลีโอไทด์ที่วิเคราะห์ได้นั้น 34 เปอร์เซ็นต์ ไม่ตรงกับล�ำดับนิวคลีโอไทด์ในฐานข้อมูล 
และในส่วนล�ำดบั นวิคลโีอไทด์ท่ีมคีวามเหมอืนกับล�ำดบันวิคลโีอไทด์ในฐานข้อมลู แต่ยังไม่สามารถระบไุด้ว่าเป็นส่วน
ของยีนหรือไม่ หรือยังไม่ทราบหน้าท่ีชัดเจน คิดเป็น 49 เปอร์เซ็นต์ของตัวอย่างท่ีพบท้ังหมด อาจเน่ืองมาจากจีโนม
ของอ้อยมีขนาดใหญ่ และข้อมูลล�ำดับนิวคลีโอไทด์ของอ้อยยังไม่สมบูรณ์เมื่อเทียบกับพืชเศรษฐกิจชนิดอื่น ประกอบ
กับชิ้นดีเอ็นเอที่ได้จากเทคนิค MSAP มีขนาดค่อนข้างสั้น ประมาณ 180 ถึง 400 คู่เบส จึงท�ำให้ยากต่อการระบุความ
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เหมือนของล�ำดับนิวคลีโอไทด์ที่ได้ อย่างไรก็ตาม17 เปอร์เซ็นต์ของล�ำดับนิวคลีโอไทด์ที่วิเคราะห์ได้พบว่ามีความ
เหมือนกับยีนต่าง ๆ  ในสิ่งมีชีวิตอื่นในฐานข้อมูล (ตารางที่ 3)เช่น ล�ำดับนิวคลีโอไทด์ของแถบดีเอ็นเอที่ 3 และ 4 ซึ่งได้
จากคู่ไพรเมอร์ ER+ACT/HM+GGC มีการเปลี่ยนแปลงรูปแบบการเกิดดีเอ็นเอเมทิลเลชั่นแบบ G จากอ้อยโคลน
ก�ำแพงแสน 01-11-6  และแบบ M ในพันธุ์ก�ำแพงแสน 94-13 และมีความเหมือนกับล�ำดับนิวคลีโอไทด์ของยีน  
hexokinase1 (HXK1) ซึ่งยีน HXK1 เก่ียวข้องกับสังเคราะห์เอนไซม์ HXK1 ท่ีท�ำหน้าท่ีในปฏิกิริยาฟอสโฟรีเลชั่น 
(phosphorylation) ในการเปลี่ยนน�้ำตาลกลูโคสให้เป็น glucose 6-phosphate ในขั้นตอนแรกของกระบวนการไกล
โคไลซสี (glycolysis) ท�ำหน้าท่ีเป็นตวักลางรบั-ส่งสญัญาณในกระบวนการ sugar sensing and signal transduction 
pathways เพื่อสร้างสมดุลในการสร้างน�้ำตาล การใช้น�้ำตาล และรักษาระดับน�้ำตาลในพืช (Gupta and Kaur, 2005) 
และมีบทบาทในการควบคุมการเปิด-ปิดของปากใบ (Granot et al., 2014) นอกจากนี้ยังพบตัวอย่างแถบดีเอ็นเอที่ 6 
ซึ่งมีขนาด 183 คู่เบส ได้จากคู่ไพรเมอร์ ER+ACT/HM+GAC มีการเปลี่ยนแปลงรูปแบบการเกิดดีเมทิลเลชั่น แบบ F 
จากอ้อยพันธุ์ก�ำแพงแสน  94-13 พบว่ามีความเหมือนกับล�ำดับนิวคลีโอไทด์ของยีน NADH-plastoquinone  
oxidoreductase subunit K (ndhK) ซึ่งเป็นยีนที่สังเคราะห์ subunit k ใน NDH complex ที่พบในคลอโรพลาสต์ ท�ำ
หน้าทีเ่ป็นตวักลางในการขนถ่ายอเิลก็ตรอนในกระบวนการสังเคราะห์ด้วยแสง ซึง่มผีลให้เกิดการสงัเคราะห์ ATP เพ่ิม
ขึ้น (Darie et al., 2006; Rumeau et al., 2007)

การเกิดดีเอ็นเอเมทิลเลชั่นหรือดีเมทิลเลชั่น เป็นกระบวนการหน่ึงท่ีมีบทบาทในการควบคุมการแสดงออก
ของยีนและการเปลีย่นแปลงรปูแบบการเกิดดเีอน็เอเมทลิเลชัน่นี ้สามารถถูกกระตุน้ได้จากภาวะเครยีดจากสิง่แวดล้อม 
(Chinnusamy and Zhu, 2009) ดังเช่นในงานวิจัยของ Dyachenko et al. (2006) พบว่าภายใต้สภาพเครียดจาก
ความเค็ม Mesembryanthemum crystallium เกิดเมทิลเลชั่นในบริเวณท่ีเป็นดีเอ็นเอชุดซ�้ำมากข้ึนเป็น 2 เท่า 
สันนิษฐานว่าเกี่ยวข้องกับการเปลี่ยนแปลงโครงสร้างโครมาติน ซึ่งมีผลต่อการแสดงออกของยีนจ�ำนวนมาก (Santos 
et al., 2011) มีรายงานเกี่ยวกับการแสดงออกของยีนแม้เกิดกระบวนการเมทิลเลชั่นขึ้น เช่น ใน Arabidopsis จากยีน
จ�ำนวน 25,423 ยีน 61.5 เปอร์เซ็นต์ของยีนเหล่านี้ไม่พบการเกิดดีเอ็นเอเมทิลเลชั่น 5.2 เปอร์เซ็นต์ พบว่าเกิดเมทิล
เลชัน่ขึน้ในบรเิวณโปรโมเตอร์ของยนี (promoter-methylated genes) และอกี 33.3 เปอร์เซน็ต์ เป็นยีนท่ีเกิดเมทลิเลชั่
นขึ้นในบริเวณที่ใช้ในการลอกรหัสของยีน (body-methylated genes) ตรวจสอบความสัมพันธ์ระหว่างการเกิดดีเอ็น
เอเมทิลเลชั่นและรูปแบบการแสดงออกของยีน พบว่าระดับการแสดงออกของยีนที่เกิด  เมทิลเลชั่นในบริเวณที่ใช้ใน
การลอกรหสัของยีนสงูกว่ายีนทีไ่ม่เกิดเมทิลเลชัน่ ขณะท่ียีนทีเ่กิดเมทลิเลชัน่ในบรเิวณทีเ่ป็น โปรโมเตอร์มกีารแสดงออก
ในระดับต�่ำเป็นไปได้ว่าการเกิดเมทิลเลชั่นข้ึนในบริเวณโปรโมเตอร์ของยีนมีผลต่อการแสดงออกของยีนในเน้ือเย่ือที่
เฉพาะเจาะจง และเมื่อเปรียบเทียบต�ำแหน่งการเกิดเมทิลเลชั่นในยีนกับหน้าที่ยีน พบว่า กลุ่มยีนที่เกิด เมทิลเลชั่นใน
บริเวณท่ีเป็นโปรโมเตอร์  มักประกอบด้วยยีนท่ีเก่ียวข้องกับการสร้างเอนไซม์ในกระบวนการโปรทีโอไลซีส  
(Proteolysis) ขณะที่กลุ่มยีนที่เกิดเมทิลเลชั่นขึ้นในบริเวณที่ใช้ในการลอกรหัสของยีน ประกอบด้วยยีนที่เกี่ยวข้องกับ
การสร้างเอนไซม์ในกลุ่มคะตะไลติก (catalytic enzymes) ส�ำหรับกลุ่มยีนที่ไม่เกิดเมทิลเลชั่นเป็นกลุ่มยีนที่เกี่ยวข้อง
กับการสร้าง ทรานสคริปชันแฟคเตอร์ต่าง ๆ (Zhang et al., 2006) ดังนั้นการเกิดกระบวนการดีเอ็นเอเมทิลเลชั่นหรือ
ดีเมทิลเลชั่นจึงอาจยังไม่ใช่ปัจจัยก�ำหนดการแสดงออกของยีนภายใต้สภาพเครียดแต่เพียงอย่างเดียว จึงควรต้องมี
การศึกษาเพิ่มเติมในเรื่อง การแสดงออกของยีนเหล่านี้ เพื่อให้เข้าใจถึงผลของการเกิดดีเอ็นเอเมทิลเลชั่นหรือดีเมทิล
เลชัน่ท้ังรปูแบบและต�ำแหน่งทีเ่กิดต่อการแสดงออกของยีน และบทบาทของยีนทีเ่ก่ียวข้องกับความสามารถในการทน
ต่อสภาพขาดน�้ำของอ้อยต่อไป
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Table 3 BLAST results of polymorphic MSAP fragments.

 MSAP 
fragment

Genotype
Methylation 

status
Size 
(bp)

Homologous sequence in 
NCBI

Accession Identity E-value

1 94-13 demethylation 266 Saccharum hybrid cultivar R570 clone 
BAC 260G18 sequence, complete 
sequence

KF184924.1 95% 1E-67

2 94-13 methylation 323 Oryza brachyantha  
chromosome 11

FQ378032.1 100% 1E-03

3 01-11-6 demethylation 188 Zea mays hexokinase-1 
(LOC100283735), mRNA

NM_001156634.1 87% 1E-20

4 94-13 methylation 188 Zea mays hexokinase-1 
(LOC100283735), mRNA

NM_001156634.1 87% 1E-20

5 01-11-6 demethylation 304 Sorghum bicolor 22 kDa kafirin cluster AF061282.1 93% 9E-14

6 94-13 demethylation 183 Joinvillea ascendens  
NADH-plastoquinone oxidoreductase 
subunit K (ndhK) gene, complete cds; 
plastid

HQ181329.1 98% 4E-70

7 01-11-6 methylation 225 Rice 25S ribosomal RNA gene M11585.1 98% 1E-91

Zea mays 26S ribosomal RNA gene NR_028022.2 97% 5E-90

Zea mays 25S rRNA gene and trans-
poson-like sequence

AJ309824.2 97% 5E-90

8 94-13 demethylation 225 Rice 25S ribosomal RNA gene M11585.1 98% 1E-91

9 01-11-6 methylation 186 Zea mays subsp. Mays genotype 
CMS-S mitochondrion, complete 
genome

DQ490951.2 98% 8E-72

10 94-13 methylation 372 Oryza rufipogon 18S ribosomal RNA 
gene

KM117266.1 99% 1E-172

สรุปผลการทดลอง
สภาพขาดน�้ำสามารถกระตุ้นให้เกิดการเปลี่ยนแปลงระดับและรูปแบบของการเติมหมู่เมทิลให้ดีเอ็นเอ 

ในจีโนมอ้อยได้แตกต่างกันระหว่างอ้อยพันธุ์ทนแล้งและไม่ทนแล้ง จากการใช้เทคนิค MSAP ในอ้อยพันธุ์ก�ำแพงแสน  
94-13 มกีารเกิดแถบ  ดเีอน็เอในรปูแบบที ่4 เพิม่ขึน้ และมรีะดบัของการเกิดเมทิลเลชัน่เพ่ิมขึน้เมือ่ได้รบัสภาพขาดน�ำ้ 
ขณะที่ในอ้อยโคลนก�ำแพงแสน 01-11-6 มีรูปแบบการเกิดแถบดีเอ็นเอค่อนข้างคงที่ระหว่างสภาพควบคุมและสภาพ
ขาดน�้ำ และมีระดับของการเกิดเมทิลเลชั่นลดลง 

ล�ำดบันวิคลโีอไทด์ของแถบดเีอน็เอทีถู่กเติมหมูเ่มทลิทีเ่กิดการเปลีย่นแปลงในรปูแบบเมทลิเลชัน่หรอืดเีมทิล
เลชั่นภายใต้สภาพขาดน�้ำจากอ้อยทั้งสองสายพันธุ์ พบความเหมือนกับล�ำดับนิวคลีโอไทด์ของยีนในพืชอื่นๆ เช่น ยีน 
NADH-plastoquinone oxidoreductase subunit K (ndhK) ยีน hexokinase-1 และยีนท่ีเก่ียวข้องกับการสร้าง  
ribosomal RNA
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