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ABSTRACT

The tobacco cutworm Spodoptera litura is one of the key insect pests of vegetables in Thailand. This study
evaluated cypermethrin resistance in populations of S. litura collected from vegetable crops in Bang Len
and Kamphaeng Saen district, Nakhon Pathom province and from Wang Nam Khiao district, Nakhon
Ratchasima province, Thailand. Resistance of S. litura was determined using the topical application
method and biochemical assays, and all three field populations exhibited a trend of increasing resistance
to cypermethrin compared to the susceptible laboratory population, with median lethal dose (LDsq)
values varying from 10.98 parts per million (ppm) to 15.74 ppm. The activities of cytochrome P450
monooxygenase and carboxylesterase in field populations of S. litura were significantly increased
compared to those in susceptible insects, but glutathione S-transferase activity was significantly
increased only in the Kamphaeng Saen population. These results indicated that the three field pop-
ulations of S. litura had developed resistance to cypermethrin and it is suggested that continuous
application of cypermethrin to control tobacco cutworm should be avoided to prevent the development
of high cypermethrin resistance in this pest.

Copyright © 2018, Kasetsart University. Production and hosting by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

The tobacco cutworm, Spodoptera litura (Fabricius) (Lepidop-
tera: Noctuidae), is a polyphagous insect pest, damaging many
vegetables belonging to 40 families around the world and causing
yield losses of 26—100% (Dhir et al., 1992). In Thailand, it is one of
the key pests in cultivated areas and is usually found on tobacco,
cotton, cabbage and soybean, with various insecticide groups being
used to control S. litura including organophosphates, carbamates
and pyrethroids (Saleem et al., 2016).

Carbofuran, chlorpyrifos, chlorothalonil, cypermethrin,
dimethoate, metalaxyl and profenofos are synthetic pyrethroids
that are widely used as insecticides in crop protection to minimize
yield loss and maximize yield quality in many countries, especially
Thailand (Ahmad and McCaffery, 1999; Pothikasikorn et al., 2007;
Wanwimolruk et al., 2017). Synthetic pyrethroids are modified
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derivatives of pyrethrins, which are natural substances extracted
from the flowers of Chrysanthemum cineraraefolum (Khazri et al.,
2016), and are known to affect the nervous system, specifically by
delating the closure of sodium channels, which causes repetitive
after-discharges that lead to hyperexcitation of the nervous system
(Narahashi et al., 1992). Cypermethrin has low mammalian toxicity
(Xu and Huang, 2017) and high insecticidal properties that are
effective against insects from several orders including the Coleop-
tera, Diptera, Hemiptera and Lepidoptera (Parsaeyan et al., 2017).
Unfortunately, the continuous application of cypermethrin has
caused resistance to develop in S. litura, which has resulted in
widespread failure of insect control. Three primary pyrethroid-
resistance mechanisms exhibited by insects are decreased pene-
tration, altered target site sensitivity and increased activity of
detoxification enzymes, including cytochrome P450 mono-
oxygenase (P450), carboxylesterase (CarE) and glutathione S-
transferase (GST) (Ahmad and McCaffery, 1999; Dong et al., 2016).
High levels of resistance to synthetic pyrethroid insecticides has
been reported in countries around the world, including India (Singh
et al., 2014), Pakistan (Rasool et al., 2014), China (Qiu et al., 2017),
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Iran (Ziapour et al, 2017), Brazil (Klafke et al., 2017), Niger
(Soumaila et al., 2017), Mexico (Rodriguez-Vivas et al., 2012), the
Americas, South Africa and Australia (Lovis et al., 2012).

In Thailand, the resistance of S. litura to cypermethrin has not
been studied, even though farmers have complained of control
failure. The objective of this study was to investigate the status of
cypermethrin resistance in field populations of S. litura as well as to
evaluate the enzyme activities of P450, GST and CarE to determine
the potential mechanisms involved in the variation of cypermeth-
rin susceptibility.

Materials and methods
Ethics statement

This study was approved by the ethics committee of Kasetsart
University, Bangkok, Thailand.

Insects

The susceptible strain (Lab-SS) of S. litura came from the Na-
tional Center for Genetic Engineering and Biotechnology, Bangkok,
Thailand, where it has been reared on an artificial diet in the lab-
oratory without exposure to any insecticide for more than 5 yr.
Three field populations of S. litura were collected during the 2017
summer season from vegetable crops in three different locations
(Bang Len and Kamphaeng Saen districts, Nakhon Pathom province
and Wang Nam Khiao district, Nakhon Ratchasima province) in
Thailand (Table 1). The host plant for S. litura is widely cropped in
all three areas, and cypermethrin is used to control this insect pest.
The collected insects were reared in the laboratory, and the second-
instar larvae of the first and second generations were used for
susceptibility and enzyme assays.

Larvae of S. litura were reared on an artificial diet (a mixture of
240 g of green bean, 25 g of agar, 40 ml of mixed vitamin solution,
5 g of ascorbic acid, 40 ml of amoxicillin solution, 3 g of sorbic acid,
5 g of methylparaben, 20 g of yeast, 4 ml of 40% formalin and 1.41 L
of water) at 25 + 1 °C and 65 + 5% relative humidity with a 16 h
light:8 h dark photoperiod. Adults were fed a 20% honey solution
under the same conditions in a cage (30 cm x 30 cm x 30 cm). The
populations were maintained in an environmental test chamber
(Versatile Environmental Test Chamber MLK 352H; Panasonic
Corp.; Osaka, Japan).

Chemicals

Cypermethrin solution (100 pg/ml in acetonitrile, PESTANAL®,
analytical standard) was obtained from Sigma-Aldrich (Singapore).
The insecticide was diluted in acetone (AR, >99.5%) in a range of

0—30 ppm for topical application to determine the toxicity of the
different concentrations.

Bioassays

Second-instar S. litura larvae were used for the topical applica-
tion. Serial dilutions of cypermethrin (AR grade) in analytical grade

Table 1

acetone were prepared, and a 1 pL drop was applied to the thoracic
dorsum of individual larvae using a micro-applicator. Control larvae
were treated with acetone alone. Five replicates of 30 larvae were
used for each treatment (total n = 150). After treatment, larvae
were provided an artificial diet. Treated larvae were placed in a
sealed plastic box and kept under controlled conditions in the
environmental test chamber. Mortality was recorded 24 h after
treatment.

Enzyme extraction method

To measure P450 activities, 30 s-instar larvae were pooled and
homogenized in buffer A (100 mM phosphate buffer (pH 7.2) con-
taining 1 M dithiothreitol, 100 mM 4-(2-aminoethyl) benzene-
sulfonyl fluoride hydrochloride (AEBSF) and 05 M
ethylenediaminetetraacetic acid) and then centrifuged at 10,000xg
for 5 min at 4 °C. The resulting supernatant was further centrifuged
at 100,000xg for 1 h at 4 °C. Finally, the pellet was resuspended in
buffer B (buffer A + 10% glycerol) and used to determine P450 ac-
tivities. For CarE and GST in vivo assays, 30 s-instar larvae were
homogenized in 0.5 mL of homogenized buffer (100 mM phosphate
buffer (pH 7.2) and 1% Triton X-100] and centrifuged at 10,000xg
for 15 min at 4 °C); the supernatant was then used as an enzyme
source.

Cytochrome P450 monooxygenase activities

P450 activities were evaluated by measuring p-nitroanisole
(PNOD) activities according to the modified method of Chang and
Hodgson (1975). The assay mixture contained 100 pL of micro-
somal proteins, 25 mM p-nitroanisole and 100 mM potassium
phosphate buffer (pH 7.2). The reaction was initiated by the addi-
tion of 100 mM p-glucose-6-phosphate sodium salt, 100 U/mL
glucose-6-phosphate dehydrogenase and 5 mM B-nicotinamide
adenine dinucleotide phosphate. After incubation for 10 min at
30 °C, the reaction was stopped by the addition of acetone and
2 mM glycine and 2 U/mL sodium hydroxide. The homogenate was
centrifuged at 12,000xg for 1 min at 4 °C, and the resulting su-
pernatant was used for further analysis. Next, 200 pL of supernatant
was added to each well of a transparent 96-well microplate, and the
optical density at 405 nm was immediately recorded at intervals of
25 s for 10 min using a microplate reader (PowerWave XS micro-
plate spectrophotometer; Biotek; Winooski, VT, USA). The optical
density value was recorded and the quantity of the product was
determined from a p-nitrophenol standard curve.

Carboxylesterase activities

CarE activities were determined using p-nitrophenylacetate
(pNPA) according to the modified method of Bullangpoti et al.
(2012). Enzyme solution (40 pL) was mixed with 10 mM pNPA in
dimethyl sulfoxide and 50 mM phosphate buffer (pH 7.4), and
enzyme activity was measured at 410 nm and 37 °C for 90 s using a
microplate reader (PowerWave XS microplate spectrophotometer;
Biotek; Winooski, VT, US) in the kinetic mode. The CE activity was

Sampling sites, collection dates and developmental stages of Spodoptera litura collected from field sampling.

Co-ordinates

Insect stage Host plant

Location Collection date
Bang Len, Nakhon Pathom 26 Feb 2017
Kamphaeng Saen, Nakhon Pathom 14 May 2017
Wang Nam Khiao, Nakhon Ratchasima 24 April 2017

13.58°N, 100.12°E Larva Colocasia esculenta
13.98°N, 99.96°E Larva Colocasia esculenta
14.27°N, 101.49°E Larva Zizyphus mauritiana




486 T. Ruttanaphan et al. / Agriculture and Natural Resources 52 (2018) 484—488

determined using the extinction coefficient of 176.4705 for pNPA.
Five biological replicates were estimated per treatment.

Glutathione S-transferase activities

GST activities were measured using 1-chloro-2,4-
dinitrobenzene (CDNB) (Sigma-Aldrich; Darmstadt, Germany) as
a substrate using the protocol of Oppenoorth et al. (1979). The re-
action solution contained 100 pL of enzyme solution, 50 mM po-
tassium phosphate buffer (pH 7.3) and 150 mM CDNB. Optical
density was recorded at 30 s intervals for 3 min at 37 °C and 340 nm
using a microplate reader (PowerWave XS microplate spectro-
photometer; Biotek; Winooski, VT, US). The GST activity was
determined from the extinction coefficient of 0.0096 for CDNB. Five
biological replicates were estimated per treatment.

Protein concentration determination

The protein content of each fraction used as an enzyme source
was determined using the method of Bradford (1976) with a
Bradford Kit (Bio-Rad Laboratories; Hercules, CA, USA) before
measuring the enzyme activities.

Statistical analysis

Probit analysis was used to determine the LDsy (median lethal
dose) and the confidence limit (CL) in the program Stat Plus® (v.Pro
6.2.2.0.; AnalystSoft,; Walnut, CA, USA). Resistance ratios (RRs)
were calculated as the LDsq value of the field-collected population/
LDs5q value of the susceptible strain (Lab-SS). Statistical compari-
sons of P450, CarE and GST activities were made using one-way
analysis of variance followed by Tukey's multiple comparison
test. Statistical differences were tested at p < 0.05.

Results
Resistance levels of field populations

The Lab-SS exhibited relatively low LDs5q values to cypermethrin
(2.32 ppm, Table 2), whereas other LDsq values were higher, indi-
cating possible resistance to cypermethrin (LDsg = 10.98—15.74 ppm,
Table 2).

The data in Table 2 indicate that the field population of S. litura
tended to develop resistance to cypermethrin with RRs ranging
from 4.73 to 6.78. The population collected from Kamphaeng Saen,
Nakhon Pathom province exhibited the highest RRs (6.78), while
the lowest resistance (4.73) was observed in Bang Len, Nakhon
Pathom province.

Detoxification enzyme activities

As shown in Fig. 1, P450 and CarE activities were significantly
higher in the second-instar larvae from all three field populations of

Table 2
Cypermethrin resistance levels of field populations of S. litura.

S. litura compared to the Lab-SS strain. The population from Kam-
phaeng Saen, Nakhon Pathom Province showed the highest P450
(1.69 times) and CarE (2.69 times) activities, but GST activity was
only significantly higher in the Kamphaeng Saen population (1.24
times).

Discussion

Monitoring resistance in an important insect pest is increasingly
important for formulating suitable insecticides and tracking
changes in resistance (Muthusamy and Shivakumar, 2015). The
current work is the first report of a trend toward cypermethrin
resistance, which has now been confirmed in S. litura in three lo-
cations in Thailand. These data could be used for future resistance
monitoring and management.

The current results showed that S. litura populations in three
locations of Thailand expressed a level of resistance to cyper-
methrin (Table 2). However, it is not obvious that cypermethrin had
previously been widely used by farmers, especially as a prophy-
lactic in early crop stages. In Thailand, pesticides are used exten-
sively but not applied according to the manufacturer's instructions,
which has led to the development of pesticide resistance in insect
pests (Wanwimolruk et al., 2017).

The detoxification enzymes CarE, P450 and GST are known to be
actively involved in the metabolism of and resistance to in-
secticides (Dauterman, 1985; Soderlund and Bloomquist, 1990). It is
highly likely that increased activities of these detoxifying enzymes
in field populations play an important role in the observed resis-
tance (Denholm and Rowland, 1992).

Enhanced activities of P450, CarE, and GST enzymes have been
found to be related to cypermethrin resistance (Yonggyun et al.,
1998; Martin et al.,, 2002; Zhang et al.,, 2010; Muthusamy and
Shivakumar, 2015; Dong et al, 2016). In the current research,
significantly high activities of P450 and CarE were observed in all
three field populations compared with Lab-SS (Fig. 1). The P450,
CarE and GST enzyme activities of these three field populations
were 1.3—1.7, 1.9—-2.7 and 1.1-1.2 times, respectively, that of the
Lab-SS of S. litura.

The enzyme results from the current research were the same as
those in the reports of Yonggyun et al. (1998) and Karuppaiah et al.
(2017), which concluded that insecticide resistance in S. litura was
caused by the overexpression of detoxification enzymes. Similarly,
it has been reported that P450, CarE and GST play a key role in the
development of cypermethrin resistance in other insect species
such as Oedaleus asiaticus (Dong et al., 2016), Amsacta albistriga
(Muthusamy and Shivakumar, 2015) and Musca domestica (Zhang
et al.,, 2010). Sawicki (1985) described the importance of CarE-
mediated detoxification or P450-mediated detoxification or both
being induced by pyrethroids in the cross-resistance of insects to
organophosphates and carbamates. The current results in Fig. 1 are
same as those of Karuppaiah et al. (2017), who found that pyre-
throid resistance in S. litura was due to the over-production of CarE
and P450. Thus, both detoxification enzymes might be the major

Source LDso (ppm) SE LCL ucL RR %2 (degrees of freedom)
Lab-SS* 232 0.89 0.85 3.73 — 0.22 (3)

Bang Len, 10.98 3.14 6.51 19.66 4.73 0.65 (4)

Nakhon Pathom

Wang Nam Khiao, Nakhon Ratchasima 11.82 293 7.49 19.60 5.09 0.89 (4)

Kamphaeng Saen, Nakhon Pathom 15.74 3.61 10.33 25.17 6.78 0.51 (3)

LDsg = lethal dose at which half the population is killed and the active ingredient concentration is expressed in parts per million (ppm); LCL = lower confidence limit;

UCL = upper confidence limit; RR = resistance ratio; Lab-SS = susceptible strain.
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Fig. 1. Detoxification enzyme activities of field populations of S. litura collected from three locations in Thailand compared with the susceptible strain (Lab-SS), where different
lowercase letters above the bars indicate significant differences according to Tukey's honestly significant difference test (p < 0.05): (A) cytochrome P450 monooxygenase activity;

(B) carboxylesterase activity; (C) glutathione S-transferase activity.

mechanism underlying enhanced tolerance of cypermethrin
toxicity.

However, only the population from Kamphaeng Saen, Nakhon
Pathom province showed significantly higher GST activity
compared to the Lab-SS. GST consists of several isozymes that
comprise a family of multifunctional enzymes catalyzing the
conjugation of glutathione to electrophilic compounds (Grant et al.,
1991). In Spodoptera littoralis, at least two forms of isozymes were
previously found according to substrate preferences (Lagadic et al.,
1993). In the current GST activity experiment, only CDNB was used
as a substrate, and this may partially represent the involvement of
GST in the insecticide resistance mechanism of S. litura. Grant et al.
(1991) suggested the relative importance of GST isozymes in a
xenobiotic metabolism.

S. litura from the fields in Kamphaeng Saen and Bang Len (both
in the same province), exhibited significantly different resistance
ratios, so it is possible that the farmer in Kamphaeng Saen may have
applied cypermethrin more frequently to control insect pests than
in other areas. Farmers around the Wang Nam Khiao field habitu-
ally use cypermethrin for the control of multiple pests, which is
also causing increasing detoxification enzyme activity.

The data on the development of resistance to cypermethrin in
S. litura obtained from the current study can be used to guide and
improve insecticide resistance management (IRM) strategies in
Thailand. Furthermore, the results suggest that new IPM resistance
management strategies should be developed to control S. litura in
Thailand. For example, slow-release pheromone formulations have
been shown to disrupt mating (Wei and Du, 2004), and some
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simple IPM techniques have been shown to control vegetable pests
(Chuachin et al., 2012.). The preservation of the predators, para-
sitoids and microbial parasites of S. litura (Nguyen et al., 2005) or
the use of plant extracts are additional control alternatives to
reduce applications of synthetic pesticides and could help to slow
resistance development.
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