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DNA Methylation in Sugarcane Genotypes under Water Deficit Stress
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Abstract

DNA methylation is one of the process involved in the regulation of gene expression in plant’s
response to environmental stresses. Hence, methylation-sensitive amplified polymorphisms (MSAP) were
used to evaluate the effect of water deficit stress on the extent and patterns of DNA methylation in
sugarcane leaves. Sugarcane cultivar KPS 94-13 and KPS 01-11-6 plantlets were subjected to water
deficit stress for 12 h, 1, 3 and 5 days by adding 16% PEG 6000 into culture medium. Changes in DNA
methylation and polymorphism in methylated DNA were assessed by using selective MSAP primer
combinations. Water deficit induced genome-wide DNA methylation polymorphisms accounted for 64.2
% and 65.1% of the total bands at all time-points in KPS 01-11-6 and KPS 94-13, respectively. The number
of hyper-methylated band (type IV) was stable in KPS 01-11-6 but increased considerably in KPS 94-13
in comparison with the control. The changes in cytosine methylation banding patterns between control and

water deficit stress were compared. These finding indicated that alteration in DNA methylation under
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water deficit stress occurred in two sugarcane genotypes. The water deficit stress induced more DNA
demethylation than DNA methylation in KPS 01-11-6 whereas the level of DNA methylation was increased
in KPS 94-13. Based on the BLAST results of polymorphic methylated fragments, the cloned fragments
showed significant homology to known sequences of NADH-plastoquinone oxidoreductase subunit K

(ndhK) gene, hexokinase-1 gene and ribosomal RNA gene.

Keywords: DNA methylation, sugarcane, water deficit, MSAP
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Table 1 DNA methylation changes in leaves under control and different levels of water deficit stress

conditions.
Pattern KPS 01-11-6 KPS 94-13
0 12 1 3 5 0 12 1 3 5
hour hours day days days hour hours day days days
1 76 79 87 82 81 115 93 92 110 77
2 35 32 24 44 42 44 39 42 38 56
3 44 43 41 38 32 49 37 48 55 41
4 71 72 74 62 71 71 110 97 76 105
Total site * 226 226 226 226 226 279 279 279 279 279
MSAP (%) ¢ 66.4 650 615 637 642 588 667 670 606 724

Non methylated band  33.6 350 385 36.3 358 412 333 330 394 276

(%)

Hemi methylated band 155 142 106 195 186 158 140 151 136 20.1
(%)4/

Fuly methylated band  50.9 50.9 509 442 456 43.0 527 520 47.0 523
(%)5/

YTotal site = 1+2+3+4

ZMSAP (%) = [(2+3+4)/(1+2+3+4)] x 100

¥ Non-methylated ratio (%) = [(1)/(1+2+3+4)] x 100
YHemi methylated ratio (%) = [(2)/(1+2+3+4)] x 100
Y Fully methylated ratio (%) = [(3+4)/(1+2+3+4)] x 100
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uaz 31.9 ilefifud TulefidusninAewilasusuiniade Winfu 27.4 29.2 25.7 uaz 28.3 e fidus any
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PeaaiugnunIuau 94-13 Hulefidusinisulasuudasuuupiufiamwdu winiy 165 19.7 25.8 uay 22.6
wafidus ulefifusinnlfauudlas uuuisiiaadi winiu 34.1 29.4 29.4 uaz 39.4 iwlafidusinalsanin
vy . o o 4 a a4 - e A
21AUN 12 99109 1 3 uaz 5Aumuaay  nniasuudasuuupmiaadis wuy H ifwuuundnnadasuidas
wnfgaludeaisassiug Asluan matuaufauausdue uguuuy 3 (fully methylated state) 1ialssu
Y as e oo L - | . A @ lea e
ananinina i aumRalatuanauduwLLg 2 (hemi-methylated state) Anidutafidusinigilaauutlas
ANANUAUAUMUIANUA 12 Faluede 5 51 wirdy 75 wWefidus ludealprauniunauai 01-11-6 LA 66.7
wWafidus Tuiugiiunauan 94-13 angiinsasuilsuuuwfiswduiuy O Wuuuundnisulasuulas
wnAgaluAugiuneLaw 01-11-6 AluanmeouauiiaunuABwalugluuun 2 Waeldfuaniwanatining
s AU fianduisauduulawefufiawdu (hyper methylation) ﬂ@mmmum@umlmmmuw 4 Am
Fuwlefiduinnsulasuulasvinty 64.7 wesidus AUNUEIIUNILAY 94-13 Msfasdfaaduuny M iy
WL wumﬁmaﬂuuﬂmmﬂmm eﬁﬂmmwmu@uimummmgmmmma"lfn‘llmeﬁummmmmuwmwm
co o a - o dH e Y ey e oo L X

wuldFnamng AeiaunuABwelugluuum 1 Waldfuan wanatihdna e dumiawduinauiluiuy
lanlafiuiiandu Aafaunuadwelugtluuud 4 Asduslefifusdnisulaauwlaini 37.9 wlafifusd

annnislasundasgluuunisiiabiulamiaadurseniuiataduifiadu wudnludeslaau
AUNILAU 01-11-6 annanatin IszaLaasninfamRaatuanas Aeiinnilaeuulasuuumnmiaiadunn
nnduuLNiaiadu anedesiugAunLan 94-13 annaandnti iian s asuwlasuuusiiaiedi
genduuuAmiaedu gluuunisnlaauulasinanaenadeiueniddaluihanelfanimesaaainania
win Tneiheaneiug Y21 Hulefifudnsasuudasuuumiandugaaudeanudsduasanaelonounas
”Lmlﬁsﬁu (Xue-Lin et al., 2009) uazluihearaWugnuias (CCRI35 uas Zhong07) ﬁi”ﬁ”mmmﬂﬁmuﬁ@
mewmu mmmwuﬁlmumu (CCRI12) innsulaeuulasuunauiiaiadu Aetlsydansnisfinmfinndu
A& HlnsyAUAINLIENIRNEY (Wang ef al., 2015a)
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Table 2 Analysis of DNA methylation patterns under water deficit stress conditions.

cv s KPS 01-11-6 KPS 94-13

Pattern Class 12 1 3 5 12 1 3 5
M
hours day days days hours day days days

1 1 1 1 49 49 46 47 75 72 77 53
No change 1 0 1 0 6 3 7 7 10 11 8 15

16 10 13 9 10 17 8 5

o O w r
o
o

0 0 0 0 38 32 25 27 43 42 32 33
% 482 416 403 398 495 509 448 38.0
12 6 4 8 8 3

m
N
(@)
N
N
N
N
:

F 0 1 1 1 7 8 13 10 10 10 15 10
G 0 0 1 1 1" 19 1" 18 4 6 10 11
Demethylation

H 0 1 1 0 3 8 6 12 4 8 10 12

| 0 0 1 0 12 5 23 18 13 11 10 10

J 0 0 0 1 10 15 12 8 1" 12 19 17
% 243 292 341 319 165 197 258 226

K 1 1 1 0 1" 8 8 5 12 12 10 19

L 1 1 0 1 6 8 10 10 10 10 17 14

1 1 0 0 10 11 12 14 18 17 11 29
Methylation
1" 8 3 5 6 5 1" 5

o =z <
o
o

1 0 0 0 6 13 13 17 24 20 17 21
P 0 1 0 0 18 18 12 13 25 18 16 22

% 2r4 292 257 283 341 294 294 394

YC: control, S: water deficit stress, H and M represents digestion with EcoRI/Hpall, and EcoRI/Mspl, respectively.,

Ascore of 1 and 0 represents the presence and absence of bands, respectively.

3. msdaseaduiandlalndrasuauiiduiaignifunyiuia
Imuu,num@umwmﬂLL‘ummmimmmmumLwn@LmuwLLmnwnmvmwmmwmumunummwmm
5ﬁﬁ?@avmwmﬂwuqa@a annnslde wswes 10 ¢ fleninmeidnautanalelng wdasinunnBeufeyusy
gudiaya NCBI wuddFUTeaTe IndmALAT Rl Ey 34 wefidud Wnssiuanduiiaalendlugudeya
LL@”SLu@'Ju'ZQ’MU Tnedlelndntlanumileususduianaleln A ugudaya LmeiummammimqLﬂumu
gasthuiell visedslanauinidaay Aaflu 49 wefifufiesfetnedinumiomn a1aifiosunanaluy
wassasiaunnlvn menﬂmmm‘umm@‘ﬂ@iwmmm@ﬂﬂmimummm@mﬂunuwmmeﬂwumu 1lsvnay
AR ST IdanninATIA MSAP Saunaseudnedu tlsvanns 180 S 400 Alua mm‘l.umﬂmmﬁvumm
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wileusasdnduiionalenaild edndlsfinn17 wefifusrasdnfuiiandlelnaniainmzildnudndanny
R WALIEWA Tugqﬁfﬂﬁm‘éﬂuﬂm%m (AN37 3)1u SduTianale IndresnuaSued 3 uas 4 29l
ang wsiwas ER+ACT/HM+GGC ﬁmuﬂ?iﬂuuﬂmgﬂLmun’mﬁmﬁLﬁummﬁmﬁmmu G andealnau
AUWILaY 01-11-6  uazuuy M lwdugniuneuan 94-13 uariarumleuiuansuiionale ndaasiu
hexokinase! (HXK1) BEid HXK? \Readesiudanmevianlsd HXKA ﬁﬁmﬁﬁiuﬂﬁﬁ“&mﬂmiﬁ?m%
(phosphorylation) ’Lumﬂﬂﬁ'wﬁ’]m@nq‘[maiﬁlﬂu glucose 6-phosphate Tudumeunsnaeenszuaunsina
Inladia (glycolysis) v'iwfh'ﬁ'Lﬂuﬁ'mmai"u-zﬁ'aﬁm;tywmluﬂizmumi sugar sensing and signal transduction
pathways eg¥sa @@“lumm’éﬁqﬁﬁm@ nslinma wasinEn s fTnana i (Gupta and Kaur, 2005)
wazdunumlunisaauannistla-tanesiinlu (Granot et al., 2014) yananNHganLFeesuaLURIEeT 6
fafiaunn 183 fiua lFang nsues ERFACTHM+GAC Smsulasuudasgluuumsfissiiandu wu F
AndasRugiIunIuaY  94-13 wudrdanumilauiuaiduiianalalndaastiu NADH-plastoquinone
oxidoreductase subunit K (ndhK) Faifludufdaase subunit k 1 NDH complex Ainulunaalimanas vin
wihfiiugananslunisrudnedidnasenlunssuiunisdanneidaeigs feilna lHAnnns/aA 2 ATP i
%u (Darie et al., 2006; Rumeau et al., 2007)

TGP VTPt PN (T R TR P o Lﬂumzmuﬂﬁwﬁﬁﬁwmﬂuﬂ”uzrm‘u@mmmm\‘m@n
m@qﬁuu@xmnﬂﬁﬂuuﬂmgﬂLmumilﬁmﬁLﬁummﬁmﬁuﬁmmmgﬂﬂixﬁuié’mﬂmq:m?ﬂmmn?ﬁlqmmﬁ@u
(Chinnusamy and Zhu, 2009) faitulieuidaeas Dyachenko et al. (2006) wudnnnelFan1nLATEAa1N
ANNLAN Mesembryanthemum crystallium LﬁmLuﬁfaL@%u’l,uu??vsm?ﬁﬂuﬁL'Sul,@'*qm%ﬁmﬂ%w,ﬂu 2 in
ﬁuﬁwﬁmdwLﬁﬂq%’mﬁmmﬂ?ﬁ'ﬂmmm‘lﬁmm%aimmﬁu%'qﬁm@r;ifama?l,mma@nmmﬂuﬁmqumﬂ (Santos
et al., 2011) newiREafINTuAAIRaNTsELIAANI YA TIaIaFuE Y 191 11 Arabidopsis AN
Suau 25,423 Tu 61,5 iwlefifuiesdumarilinunnsfaaE e fiand 5.2 wlefidud nudRawia
Il BnllsTuneseiiu (promoter-methylated genes) uaxan 33.3 ilefidud uiuiifnumaad
vl Fnd Flunnsaensiisesiiy (body-methylated genes) ATIREBLIANNANNUSTLII1NTTAARALEY
meﬁ@L@%mmxgﬂLLuumimemnmmﬁu WUANsTAUNNsUdAeenTasETIfn  wRalndulu B ldly
neaansiatestugendiuliinuiaeduy snsfituiinaefaedl o e e insusnseen
TuszdusniulFdnnsAnuiisetuilisnallslunefedhiinasanisuanseentasiiluiie ded
wrnzanzas wazilen B feusuniinsfaufiaeduluiuiuniit wud nguiuilfa wiaeduly
Wnndidulllunes dnuseneudleiuiifaadesiunisairaeulmilunszusunisllsilelada
(Proteolysis) mmﬁmﬁmﬁu‘ﬁ' Aaufiaiatugulu S il lunisaensiareiu Ursnaudas Suiiisadesiy
nsafeulmilunguazazlasin (catalytic enzymes) mwun@muﬂummmmme,ﬂumwumnmmm
Aunn9a¥19 nauaesUduwnAraiEi | (Zhang et al., 2006) FatfunnsiinnssLaunsAS e ialaduvie
AufiandursenadslaildtadeaiunnisugaseantesfunialFanmiastnudifesatnafien Aanosdesd
nsAnmfudnluies nsusaeantesthumanis e lidnladaateansinmiuewiiaatwitenia
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Table 3 BLAST results of polymorphic MSAP fragments.

MSAP Methylation  Size Homologous sequence in ) )
fragment Genotype status (bp) NCBI Accession Identity E-value

1 94-13  demethylation 266 Saccharum hybrid cultivar R570 clone KF184924 .1 95% 1E-67
BAC 260G18 sequence, complete
sequence

2 94-13 methylation 323 Oryza brachyantha FQ378032.1 100%  1E-03
chromosome 11

3 01-11-6 demethylation 188 Zea mays hexokinase-1 NM_001156634.1 87% 1E-20
(LOC100283735), mRNA

4 94-13 methylation 188 Zea mays hexokinase-1 NM_001156634.1 87% 1E-20
(LOC100283735), mRNA

5 01-11-6  demethylation 304 Sorghum bicolor 22 kDa kafirin cluster ~ AF061282.1 93% 9E-14

6 94-13  demethylation 183 Joinvillea ascendens HQ181329.1 98%  4E-70
NADH-plastoquinone oxidoreductase
subunit K (ndhK) gene, complete cds;
plastid

7 01-11-6  methylation 225 Rice 25S ribosomal RNA gene M11585.1 98% 1E-91

Zea mays 26S ribosomal RNA gene NR_028022.2 97% 5E-90

Zea mays 25S rRNA gene and trans- AJ309824.2 97%  5E-90

poson-like sequence

8 94-13  demethylation 225 Rice 25S ribosomal RNA gene M11585.1 98% 1E-91
9 01-11-6  methylation 186 Zea mays subsp. Mays genotype DQ490951.2 98% 8E-72
CMS-S mitochondrion, complete
genome
10 94-13 methylation 372 Oryza rufipogon 18S ribosomal RNA KM117266.1 9%  1E-172
gene
dgluani1snnang

@mwmmmmmmmvmuhmmmam@ﬂmmms AunazgtuLIIeINANUY sl ALEuLe
TualundeslAunnsnsiusendnsdasiugnuuduas linuuds annisldinatin MSAP ludaaiugnunsuan
94-13 fimsifauny Adueluguuui 4 Wit uasiisziiresnsfamfandufistudielduanmana

mvwlu@ﬂﬂimumuwumu 01-11 6mﬂLm‘umimmLm‘umL@umﬂ@umammvmﬁmmwmmmmvzﬁmw
1evh uazlsziuresmniamiiaiaduanag
mﬁuufm@?avlmm@ummLfaummgmmwzgmﬁ@ﬁLﬁmn'mﬂ?imuuﬂ@ﬂugﬂt,mumﬁmﬁuﬁ@ﬁmﬁ@
wdumelanmanatinanndesiasesaneiug wornaumilausuiduilonalenduesdulufsu wu tu
NADH-plastoquinone oxidoreductase subunit K (ndhK) &l hexokinase-1 LLazauﬁLﬁﬂﬁmﬁumm%\i
ribosomal RNA
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