

Research article

Identification of wild-species introgressions in the *Mi-1* region of tomato breeding lines using a simple polymerase chain reaction-based method

Khadija El Mehrach^{a,*}, Douglas P. Maxwell^b, Henryk Czosnek^b, Saida Tahrouch^a, Mohamed Sedegui^b, Abdelhakim Hatimi^a

^a University of Ibn Zohr, Laboratory of Plant Biotechnology, Department of Biology, Faculty of Science, Agadir, Morocco

^b University of Wisconsin, Department of Plant Pathology, Madison, WI 53706, USA

Article Info

Article history:

Received 28 March 2018

Revised 7 February 2019

Accepted 8 February 2019

Available online 30 June 2019

Keywords:

Mi-1.2 gene,
Root knot nematode resistance,
Tomato breeding programs,
Tomato hybrids,
Wild-species introgressions

Abstract

A polymerase chain reaction (PCR) marker, PMIF/PMIR (tightly linked to the *Mi-1.2* gene, which provides resistance to the root knot nematode) was developed. PCR primers were designed in intron 1 of the *Mi-1.2* gene. PCR using these primers produced six different profiles for different tomato lines. These profiles allowed discrimination among lines of *Solanum lycopersicum* with no introgressions from wild species in the *Mi-1.2* gene region and lines with introgressions from *S. peruvianum*, *S. chilense* and *S. habrochaites*. Furthermore, these PCR profiles distinguished between resistant (Mi/Mi, Mi/+) and susceptible hybrids (+/+) of root knot nematode. Sequences of the 780-bp PCR-amplified fragment had 99% identity with intron 1 of the *Mi-1.2* gene, which confirmed the tight linkage of the markers to the studied locus. The information generated by these primers could be used in tomato breeding programs for detection of introgressions from wild species in the *Mi-1.2* region of chromosome 6.

Introduction

Tomato, *Solanum lycopersicum* (previously *Lycopersicum esculentum*), is one of the most important vegetable crops of the Solanaceae and is widely used as a food ingredient throughout the world and more than 100 million t are produced annually, with the USA, several European countries, Japan and China being among the most important tomato-producing countries (De Carvalho et al., 2015). However, many tomato hybrids are highly susceptible to a number of pathogens, including bacteria, viruses, fungi, nematodes and insect pests. Resistance alleles are primarily present in wild tomato species

(Foolad, 2007). Thus, breeding for disease resistance is an important objective in tomato improvement. Many disease resistance genes have been identified in wild species such as *Solanum peruvianum* (Sp) (Barham and Winstead 1957; Seah et al., 2004), *Solanum chilense* (Sc) (Zamir et al., 1994; Grandillo et al., 2011), *Solanum habrochaites* (Sh) (Hanson et al., 2006), *Solanum pennellii* (Parniske et al., 1999), and *Solanum pimpinellifolium* (Chunwongse et al., 2002; Foolad 2007) and introgressed into the cultivated tomato, *S. lycopersicum* (Sl).

Root knot nematodes (*Meloidogyne* spp.) are economically important plant pathogens that cause severe damage to tomato crops especially in tropical, sub-tropical and warm climates (De Carvalho

* Corresponding author.

E-mail address: khadija242002@yahoo.fr (K. El Mehrach)

et al., 2015). Yield losses of 50% have been reported (Darekar and Mhase 1988) as a result of root deformation and induced-susceptibility to other pathogens (Johnson, 1998). The use of root knot nematode (RKN)-resistant tomato hybrids is a powerful tool for nematode management. Thus, much effort has been invested into identifying host resistance against RKN in tomato wild species (Fassuliotis, 1985). The single dominant locus *Mi-1* confers resistance to three of the most damaging RKN species in cultivated tomato, *M. incognita*, *M. javanica* and *M. arenaria* (Roberts and Thomason, 1986). In addition, this locus was reported to also provide resistance to certain isolates of the potato aphid *Macrosiphum euphorbiae* (Rossi et al., 1998; Vos et al., 1998) and to two biotypes of the whitefly *Bemisia tabaci* (Nombela et al., 2003).

The *Mi-1* locus was introgressed into the cultivated tomato from a nematode-resistant accession (P.I. 128657) of the complex species *S. peruvianum*, using embryo rescue to obtain a breeding line of these normally incompatible species (Smith, 1944). Genetic and physical mapping located *Mi-1* locus in the introgressed region on the short arm of chromosome 6. There are seven homologs of the *Mi-1* gene arranged in two clusters (cluster 1p and cluster 2p) in the resistant cultivar Motelle, which has the introgressions from Sp (Seah et al., 2004). The functional gene *Mi-1.2* is localized in cluster 1p (Milligan et al., 1998; Seah et al., 2007). A similar arrangement of the seven homologs (cluster 1e and cluster 2e) is present in the susceptible cultivar Moneymaker (Sl). The organization of the *Mi-1* locus in Motelle (with the Sp introgression) and Sl is a 300-kb region inverted in Sl.

Selecting desirable resistance genes in a commercial tomato breeding program requires several generations to develop appropriate inbred lines (Devran et al., 2013). Thus, molecular markers and their ability to tag resistance genes as well as to define the contents of wild-species introgressions in the tomato germplasm can help reduce the number of generations required for selecting favorable resistance alleles without using biological assays.

Marker-assisted selection for RKN resistance began with the use of the Aps-1 marker for acid phosphatase more than three decades ago (Medina-Filho and Tanksley, 1983) and then DNA-based markers were first used in 1994 (Williamson et al., 1994). Several DNA-based markers that are tightly linked to the *Mi* locus have been developed and used for marker-assisted selection for RKN resistance (Williamson et al., 1994; Goggin et al., 2004; Bendezu, 2004; El Mehrach et al., 2005; Seah et al., 2007). Although these DNA-based markers were able to discriminate between resistance and susceptible varieties, they did not provide any information on the introgression present in the *Mi-1* region. In addition, the CAPS marker REX-1, which is one of the commonly used markers (Williamson et al., 1994), produced false positives with several begomovirus-resistant lines having an introgression from Sc (El Mehrach et al., 2005; Devran et al., 2013). While some other markers did not discriminate between homozygous and heterozygous genotypes (Devran and Elekçioğlu 2004), the *Mi23* co-dominant SCAR marker was able to discriminate between *Mi1.2* plants and plants with introgressions from Sc (Seah et al., 2007); unfortunately, it was not tested with Sh germplasm.

Thus, the aim of the current study was to develop polymerase chain reaction (PCR)-based molecular markers that allow the detection of the *Mi-1.2*-resistant gene in tomato breeding lines as well as to distinguish between the tomato genotypes that have introgressions from the wild species *S. peruvianum*, *S. chilense*, and *S. habrochaites* in the *Mi-1* locus region.

Materials and Methods

Plant materials used

Several tomato lines, varieties and hybrids with different known introgressions in the *Mi-1* region of chromosome 6 were used to evaluate the efficiency and reliability of PCR primers:

The RKN homozygous resistant cultivars were: Motelle [see accession LA2823 at Tomato Genetic Resource Center (TGRC)] and Anahu (LA0655 at TGRC) (*Mi/Mi*), which have a *S. peruvianum* introgression in the *Mi-1* locus region.

The RKN susceptible lines, cultivars or hybrids of *S. lycopersicum* (+/+) were: Moneymaker, Nainemor, M82, TY50 and the wild species *Solanum cerasiformae*.

The RKN heterozygous resistant commercial hybrids (*Mi/+*) were: Better Boy [V1, F1, N, ASC, St (N= RKN resistance)], Dominique [V,F1,F2, TMV, N] and Marina [F1,F2, N, ASC, GLS, BS1, Ve].

The RKN-susceptible germplasm types but with resistance to begomoviruses with *S. chilense* introgression were: TY52 (*Ty1* introgression from LA1969, Zamir et al., 1994); and Gc9 (*Ty3* introgression from LA2779 and selected from Fla 595-2), Gc16 (selected from Fla 658-2BK) and Gc171-C1 (*Ty3a* introgression from LA1932 and selected from Fla 8348) (Mejía et al., 2005).

The RKN susceptible wild species was *S. habrochaites* accession (LA1223 TGRC).

The RKN susceptible (see Seah et al., 2007), begomovirus resistant inbred line was Ih902 (Vidavsky and Czosnek 1998), containing the *Ty3* begomovirus-resistance allele introgression from *S. chilense* LA2779 (Martin et al., 2007).

The inbred line selected in Guatemala Gh2 has RKN and begomovirus resistance. Gh2 contains a *Ty3* introgression derived from Ih902, and also has RKN resistance derived from a begomovirus-susceptible parent provided by F. Vidavsky, The Hebrew University of Jerusalem, Israel (Mejía et al., 2005). Gh2 was homozygous for the markers for REX-1, *Mi23*, *Ty1* (TG97 region) and *Ty-3* FLUW25 (Martin et al., 2007). Martin et al. (2007) reported that a bioassay by V. Williamson, Univ. of California-Davis showed that Gh2 was resistant to RKN. The sequence of the fragment with the *Mi23* primers for Gh2 had the same sequence as the fragment from Motelle (Seah et al., 2007).

Gh13 and Gh1 are inbred lines selected in Guatemala; they are RKN susceptible and begomovirus resistant (resistance derived from Ih902; Mejía et al., 2005).

Mh2082 is a begomovirus-resistant germplasm selected in Morocco from a cross between Ih902 and the RKN-resistant hybrid cultivar Daniella (Hazera Co, Israel). It is unknown if this line had the introgression for RKN resistance.

DNA Extraction

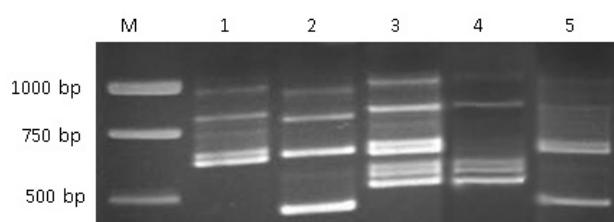
DNA was extracted from fresh leaves from plants grown in a plant growth chamber at the University of Wisconsin-Madison, USA. Samples of 50 mg of tissue were frozen in liquid nitrogen in a microfuge tube, then ground with a sterilized Kontes™ micropesle (Kontes Glass, Vineland, NJ, USA), and extracted using a the PUREGENE® DNA Purification Kit (Genta Systems, Inc.; Minneapolis, MN, USA) following the manufacturer's instructions. DNA concentrations were adjusted to 10 ng/μl and extracts were stored at -20°C.

Development of polymerase chain reaction-based method and primer design

Primer design was done using the differences between the sequences of the intron 1 segment of the *Mi-1.2* and *Mi-1.1* genes (Milligan et al., 1998). The intron 1 segment occurs in the untranslated region of the *Mi-1.2* gene between nt 14,521 and 16,084 for Motelle (U81378). A set of primers, PMIF(5'TCCATTAAGCCCAAGTCGA GATAG3') and PMIR(5'GTCCTGCTCGTTACC ATTACTTTCC 3'), was designed in the insertion of 738 nt found in the intron 1 segment of the *Mi-1.2* gene between 15,071 and 15,852 (Motelle, U81378). PMIF and PMIR had 100% identity with intron 1 in the promoter region of *Mi-1.2* of Motelle (U81378) and also with several regions in the Mi-1 locus such as cluster 1e of *S. lycopersicum* M82 (chromosome 6, HG975518), and cluster 2p (Mi-1.6 and Mi-1.4 genes) of Motelle (AY729690) and *Solanum sp.* VFNT (DQ, 863287). Moreover, 100% nucleotide identity was found with *S. pennellii* (HG975445) and *S. arcanum* (EF028060) sequences. PCR with this set of primers should amplify a 782-bp fragment when the *Mi-1.2* gene is present. Furthermore, the primers were expected to give several fragments from other regions of Mi-1 locus which could help to distinguish between different tomato wild-species introgressions. PCR primers were purchased from Integrated DNA Technologies, Inc. (Coralville, IA, USA).

Polymerase chain reaction analysis

PCR reactions were performed in a total volume of 50 μL containing 5 μL 10x buffer, 5 μL 2.5 mM deoxynucleotide triphosphates (dNTPs), 5 μL 25 mM MgCl₂, 1 Unit *Taq* DNA polymerase, 5 μL each of forward and reverse sense primers at 10 μM, 5–7 μL of DNA template (extract), and H₂O. All molecular biology chemicals for PCR were purchased from Promega, Corp. (Madison, WI, USA). PCR was conducted using an MJ DNA Engine PT200 Thermocycler™ (MJ Research Inc.; Waltham, MA, USA) using the following cycling profile: 3 min initial denaturation at 94°C and 35 cycles of 30 s denaturation at 94°C, 1 min annealing at 50°C or 53°C, 1 min extension at 72°C, followed by a final extension of 10 min at 72°C. PCR-amplified fragments were electrophoresed in 1.5% Seakem LE™ agarose gel (BioWhittaker Molecular Applications; Rockland, ME, USA) in 0.5X TBE buffer, stained with ethidium bromide, and visualized with an Eastman Kodak; Rochester, NY, USA.


Sequence analysis

PCR fragments of PMIF-PMIR were first cloned into two different plasmids: plasmid pGEM®-T Easy vector (~ 3 kb) and plasmid pCR® 2.1-TOPO (3.9 kb). Recombinant plasmids were identified using enzymatic digestion. PCR fragments were then sequenced using a Big Dye Sequencing Kit™ (Biotechnology Center; Madison, WI, USA). Analysis of the sample sequences was accomplished by comparison with known DNA sequences through the National Center for Biotechnology Information BLAST program and the DNAMAN software (Lynnon Corp.; Quebec City, QC, Canada).

Results

The PCR amplification results with PMIF/PMIR primers showed three different electrophoretic profiles for RKN-resistant and RKN-susceptible germplasm without introgressions from Sc in this region. The profile for the RKN-resistant cultivar, Motelle (*Mi-1.2/Mi-1-2*, Fig. 1 lane 1), had five fragments: 900 bp, 780 bp, 708 bp, 627 bp and 597 bp (the RKN profile). The RKN-susceptible cultivar (Moneymaker (++)+, Fig. 1 lane 2) had a distinctly different profile with four fragments: 876 bp, 756 bp, 605 bp and 434 bp (the S1 profile). For the heterozygous RKN-resistant cultivar (*Mi-1.2/+*) Better Boy (Fig. 1 lane 5) there was a PCR fragment profile, which combined the 434-bp fragment detected in the RKN-susceptible germplasm (the H-RKN profile).

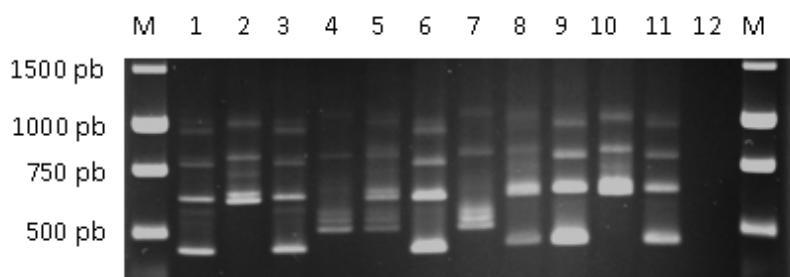
Since it is known that there are begomovirus-resistance genes from Sc in the *Mi-1*-locus region of chromosome 6, breeding lines with introgression from Sc accessions were evaluated with the PMIF/PMIR primers. For Ty52, which carries a *S. chilense* *Ty-1* introgression from LA1969 that spans this region, five bands were detected (Fig. 1 lane 4). Three of these fragments (567 bp, 552 bp, 522 bp; the Sc-Ty1 profile) were not associated with S1 or RKN-resistant germplasm. Moreover, the breeding line Ih902 (Fig. 1 lane 3) with a begomovirus-resistance locus in chromosome 6 for *Ty-3* and known to have Sp sequences in the REX-1 marker region had a different profile, which was a combination of the Sc-Ty1 and RKN profiles (902 profile). It did have the 780-bp fragment that is associated with the RKN resistant cultivar Motelle, but Ih902 is susceptible to RKN. It was originally reported that Ih902 had an introgression from *S. habrochaites* (Sh), but later it was determined to have an introgression from Sc. Because of the distinct fragment profile for Ih902, it seems that it may have an introgression from both Sp and Sc. *S. habrochaites* accession LA1223 only gave two fragments (780 bp and 616 bp, Sh profile) with the PMIF/PMIR primers (Table 1, Fig. 3 lane 12).

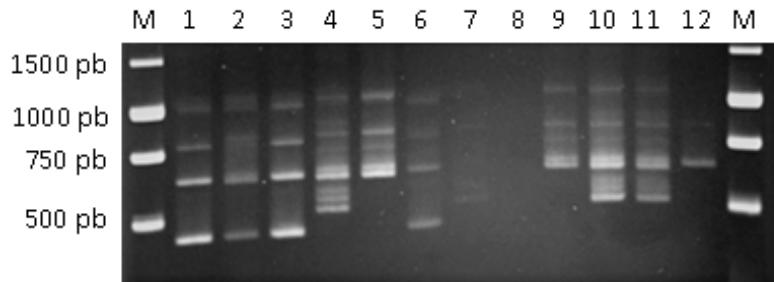
Fig. 1 Polymerase chain reaction results with primers PMIF/PMIR designed to evaluate germplasm in the *Mi-1* locus region for introgressions from wild species.

Table 1 Polymerase chain reaction results using PMIF-PMIR primers to evaluate germplasm in the *Mi-1* locus region for introgressions from wild species

Germplasm	Genotype	PMIF/PMIR profile ^a
M82	+/+	Sl
Nainemor	+/+	Sl
Ty50	+/+	Sl
S. cerasiformae	+/+	Sl
Gh2	Mi/Mi and Ty3/Ty3	RKN
Gh13	Ty3/Ty3	Sl
Gh1	Ty3/Ty3	902
Gc16	unknown	Sl
Gc9	Ty3/Ty3	Sc
Gc171-C1	Ty3a/Ty3a	Sl
Anahu	Mi/Mi	RKN
Mh2082	unknown	902
S. habrochaites	unknown	Sh

^a Sl = *S. lycopersicum*; RKN = root knot nematode-resistant line; 902 = Ih902; Sc = Sc introgression in the *Mi-1* locus region; Sh = two PCR fragment of 780 bp and 616 bp, from *S. habrochaites* LA1223.


From the above results six fragment profiles that corresponded to germplasm with different known sequences in the *Mi-1*-locus region of chromosome 6 were obtained. Thus, these primers discriminated between introgressions from Sp, Sc and Sh as well as RKN-resistant and RKN-susceptible germplasms.


The effectiveness of these primers was evaluated with a set of 13 RKN-resistant and RKN-susceptible germplasm with different introgressions in *Mi-1* region of chromosome 6 (Table 1, Figs. 2 and 3). Begomovirus-resistant germplasm, Gc16, Gc9, and Gc171, which are known to have an introgression from Sc in chromosome 6, were evaluated with the PMIF-PMIR (Table 1, Fig. 2). Gc16 was derived from an original cross of Sl and Sc and had the Sl profile (Fig. 2 lane 3), which would indicate that it did not have an Sc introgression in the region of the *Mi-1* locus. Gc9 (Fig. 2 lane 4) had the Sc-Ty1 profile and it is known from sequence data to have an introgression from Sc in the *Mi-1* region (C. Martin and D.P. Maxwell, personal communication; Ji et al., 2007). Gc171-C1 (Fig. 3 lane 3) has the Ty3a locus from Sc (Ji et al., 2007) and the Sl profile was obtained, which was expected as the Sc introgression was not in the region of the *Mi-1* locus.

For line Ty50 (Fig. 2 lane 9) a Sl profile was revealed, and this line is known not to have an introgression in this region

The presence of *Mi-1.2* was also evaluated in the three inbred breeding lines, Gh1, Gh2 and Gh13, selected in Guatemala for resistance to begomoviruses. These lines were derived from a cross between the begomovirus-resistant line Ih902 and begomovirus-susceptible germplasm. The PCR-fragment profile obtained with Gh2 (Fig. 2 lane 2) was identical to the RKN-profile for the *Mi-1.2* homozygous germplasm Motelle, which indicated that Gh2 had the *Mi-1.2* gene. This result was in agreement with data reported by Seah et al., (2007), where the sequence of the fragment with the Mi23 primers for Gh2 had the same sequence as the fragment from Motelle. The line Gh1 (Fig. 3 lane 4) had the 902 profile, which was consistent with it having Ih902 in its background. The electrophoretic Sl profile obtained for Gh13 (Fig. 3 lane 6) was identical to that of the RKN-susceptible cultivar Moneymaker, and thus, it was concluded that Gh13 had Sl sequences in the *Mi-1* locus region. This finding was confirmed by the sequence data for chromosome 6 for Gh13.

The PCR fragments with primers PMIF-PMIR for the *Mi-1* region were cloned and sequenced to determine their sequence identities. Seven bands amplified from four tomato lines with different sequences in the *Mi-1* region were chosen: the 627-bp and 780 bp fragments from Motelle (with Sp introgression for *Mi-1.2*), the 434-bp, 605-bp and 756-bp

Fig. 2 Gel electrophoresis image showing the effectiveness of the PMIF/PMIR primers to evaluate germplasm in the *Mi-1* locus region for introgressions from wild species

Fig. 3 Gel electrophoresis image showing the effectiveness of the PMIF/PMIR primers to evaluate germplasm in the *Mi-1* locus region for introgressions from wild species

fragments from *S. cerasiformae* (non-breeding line closely related to SI), the 522-bp fragment from TY52 (with Sc introgression for *Ty1*) and the 616-bp fragment from Sh accession LA1223. Sequences were compared with known DNA sequences at the National Center for Biotechnology Information with the BLAST program. The sequence of the 627-bp fragment from Motelle (Fig. 4) had 99% identity for 594 nt with the *Mi-1.6* gene of *S. sp.* VFNT (DQ863288), 95% identity for 577 nt with the intron 1 of the *Mi-1.2* gene from Motelle (U81378) and 88% nucleotide identity for Heinz 1706 for 338 nt and there was 13-bp indel (SGN SL3.0). Heinz 1706 does not have the *Mi-1.2* resistance locus. The 780-bp fragment from Motelle (Fig. 5) had 99% nt identity with the *Mi-1.2* gene from Motelle (U81378) and 93% nt identity with SI M82 with 9 small indels and 2 large indels as well as

16 SNPs (Fig. 6). For *S. cerasiformae* three bands were sequenced: 434 bp, 605 bp and 756 bp (Figs. 7, 8, 9). These fragments had 100% with cluster 1e of SI M82 (HG975518) and 92-94% nt identity with the *Mi-1.2* gene from Motelle (U65668). Furthermore, the sequences of 522-bp band from *S. chilense* (TY52, Fig. 10) had identities of 98% with *S. pennelli* (HG975445) and 95% with *S. arcanum* (EF028059), SI M82 (HG975518) and Motelle (U65668). The 616-bp fragment from the Sh LA1223 accession (Fig. 11) had its highest identity with *S. arcanum* (EF028060) at 97%, and 95% with SI M82 (HG975518). These sequence results confirmed the tight linkage of the 780-bp fragment with the *Mi-1.2* gene and that the primers amplified fragments from other regions of the genome inside and outside the *Mi-1.2* gene for both RKN-susceptible and resistant germplasm.

1	TCCATTAAGC CCAAGTCGAG ATAGGAGAAA AATATTATTA GAGAGATTAT TAATTAAATG
61	ACATTTACT TAGATTTTTT TACAAAATA AGGAATAAT ATCCCGTTAT TAACTAGCT
121	TTAACGCATT ATGGGTGGAA AGTAGAAAGA AGAACATAG TAGAATAGAC AGTAAGTTAT
181	GCTTAATGA GTAGATTTGT ATATGATTAC ATATTTGTT TGACTTTTCG GTGTTTCGAT
241	TAGAAAACCTT ACAAGTTCTT AATACATGTA TCATTTGTTG ATTTGTCCGT TTGGCACGTC
301	ATTTGTGGTT ACAAGTCACA TATGAAGTAT GTCCACGAAC ACACCGATGT CAAGTATAGA
361	TTTCTACTTG ATACATTGTA TGTTGTTTC CATTCTCATT CTCTCTTAT TTTTTTTCT
421	TTACATTACACGACAATA ATTTCTTAC AGGCTCCTTA TAAGCCATAT GCACATAGAC
481	GAATCTAGGA TTGATGTTT ACAAGTTCT ATGTCGACGT CATATTAATA TCAATAATAA
541	TTAGATTGAC AATCACATAT TTATAATATT AAGTCGATAA CTTCTTCTT TGTATAGGT

Fig. 4 Sequence of 627-bp polymerase chain reaction fragment amplified using PMIF/PMIR from root knot nematode-homozygous cultivar Motelle (introgression from *S. peruvianum*)

1	TCCATTAAGC CCAAGTCGAG ATAGGAGAAA AATATTATTA GAGAGATTAT TAATTAAATG
61	ACATTTACT CTAGTTTTTT ATCAAATAA GGGATAATA TCCTGTTATT TAACTACCTT
121	TTAACGCATT TGGGTGGAAA GTAGAAAGAA GAAACATAAC AGAACAGACA GTAAGTTATG
181	CTTAAATGAG TAGATCTGTA TAGGATTACA TATTTGTTG ACTTTTCGGT GTTTCGATTA
241	GAAAACCTAC AAGTTTTAA TACATGATTC ATTGTTGAT GTTGCCGTTT GGCACGTCAT
301	CTGTGGTTAC AAGTCACATA TGAAGTATGT CCACGAGACA CACCGAATGT CAAGTATAGA
361	TTTCTACTTG ATCATAACACA ACTTTATCTG AGGTTGATGC CAAATTAAA TGACTACCTA
421	AAGCTGATAT TTTAACATT AATCTTGTAC ACGAAACAT TATTCTATT ACTGTTTCT
481	TTACCTTAC CTTATAGACT TTTCTGGCAG AAAAAAGTTA GACAGATACA TTTGATGATG
541	TTTACCATTC TCATTCTCTC TTTATTAT TTTCTTACA TTCACACGCG CAATAATTAA
601	CTTGTAGGTT CCTTATATGC CATATGCACA TAGACGAATC TAGGATTGA TATTACAAG
661	TTTCTATGTC GACGTCAAT TAATATCAAT AATAATTAGA TTGACAATCA CATATTATA
721	ATATTAAGTC GATAACTTTC TTCTTGTAT AGGTTGGAAA AGTAATGGTA AACGAGCAGG

Fig. 5 Sequence of 780-bp polymerase chain reaction fragment amplified using PMIF/PMIR from root knot nematode homozygous cultivar Motelle (*S. peruvianum*)

Score 1122 bits(607)	Expect 0.0	Identities 732/785(93%)	Gaps 37/785(4%)	Strand Plus/Minus
Query 1	TCCATTAAAGC CCAAGTCGAG ATAGGAGAAA AATATTATTA GAGAGATTAT TAATTAAATG			57
Sbjct 2360022	ACATTTTACT ACCTAAAGTT GATATTTAA ACATTAATCT TTGACTTCAA AACACTATT			2359964
Query 58	CTTAAAGCATTATGGGTGAAAGTAGAAGAAAGAACATACAGAACAGACTAAGT			117
Sbjct 2359963	ATGACATTACT-TA-ATTTAACATCAAATTAAGGGATAATATCCGTATTTAAC			2359906
Query 118	CTTAAAGCATTATGGGTGAAAGTAGAAGAAAGAACATACAGAACAGACTAAGT			177
Sbjct 2359905	ATGACATTACT-TA-ATTTAACATCAAATTAAGGGATAATATCCGTATTTAAC			2359846
Query 178	CTTAAAGCATTATGGGTGAAAGTAGAAGAAAGAACATACAGAACAGACTAAGT			237
Sbjct 2359845	ATGACATTACT-TA-ATTTAACATCAAATTAAGGGATAATATCCGTATTTAAC			2359786
Query 238	CTTAAAGCATTATGGGTGAAAGTAGAAGAAAGAACATACAGAACAGACTAAGT			296
Sbjct 2359785	ATGACATTACT-TA-ATTTAACATCAAATTAAGGGATAATATCCGTATTTAAC			2359726
Query 297	CTTAAAGCATTATGGGTGAAAGTAGAAGAAAGAACATACAGAACAGACTAAGT			356
Sbjct 2359725	ATGACATTACT-TA-ATTTAACATCAAATTAAGGGATAATATCCGTATTTAAC			2359682
Query 357	CTTAAAGCATTATGGGTGAAAGTAGAAGAAAGAACATACAGAACAGACTAAGT			416
Sbjct 2359681	ATGACATTACT-TA-ATTTAACATCAAATTAAGGGATAATATCCGTATTTAAC			2359633
Query 417	CTTAAAGCATTATGGGTGAAAGTAGAAGAAAGAACATACAGAACAGACTAAGT			476
Sbjct 2359632	ATGACATTACT-TA-ATTTAACATCAAATTAAGGGATAATATCCGTATTTAAC			2359574
Query 477	CTTAAAGCATTATGGGTGAAAGTAGAAGAAAGAACATACAGAACAGACTAAGT			536
Sbjct 2359573	ATGACATTACT-TA-ATTTAACATCAAATTAAGGGATAATATCCGTATTTAAC			2359515
Query 537	CTTAAAGCATTATGGGTGAAAGTAGAAGAAAGAACATACAGAACAGACTAAGT			596
Sbjct 2359514	ATGACATTACT-TA-ATTTAACATCAAATTAAGGGATAATATCCGTATTTAAC			2359455
Query 597	CTTAAAGCATTATGGGTGAAAGTAGAAGAAAGAACATACAGAACAGACTAAGT			656
Sbjct 2359454	ATGACATTACT-TA-ATTTAACATCAAATTAAGGGATAATATCCGTATTTAAC			2359395
Query 657	CTTAAAGCATTATGGGTGAAAGTAGAAGAAAGAACATACAGAACAGACTAAGT			716
Sbjct 2359394	ATGACATTACT-TA-ATTTAACATCAAATTAAGGGATAATATCCGTATTTAAC			2359335
Query 717	CTTAAAGCATTATGGGTGAAAGTAGAAGAAAGAACATACAGAACAGACTAAGT			775
Sbjct 2359334	ATGACATTACT-TA-ATTTAACATCAAATTAAGGGATAATATCCGTATTTAAC			2359275
Query 776	CTTAAAGCATTATGGGTGAAAGTAGAAGAAAGAACATACAGAACAGACTAAGT			834
Sbjct 2359274	ATGACATTACT-TA-ATTTAACATCAAATTAAGGGATAATATCCGTATTTAAC			2359270

Fig. 6 Sequence-alignment of 780 bp polymerase chain reaction fragment from Motelle and M82 (Chromosome 6, HG975518) sequence, using BLAST program, with query sequence: 780bp PCR fragment from Motelle and subject sequence: SI-M82 (Chromosome 6, HG975518) sequence

1 TCCATTAAAGC CCAAGTCGAG ATAGGAGAAA AATATTATTA GAGAGATTAT TAATTAAATG
 61 ACATTTTACT ACCTAAAGTT GATATTTAA ACATTAATCT TTGACTTCAA AACACTATT
 121 CTATCACTGT TTTCTTACT TTTACTTTAT AGACCTTTT GTAGAGAAAA AGTTAGACGG
 181 ATACATTGTA TGGTGTTC CATTCTCATT CTCTCTTTAT TCTTTTTCT TTACATTAC
 241 ACGCACAATA ATTTCTTGT AGGCTCTTA TAAGCCATAT GCACATAGAC GAATCTAGGA
 301 TCTGATTTT ACAAGTTCT ATGTCGACGT CATAATTAAATC TCGATAATAA TTAGATTGAC
 361 ATACACATAT TTATAATTAT TAAGTCGATA ACGTTCTTCT TTGTATAGGT TGGAAAAGTA

Fig. 7 Sequence of 434-bp polymerase chain reaction fragment amplified from the root knot nematode-susceptible germplasm *S. cerasiformae* using PMIF/PMIR primers

1 ATAGGAGAAA ATTATTAGAG AGATTATTA TCTAATGACA TTTTACTTAG ATTTTAATCA
 61 AAATAAGGGA ATAATATCCT GTTATTTAAC TAGCTTTAA GAATTATGGG TGAAAGTAG
 121 AAAGAAGAAA CATAACAGAA TAGACAGTAA GTTATGCTT AATGAGTAGA TTTGTATATG
 181 ATTACATATT TTGTTGACT TTTCGGTGT TCGAGTAGAC TTACATGTTT TAAATACATG
 241 TATCATTGTT TGATTTGCTC TTTGGCCCG TCATCACATA TGAAGTATGT CCATGAGACA
 301 CACCGATGTC AAGTATAGAT TTCTACTTGA TCATACACAA CTTTACTGTA GGTGATGCC
 361 AAATTACCT AAACCTGATA TTTACATTAC ACACGCACAA TAATTTCTT GTAGGCTCCT
 421 TATATGCCCA CATAGACGAA TCTAGGATT GATATTTACA AGTTCTATG TCGACGTCA
 481 ATTAATACATA ATAATAATTAA GATTCAACAT CACATATTAA TAATTATTA GTCGATAACT
 541 TTCTCTTG TATAGGTGG AAAAGTAATG

GTAAGC

Fig. 8 Sequence of 605-bp polymerase chain reaction fragment amplified from the root knot nematode-susceptible germplasm *S. cerasiformae* using PMIF/PMIR primers

1 TCCATTAAAGC CCAAGTCGAG ATAGGAGAAA AATAATATTA TTAGAGAGAT TATTAATCTA
 61 ATGACATT TT ACTTAATTTT AATCAAATA AGGAATAAT ATCCGTAT TTAACTAGCT
 121 TTTAAGCATT ATGGGTGAA AGTAGAAAGA AGAAACATAG CAGAATAGAC AGTAAGTTAT
 181 GCTTTAATGA GTAGATCTGT ATATGATTAC ATATTTGTTT GACTTTTCGG TGTTTCGATT
 241 AGAAAACCTA CAAAGTTTTT AAAACATGTA TCATTTGTTG ATTTGTCGGT TTGGCACGTC
 301 ATCACATATG AGTATGCTC TGAGACACAC CGATGTCAAG TATAGATTTC TACTTGATCA
 361 TACACAACTT TATCTGAGGT TGATGCCAA TCTAAAGCTG ATATTTAAAT CATTAAATCTT
 421 ATACACGAAA ACATCATTCC TATTACTGTT TTCTTACCT TTACCTTATA GACTTTTG
 481 CAGAAAAAAAG TTAGACAGAT ACATTTGATG ATGTTTACCA TTCTCATTCT CTCTTATT
 541 TATTTCTT ACATTACAC GCACAAATAAT TTCTTGTAG GTCCCTTATA TGCCATATAC
 601 ACATAGACGA ATCTAGGATT TGATATTAC TAGTTTACAT GTCGACGTCA TATTAATATC
 661 ATAATAATTAA AGATTGACAA TCACATATTAA ATAATTTAAAT AGTCGATAAC TTTCTTCTTA
 721 GTATAGGTG GAAAAGTAAT GGTAAACGAG CAGGAC

Fig. 9 Sequence of 756-bp polymerase chain reaction fragment amplified from the root knot nematode-susceptible germplasm *S. cerasiformae* using PMIF/PMIR primers

1 TCCATTAAGC CCAAGTCGAG ATAGGAGAAA AATATTATTA GAGAGATTAT TAATCTAATG
 61 ACATTTTACT TAGATTTTA TCAAAATAAG GGAATAATAT CCCGTTATT AACTAGCTTT
 121 TAAGAATTAT GGATGGAAG TAGAAAGAAG AAACATAACCA GAGACAGTAA GTTATGCTTT
 181 AATGAGTAGA TTTGTATATG ATTACCAAAA CACTATTCT TACTTTTACCC TTATAGACTT
 241 TTTGGGCAGA AAAAGTTA GACTGATACA TTTGATGATG TTTCCATTC TCATTCTCTC
 301 TTTATTATT TTTTTACAT TCACACGCAC AACAAATTTC TTACAGGCTC CTTATAAGCC
 361 ATATGACAT ACACGAATCT AGGATTGAT ATTACAAGT TTCTATGTCG ACGTCAATT
 421 ATAATCAATA ATAATTAGAT TGACAATCAC ATATTTATAA TTATTAAGTC GATAACTTTC
 481 TTCTTGTAT AGGATGGAAA

Fig. 10 Sequence of 522-bp band obtained with PMIF/PMIR from the susceptible cultivar TY52 (*Ty1* introgression from *S. chilense*)

1 TCCATTAAGC CCAAGTCGAG ATAGGAGAAA AATATTATTA GAGAGATTAT TAATTTAATG
 61 ACATTTTACT TAGATTTTA TCAAAATAAG GGAATAATAT CCCGTTATT AACTAGCTTT
 121 TTAAGCATTAA TGGGTGAAAG GTAGAAAGAAG GAAACATAGC AGAATAGACA GTAAAGTTATG
 181 CTTTAATGAG TAGATCTGTA TATGATACA TATTGTTTG ACTTTCTGGT GTTTCGATTA
 241 GAAAACCTTAC AAGTTTTAA TACATGTTAC ATTTGTTGAT TTGTCCTATT GGCACGTCAT
 301 CACATATGAA GTATGTCCAT GAGACACACC GATGTCAGT ATAGATTCT ACCTTGATCAT
 361 ACACAACCTT ATCTGAGGTT GATGCCAAAT TTACCTAAAC TTGATATTAA ACATTCACAC
 421 GCACAATAAT TTTCTTGTAG GCTCCTTATA TGCCATATGC ACATAGACGA ATCTAGGATT
 481 TGATATTAAAGTTCTAT GTCGACGCCA TATTAATATC AATAATAATT AGATTGACAA
 541 TCACATATTATAA ATAATTACTA AGTCGATAAC TTCTCTTT GTATAGGTTG GAAAAGTAAT

Fig. 11 Sequence of 616-bp fragment obtained with PMIF/PMIR from the susceptible LA1223 accession of *S. habrochaites*

Discussion

The development of RKN-resistant tomato hybrids is considered the most cost-effective and sustainable option for nematode management (Cook, 2000). The identification of the RKN-resistant gene in tomato plants can depend on the use of biological assays, which is expensive and time consuming. Additionally, previous studies have shown that evaluation of disease-resistant traits in biological assays is not always straightforward because assays are often affected by environmental factors (Arens et al., 2010). Furthermore, screening of many recombinant plants and selection of breeding inbred lines can be very tedious and labor intensive. Thus, marker-assisted selection (MAS) represents a powerful tool to overcome some limitations of traditional breeding methods and is successfully adopted by tomato breeding programs. MAS is most efficient when the marker is tightly linked to the studied trait (Kelly, 1995). The present study reported the development of a PCR marker (PMIF/PMIR), which is tightly linked to the *Mi-1.2* gene. Although different molecular markers that are linked to the *Mi-1* locus have been developed for selection, some of them have limitations (Williamson et al., 1994; El Mehrach et al., 2005). Indeed, in earlier studies, Williamson et al., (1994) used the C1/C2 and C2/S4 primers to screen tomato lines for RKN resistance. They were able to distinguish resistant genotypes from the susceptible ones but were not able to distinguish resistant homozygous plants from resistant heterozygous ones. The PCR PMIF/PMIR primers discriminated between these genotypes and without enzymatic digest as is the case for the REX-1 marker (Williamson et al., 1994). The REX-1 marker was reported to give false positives with begomovirus-resistant germplasm (El Mehrach et al., 2005; Seah et al., 2007). This problem was resolved with the PMIF/PMIR marker that gave distinct fragment profiles with some begomovirus-resistant germplasm, for example, TY52 and Gh13 (Zamir et al., 1994; Mejia et al., 2005). However, Ih902 remains an anomaly as it has a combination of

profiles from Motelle and Ty52, but it is susceptible to RKN. One possibility could be that there is a mutation in the *Mi-1.2* gene but the primers still have the ability to anneal. In the other hand, SI profile revealed in Gh13, was confirmed by the sequence data reported by Menda et al., (2014) for chromosome 6. Other PCR markers specific for the *Mi-1.2* locus (El Mehrach et al., 2005; Seah et al., 2007) were able to discriminate resistant and susceptible germplasm without giving false positives with begomovirus-resistant breeding lines. However, the PMIF/PMIR primers had the advantage of detecting germplasm that had different introgressions from wild species in this region of chromosome 6, such as Sp, Sc-*Ty1* and 902-profiles. Thus, these markers could be used in a breeding program to select inbred lines with begomovirus-resistance genes as well as the RKN-resistance gene.

The current study developed a PCR-based marker for the *Mi-1.2* gene that could be used effectively in a tomato breeding program and would eliminate the need for bioassays and markers that require enzyme digestion of PCR products. It also effectively distinguished among several different introgressions from wild tomato species that could be present in the *Mi-1* region of chromosome 6.

Conflict of Interest

The authors declare that there are no conflicts of interest.

Acknowledgements

This research was supported by a MERC/USAID grant no. GEG-G-00-02-0000300, a CDR/USAID grant no. TA-MOU-01-C21-008, and the College of Agricultural and Life Sciences, University of Wisconsin-Madison. The authors appreciated helpful discussions with Dr. M.J. Havey, USDA and University of Wisconsin-Madison.

References

Arens, P., Mansilla, C., Deinum, D., et al. 2010. Development and evaluation of robust molecular markers linked to disease resistance in tomato for distinctness, uniformity and stability testing. *Theor. Appl. Genet.* 120: 655–664.

Barham, W.S., Winstead, N.N. 1957. Inheritance of resistance to root-knot nematodes in tomatoes. *Proc. Am. Soc. Hort. Sci.* 69: 372–377.

Bendezú I.F. 2004. Detection of the *Mi* 1.2 tomato gene by PCR using non-organic DNA purification. *Nematropica*. 34: 23–30.

Chunwongse, J., Chunwongse, C., Black, L., Hanson, P. 2002. Molecular mapping of the Ph-3 gene for late blight resistance in tomato. *J. Hortic. Sci. Biotechnol.* 77: 281–286.

Cook, R.J. 2000. Advances in plant health management in the twentieth century. *Annu. Rev. Phytopathol.* 38: 95–116.

Darekar, K.S., Mhase, N.L. 1988. Assessment of yield loss due to root-knot nematode, *M. incognita* race 3 in tomato, brinjal and bitter gourd. *Int. Nematol. Network. Newslett.* 5: 7–9.

De Carvalho, L.M., Benda, N.D., Vaughan, M.M., et al. 2015. *Mi*-1-mediated nematode resistance in tomatoes is broken by short-term heat stress but recovers over time. *J. Nematol.* 47: 133–140.

Devran, Z., Elekçioflu, I.H. 2004. The screening of F2 plants for the root-knot nematode resistance gene, *Mi* by PCR in tomato. *Turk. J. Agric. For.* 28: 253–257.

Devran, Z., Başköylü, B., Taner, A., Doğan, F. 2013. Comparison of PCR-based molecular markers for identification of *Mi* gene. *Acta Agr. Scand., Section B – Soil & Plant Sciences*. 63: 395–402.

El Mehrach, K., Mejía, L., Gharsallah-Chouchane, S., et al. 2005. PCR-based methods for tagging the *Mi*-1 locus for resistance to root-knot nematode in begomovirus-resistant tomato germplasm. *Acta. Hortic.* 695: 263–270.

Fassuliotis, G. 1985. The role of the nematologist in the development of resistant cultivars, In: Sasser, J.N., Carter, C.C. (Eds.). *An Advanced Treatise on Meloidogyne*. North Carolina State University. Raleigh, NC, USA. pp. 233–240.

Foolad, M.R. 2007. Genome mapping and molecular breeding of tomato. *Int. J. Plant Genomics.* 2007. doi:10.1155/2007/64358.

Goggin, F.L., Shah, G., Williamson, V.M., Ullman, D.E. 2004. Instability of *Mi*-mediated nematode resistance in transgenic tomato plants. *Mol. Breed.* 13: 391–394.

Grandillo, S., Chetelat, R., Knapp, S., et al. 2011. *Solanum* sect. *Lycopersicon*. In: Chittaranjan, K. (Ed.). *Wild Crop Relatives: Genomic and Breeding Resources*. Springer, New York, NY, USA, pp. 129–215.

Hanson, P., Green, S., Kuo, G. 2006. Ty-2, a gene on chromosome 11 conditioning geminivirus resistance in tomato. *Tomato Genet. Coop. Rep.* 56: 17–18.

Ji, Y., Schuster, D.J., Scott, J.W. 2007. Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. *Mol. Breed.* 20: 271–284.

Johnson, A.W. 1998. Vegetable crops, In: Pederson, G.A. et al. (Eds.). *Plant-nematode Interactions*. Agron. Soci. Am., Madison, WI, USA, pp. 595–635.

Kelly, J.D. 1995. Use of random amplified polymorphic DNA marker in breeding for major gene resistance to plant pathogens. *Hortic. Sci.* 30: 461–465.

Martin, C.T., Salus, M.S., Garcia, B., et al. 2007. Evaluation of PCR-based markers for scanning tomato chromosomes for introgressions from wild species. *Report of the tomato genetics cooperative*. 57: 31–34.

Medina-filho, H.P., Tanksley, S.D. 1983. Breeding for nematode resistance, In: Evans, D.A. Sharp, W.R., Ammirato, P.V., Yamada, Y. (Eds.). *Handbook of Plant Cell Culture*, Vol. 1. Macmillan. New York, NY, USA, pp. 904–923.

Mejía, L., Teni, R.E., Vidavski, F., Czosnek, H., Lapidot, M., Nakhla, M.K., Maxwell, D. P. 2005. Evaluation of tomato germplasm and selection of breeding lines for resistance to begomoviruses in Guatemala. *Acta. Hort.* 695: 251–256.

Menda, N., Strickler, S.R., Edwards, J.D., et al. 2014. Analysis of wild-species introgressions in tomato inbreds uncovers ancestral origins. *BMC Plant Biol.* 14: 287–303.

Milligan, S.B., Bodeau, J., Yaghoobi, J., Kaloshian, I., Zabel, P., Williamson, V.M. 1998. The root knot nematode resistance gene *Mi* from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. *Plant Cell.* 10: 1307–1319.

Nombela, G., Williamson, V.M., Muniz, M. 2003. The root-knot nematode resistance gene *Mi*-1.2 of tomato is responsible for resistance against the whitefly *Bemisia tabaci*. *Mol. Plant Microbe Interact.* 16: 645–649.

Parniske, M., Wulff, B.B., Bonnema, G., Thomas, C.M., Jones, D.A., Jones, J.D. 1999. Homologues of the Cf-9 disease resistance gene (Hcr9s) are present at multiple loci on the short arm of tomato chromosome 1. *Mol. Plant Microbe Interact.* 12: 93–102.

Roberts, P.A., Thomason, I.J. 1986. Variability in reproduction of isolates of *Meloidogyne incognita* and *M. javanica* on resistant tomato genotypes. *Plant Dis.* 70: 547–551.

Rossi, M., Goggin, F., Milligan, S.B., Kaloshian, I., Ullman, D., Williamson, V.M. 1998. The nematode resistance gene *Mi* of tomato confers resistance against the potato aphid. *Proc. Natl. Acad. Sci. USA* 95: 9750–9754.

Seah, S., Yaghoobi, J., Rossi, M., Gleason, C., Williamson, V.M. 2004. The nematode-resistance gene, *Mi*-1, is associated with an inverted chromosomal segment in susceptible compared to resistant tomato. *Theor. Appl. Genet.* 108: 1635–1642.

Seah, S., Williamson, V.M., Garcia, B.E., Mejía, L., Salus, M.S., Martin, C.T., Maxwell, D. P. 2007. Evaluation of a co-dominant SCAR marker for detection of the *Mi*-1 locus for resistance to root-knot nematode in tomato germplasm. *Tomato Genet. Cooper. Rep.* 57: 37–40.

Smith, P.G. 1944. Embryo culture of a tomato species variety. *Proc. Am. Soc. Hort. Sci.* 44: 413–416.

Vidavsky, F., Czosnek, H. 1998. Tomato breeding lines resistant and tolerant to tomato yellow leaf curl virus issued from *Lycopersicon hirsutum*. *Phytopathol.* 88: 910–914.

Vos, P., Simons, G., Jesse, T., et al. 1998. The tomato *Mi*-1 gene confers resistance to both root-knot nematodes and potato aphids. *Nat. Biotech.* 16: 1365–1369.

Williamson, V.M., Ho, J.Y., Wu, F.F., Miller, N., Kaloshian, I. 1994. A PCR-based marker tightly linked to the nematode resistance gene, *Mi*, in tomato. *Theor. Appl. Genet.* 87: 757–763.

Zamir, D., Ekstein-Michelson, I., Zakay, Y., et al. 1994. Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, TY-1. *Theor. Appl. Genet.* 88: 141–146.