



## Original Article

Genetic characterization of Indian little millet (*Panicum sumatrense*) genotypes using random amplified polymorphic DNA markers

Neelam Tiwari, Sharad Tiwari,\* Niraj Tripathi

Biotechnology Centre, Jawaharlal Nehru Agricultural University, Jabalpur 482004, India



## ARTICLE INFO

## Article history:

Received 8 February 2017

Accepted 8 March 2018

Available online 19 October 2018

## Keywords:

Characterization

Little millet

Marker

*Panicum sumatrense*

Polymorphism

Random amplified polymorphic DNA (RAPD)

## ABSTRACT

Initially, 60 primers were screened among 32 genotypes of little millet (*Panicum sumatrense*), from which 36 primers were selected on the basis of a sharp and clear banding pattern for final random amplified polymorphic DNA (RAPD) analysis. The PCR reaction was carried out using a single decamer primer at a time. In total, 175 RAPD marker loci were amplified of which 155 were polymorphic (88.58%). The band size of amplified markers was in the range 100–1900 bp. Ten bands were the maximum scored (for primer OPH-19) whereas two bands were the minimum scored (for primer OPC-13). On average, 4.86 bands per primer and 4.31 polymorphic bands per primer were recorded. The polymorphism information content ranged from 0.102 (OPA1-01) to 0.517 (OPE-04). A dendrogram divided the genotypes into two major and further into sub-groups according to their collection center geographical regions. This was the first report on molecular diversity analysis of a large collection of little millet germplasm. Diverse genotypes may be used in breeding programmes for *P. sumatrense* improvement.

Copyright © 2018, Kasetsart University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (<http://creativecommons.org/licenses/by-nc-nd/4.0/>).

## Introduction

Tribal areas in India are known for their rich genetic diversity in various crops including millets. Little millet (*Panicum sumatrense*), belongs to the Poaceae family, is an annual erect and self-pollinating tetraploid ( $2n = 36$ ) crop commonly known as 'Kutki'. It is widely grown in marginal areas and is associated with tribal agriculture being a predominantly rainfed crop with poor management by resource-poor farmers (Kumar et al., 2017). Sparse and irregular cultivation of little millet has led to less understanding of its genetic diversity (Selvi et al., 2015). In India, little millet is generally grown on light red soils and hillsides as a rainfed crop, which is usually never irrigated (Mall and Tripathi, 2016). Little millet is rich in vitamin B and has high nutritional value especially due to the presence of phosphorus and iron (Mall and Tripathi, 2016). As little millets contain no gluten, it has become a natural choice for those with celiac disease or other forms of allergies and intolerance of wheat (Saturni et al., 2010). It contains proteins (9.80–12.49 g/100 g), fat (2.87–5.09), ash (0.98–4.78), crude fiber (0.49–8.72) and carbohydrates (62.25–76.59 g/100 g) with various other important minerals (Usha et al., 2011).

Little millet is widely distributed in the temperate zone of Asia and tropical regions of the world (Baker, 2003). While genetic diversity is the base for crop genetic improvement and important for the conservation, evaluation, and utilization of crop germplasms, little millet is the least studied among the small millet species and only two reports are available on the genetic diversity of Indian little millet (*P. sumatrense*) on the basis of morphological traits (Arunachalam et al., 2003; Selvi et al., 2015). Molecular markers have already proved their potential in crop improvement and evaluation of genetic resources and among all the dominant markers, random amplification of polymorphic DNA (RAPD) markers are cost effective and have the advantage of detecting genetic diversity simply and quickly (Demeke et al., 1996). The current report is the first involving molecular diversity analysis of Indian little millet genotypes using molecular markers. The only known reference available is M'Ribu and Hilu (1994) who applied RAPD markers to discriminate different *Panicum* species.

## Materials and methods

## Plant materials

Thirty-two accessions of little millet were obtained from different regions of India under the All India Coordinated Minor

\* Corresponding author.

E-mail address: [dirbcjbp.jnkvv-mp@nic.in](mailto:dirbcjbp.jnkvv-mp@nic.in) (S. Tiwari).

Millet Improvement Project, Rewa, India (Table 1, Fig. 1). Agro-nomic and biochemical information of various genotypes has been reported by their respective breeding centers. Chandel et al. (2014) provided details on various genotypes among which JK-8 was characterized as a nutri-rich line with 31.82 parts per million (ppm) Fe and 33.00 ppm Zn. It also has more panicles, stay-green character, tolerance to shoot fly and early flowering with suitability for many growing areas of this crop in India. Cultivar JK-36 with early maturity is suitable for all little millet growing areas of India. Cultivar RLM-37 has high Fe (32.20 ppm) and Zn (32.40 ppm). Cultivar OLM-203 also known as Tarini, is a blast-resistant, grain-smut resistant, non-lodging, non-shattering, long duration, high yielding genotype with superior grain quality widely grown in the Indian states of Andhra Pradesh, Orissa, Bihar, and Tamil Nadu. Cultivar TNAU-91(CO) has profuse tillering, early duration, non-lodging with superior grain quality and is suitable for a double-cropping system under rainfed conditions in southern India. Among various genotypes cv. DHLtMV 36-3 ranks highly with grain yields of approximately 2700 kg/ha (Ganesamurthy, 2015) and tolerance against shoot fly (Birsa Agriculture University, 2015). Genotype DLM 103 is also considered as having resistance against shoot fly (Birsa Agriculture University, 2015).

#### DNA extraction and quantification

Seeds were grown in a polyhouse to collect fresh leaf samples for genomic DNA isolation. Genomic DNA was isolated using the CTAB protocol (Saghai-Marof et al., 1984). The quality and quantity of DNA were checked using horizontal submarine gel electrophoresis on 0.8% agarose gel and a Thermo® Nanodrop spectrophotometer (ThermoFisher Scientific, USA). DNA samples were diluted accordingly for RAPD analysis.

#### Random amplification of polymorphic DNA analysis

Sixty random decamer primers (Operon™ Technologies; Alameda, California) with 60–70% guanine and cytosine (GC) contents were used. The polymerase chain reactions (PCR) were performed in 20 µL reaction mixture containing 100 ng of each genomic DNA, 2.5 mM MgCl<sub>2</sub>, 0.25 mM dNTPs, 400 nM of each RAPD primer and 1 U *Taq* DNA polymerase (Merck; Genei, India). The amplification was carried out in a thermal cycler (Agilent Technologies; India Pvt Ltd). PCR was performed at an initial denaturation at 95 °C for 5 min followed by 45 cycles of 60 s denaturation at 95 °C, 60 s annealing at 37 °C, 2 min extension at 72 °C and a final extension at 72 °C for 7 min. The annealing temperatures were readjusted for each random primer. The amplified products were electrophoresed in 1.4% (weight per volume, w/v) agarose gels at 60 V for 2.15 h; amplification was repeated thrice to confirm the reproducibility of the results; bands were visually scored as 1 for the presence and 0 for the absence of each genotype (*n* = 48) using a gel documentation system (Syngene; USA). The binary data matrix was used to calculate Jaccard's similarity coefficient between pairs of accessions using the Simqual module of NTSYS-pc (Numerical Taxonomy System version 2.1; Rohlf, 1998). These distance coefficients were used to construct a dendrogram using the unweighted pair grouped method arithmetic average (UPGMA) using the sequential agglomerative hierarchical and nested algorithm to determine the genetic diversity and relationships among the accessions.

#### Results and discussion

Determination of relationships among individuals and populations is an important consideration for genetic conservation and the utilization of plant genetic resources. Molecular markers would

**Table 1**  
List of little millet genotypes and their origin centers.

| S.  | Genotype     | Collection centre                                                        | State          | Parentage           |
|-----|--------------|--------------------------------------------------------------------------|----------------|---------------------|
| 1.  | BL-2         | Shaheed Gundadpur College of Agriculture and Research Station, Jagdalpur | Chhattisgarh   | Pure line selection |
| 2.  | BL-4         | Shaheed Gundadpur College of Agriculture and Research Station, Jagdalpur | Chhattisgarh   | Pure line selection |
| 3.  | BL-6         | Shaheed Gundadpur College of Agriculture and Research Station, Jagdalpur | Chhattisgarh   | Pure line selection |
| 4.  | BL-8         | Shaheed Gundadpur College of Agriculture and Research Station, Jagdalpur | Chhattisgarh   | Pure line selection |
| 5.  | BL-41-3      | Shaheed Gundadpur College of Agriculture and Research Station, Jagdalpur | Chhattisgarh   | Pure line selection |
| 6.  | DHLtMV 10-2  | Orissa University of Agriculture and Technology, Bhubaneswar             | Orissa         | Pure line selection |
| 7.  | DHLtMV-14-1  | Orissa University of Agriculture and Technology, Bhubaneswar             | Orissa         | Pure line selection |
| 8.  | DHLtMV-36-3  | Orissa University of Agriculture and Technology, Bhubaneswar             | Orissa         | Pure line selection |
| 9.  | DLM-89       | Birsa Agricultural University, Ranchi                                    | Jharkhand      | Pure line selection |
| 10. | DLM-103      | Birsa Agricultural University, Ranchi                                    | Jharkhand      | Pure line selection |
| 11. | JK-8         | College of Agriculture, Rewa                                             | Madhya Pradesh | Pure line selection |
| 12. | JK-36        | Jawaharlal Nehru Agricultural University, Jabalpur                       | Madhya Pradesh | Pure line selection |
| 13. | RLM-4-1      | College of Agriculture, Rewa                                             | Madhya Pradesh | Local collection    |
| 14. | RLM-37       | College of Agriculture, Rewa                                             | Madhya Pradesh | Local collection    |
| 15. | RLM-39       | College of Agriculture, Rewa                                             | Madhya Pradesh | Local collection    |
| 16. | RLM-41       | College of Agriculture, Rewa                                             | Madhya Pradesh | Local collection    |
| 17. | RLM-111      | College of Agriculture, Rewa                                             | Madhya Pradesh | Local collection    |
| 18. | RLM-118      | College of Agriculture, Rewa                                             | Madhya Pradesh | Local collection    |
| 19. | RLM-141      | College of Agriculture, Rewa                                             | Madhya Pradesh | Local collection    |
| 20. | RLM-161      | College of Agriculture, Rewa                                             | Madhya Pradesh | Local collection    |
| 21. | RLM-162      | College of Agriculture, Rewa                                             | Madhya Pradesh | Local collection    |
| 22. | RLM-181      | College of Agriculture, Rewa                                             | Madhya Pradesh | Local collection    |
| 23. | RLM-183      | College of Agriculture, Rewa                                             | Madhya Pradesh | Local collection    |
| 24. | RLM-186      | College of Agriculture, Rewa                                             | Madhya Pradesh | Local collection    |
| 25. | RLM-190      | College of Agriculture, Rewa                                             | Madhya Pradesh | Local collection    |
| 26. | RLM-203      | College of Agriculture, Rewa                                             | Madhya Pradesh | Local collection    |
| 27. | RLM-224      | College of Agriculture, Rewa                                             | Madhya Pradesh | Local collection    |
| 28. | RLM-238      | College of Agriculture, Rewa                                             | Madhya Pradesh | Local collection    |
| 29. | RLM-1367     | College of Agriculture, Rewa                                             | Madhya Pradesh | Local collection    |
| 30. | OLM-203      | Orissa University of Agriculture and Technology, Bhubaneswar             | Orissa         | Selection from KL 2 |
| 31. | TNAU-91 (CO) | Tamil Nadu Agricultural University, Coimbatore                           | Tamil Nadu     | Co 2 × MS 1684      |
| 32. | TNAU-159     | Tamil Nadu Agricultural University, Coimbatore                           | Tamil Nadu     | Pure line selection |

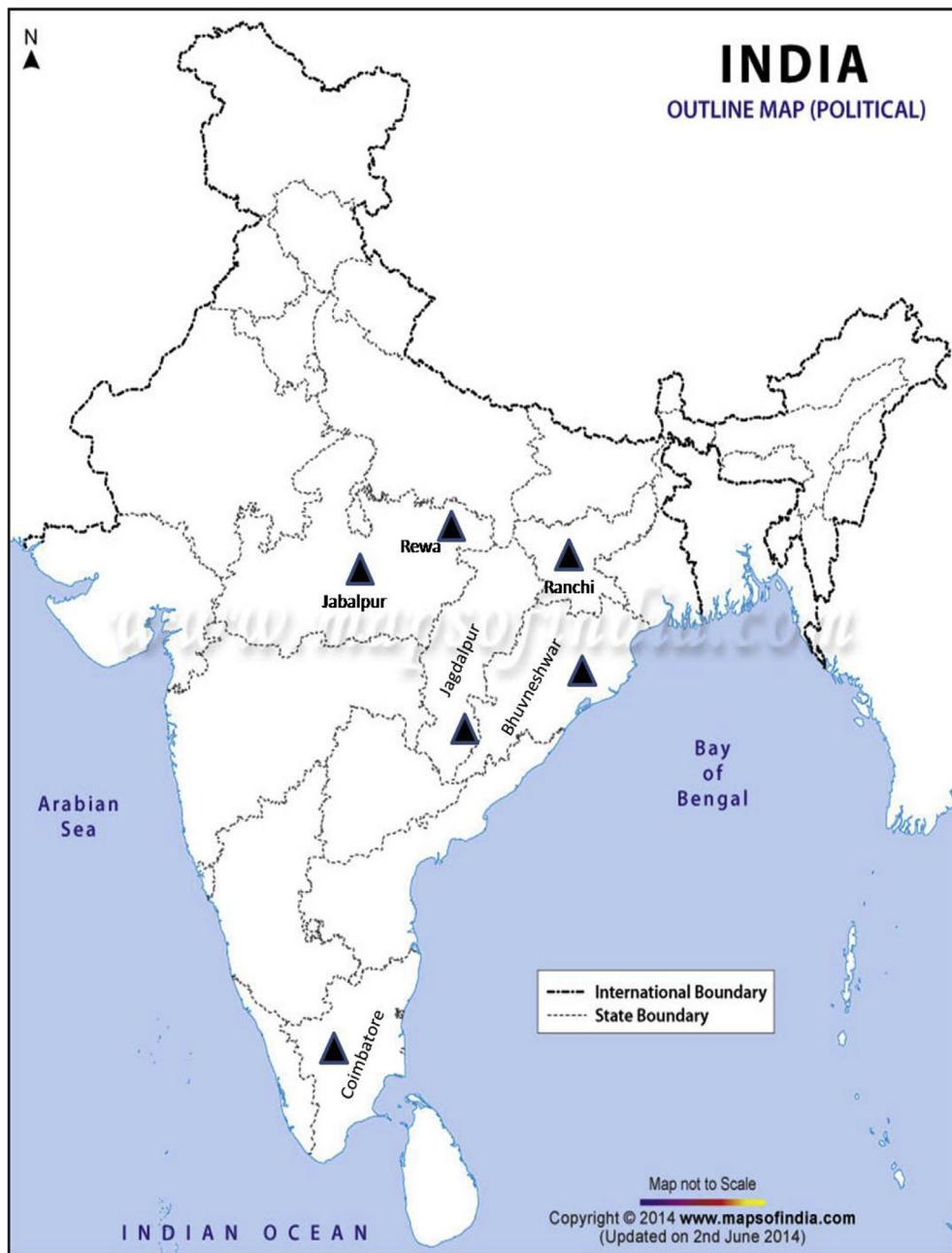



Fig. 1. Little millet collection sites ( $\pi$ ) as mentioned in Table 1.

greatly assist breeders to choose superior and diverse parents for crop improvement and speed up the selection of desirable types among a large number of progeny. For the current study, 32 genotypes of *P. sumatrense* were obtained from different regions of India to detect polymorphism using RAPD as the genetic marker. M'Ribu and Hilu (1994) evaluated the potential use of RAPD for studying variations among four indigenous species of *Panicum* and between *P. miliaceum* and *P. sumatrense* obtained from different countries. In both cases, polymorphism in RAPD markers was observed across and within the species. Therefore, RAPD markers can be applied for studying genetic diversity, defining gene pools and identifying cultivars of little millet. During the present study, initially 60 primers were screened among 32 genotypes of *P. sumatrense* and a total of 36 primers were selected on the basis of

sharp and clear polymorphic banding pattern for the final analysis. PCR reaction was carried out using a single decamer primer at a time (Table 2). These 36 decamer primers amplified a total of 175 RAPD marker loci. The band size of amplified markers was in the range 100–1900 bp. Maximum numbers of bands (10) were scored by the primer OPH-19 while minimum numbers of bands (2) were scored by the primer OPC-13 (Table 2) with polymorphism information content (PIC) values in the range 0.101 (OPA1-01) to 0.499 (OPE-04). The PIC value of a primer helps in determining its effectiveness in genetic diversity analysis. The high values of PIC indicate the efficiency of the corresponding RAPD markers in the study to evaluate the genetic variability among little millet genotypes. In the current analysis, RAPD marker OPE-04 was more effective having the highest PIC value of 0.499 (Table 2). Data

**Table 2**

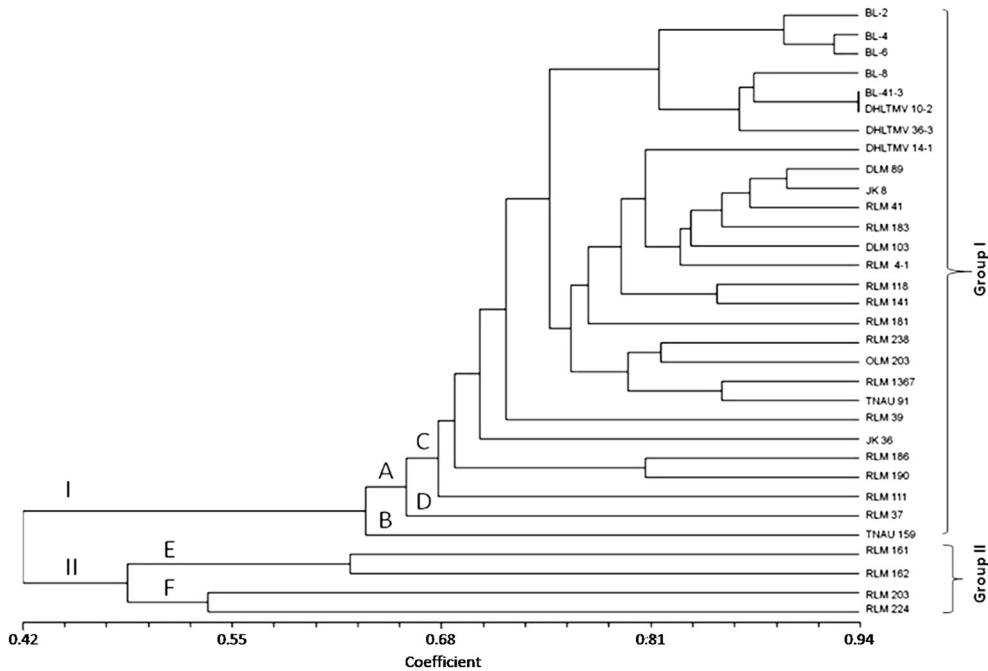
Polymorphism revealed using random amplified polymorphic DNA markers.

| S.    | Code    | Sequence          | GC% | TB   | Range (-bp) | PB   | PP    | PIC   |
|-------|---------|-------------------|-----|------|-------------|------|-------|-------|
| 1     | OPAI-01 | 5'-CAGGCCCTTC-3'  | 70  | 6    | 550–1750    | 2    | 33.33 | 0.101 |
| 2     | OPAA-01 | 5'-AGACGGCTCC-3'  | 70  | 6    | 100–500     | 5    | 83.33 | 0.308 |
| 3     | OPAA-03 | 5'-TTAGCGCCCC-3'  | 70  | 5    | 150–450     | 5    | 100.0 | 0.453 |
| 4     | OPAA-04 | 5'-AGGACTGCTC-3'  | 60  | 7    | 250–900     | 4    | 57.14 | 0.217 |
| 5     | OPAB-08 | 5'-AACACGGACC-3'  | 60  | 6    | 100–550     | 5    | 83.33 | 0.273 |
| 6     | OPAB-09 | 5'-GGCGGACTAC-3'  | 70  | 5    | 120–180     | 5    | 100.0 | 0.431 |
| 7     | OPAC-12 | 5'-GGCGAGTGTG-3'  | 70  | 5    | 200–500     | 5    | 100.0 | 0.442 |
| 8     | OPAC-14 | 5'-GTCGGTTGTC-3'  | 60  | 4    | 300–600     | 3    | 75.00 | 0.301 |
| 9     | OPAD-05 | 5'-ACCGCATGGG-3'  | 70  | 6    | 250–700     | 6    | 100.0 | 0.428 |
| 10    | OPAD-06 | 5'-AAAGTCACGG-3'  | 60  | 5    | 550–1450    | 5    | 100.0 | 0.447 |
| 11    | OPAH-04 | 5'-CTCCCCAGAC-3'  | 70  | 3    | 700–1000    | 3    | 100.0 | 0.307 |
| 12    | OPAH-05 | 5'-TTGCAGGCAG-3'  | 60  | 4    | 400–1000    | 4    | 100.0 | 0.363 |
| 13    | OPB-02  | 5'-TGATCCCTGG-3'  | 60  | 4    | 100–200     | 4    | 100.0 | 0.309 |
| 14    | OPB-18  | 5'-CCACAGCACT-3'  | 60  | 5    | 350–1550    | 2    | 40.00 | 0.172 |
| 15    | OPBB-01 | 5'-ACACTGGCTG-3'  | 60  | 3    | 250–700     | 3    | 100.0 | 0.359 |
| 16    | OPBB-04 | 5'-ACCAGGTCAC-3'  | 60  | 6    | 400–1000    | 6    | 100.0 | 0.489 |
| 17    | OPBB-05 | 5'-GGGCCGAACA-3'  | 70  | 3    | 500–900     | 3    | 100.0 | 0.397 |
| 18    | OPBB-06 | 5'-CTGAAGCTGG-3'  | 60  | 4    | 200–500     | 4    | 100.0 | 0.199 |
| 19    | OPBB-07 | 5'-GAAGGCTGGG-3'  | 70  | 3    | 300–700     | 3    | 100.0 | 0.187 |
| 20    | OPBB-10 | 5'-ACTTCGCTGG-3'  | 60  | 5    | 300–1000    | 5    | 100.0 | 0.401 |
| 21    | OPC-07  | 5'-GTCGGACGA-3'   | 70  | 4    | 250–1000    | 4    | 100.0 | 0.191 |
| 22    | OPC-13  | 5'-AAGCCTCGTC-3'  | 60  | 2    | 150–250     | 2    | 100.0 | 0.101 |
| 23    | OPC-14  | 5'-TCCGTGCTT-3'   | 60  | 4    | 400–700     | 2    | 50.00 | 0.129 |
| 24    | OPC-17  | 5'-TCCCCCCAG-3'   | 70  | 6    | 110–480     | 6    | 100.0 | 0.454 |
| 25    | OPC-20  | 5'-ACTTCGCCAC-3'  | 60  | 3    | 110–350     | 3    | 100.0 | 0.198 |
| 26    | OPE-04  | 5'-GTGACATGCC-3'  | 60  | 7    | 190–480     | 7    | 100.0 | 0.499 |
| 27    | OPE-06  | 5'-AAGACCCCTC-3'  | 60  | 4    | 150–500     | 3    | 75.00 | 0.202 |
| 28    | OPF-14  | 5'-TGCTCAGGT-3'   | 60  | 5    | 100–470     | 5    | 100.0 | 0.311 |
| 29    | OPG-II  | 5'-TCCCCGTCGT-3'  | 70  | 4    | 185–450     | 4    | 100.0 | 0.207 |
| 30    | OPH-19  | 5'-CTGACCAAGCC-3' | 70  | 10   | 120–500     | 8    | 80.00 | 0.427 |
| 31    | OPL-01  | 5'-GGCATGACCT-3'  | 60  | 5    | 100–420     | 4    | 80.00 | 0.317 |
| 32    | OPL-06  | 5'-GAGGGAAGAG-3'  | 60  | 6    | 150–450     | 6    | 100.0 | 0.469 |
| 33    | OPN-06  | 5'-GAGACGACAA-3'  | 60  | 7    | 400–1120    | 6    | 85.71 | 0.299 |
| 34    | OPO-03  | 5'-CTGTGCTAC-3'   | 50  | 5    | 250–750     | 5    | 100.0 | 0.304 |
| 35    | OPS-07  | 5'-TCCGATGCTG-3'  | 60  | 4    | 900–1900    | 4    | 100.0 | 0.266 |
| 36.   | OPS-19  | 5'-GAGTCACGAG-3'  | 60  | 4    | 300–1000    | 4    | 100.0 | 0.231 |
| Total |         |                   |     | 175  | —           | 155  | —     | —     |
| Mean  |         |                   |     | 4.86 | —           | 4.31 | 88.58 | 0.307 |

GC = guanine and cytosine; TB = total bands; PB = polymorphic bands; PP = percentage polymorphism; PIC = polymorphism information content.

presented in Table 2 demonstrate the performance of individual RAPD marker used in the study.

Out of the 175 bands amplified using 36 RAPD markers, 20 were monomorphic (12.57%) and the remaining 155 were polymorphic (88.58%). The average number of bands per primer was 4.86 while the average number of polymorphic bands per primer was 4.31. In total, 10 (5.71%) specific bands were amplified by seven primers (Table 3). Among these primers, OPAA-04 amplified a specific band (400 bp) with three genotypes (DLM 103, DHLtMV 36-3, RLM 162).

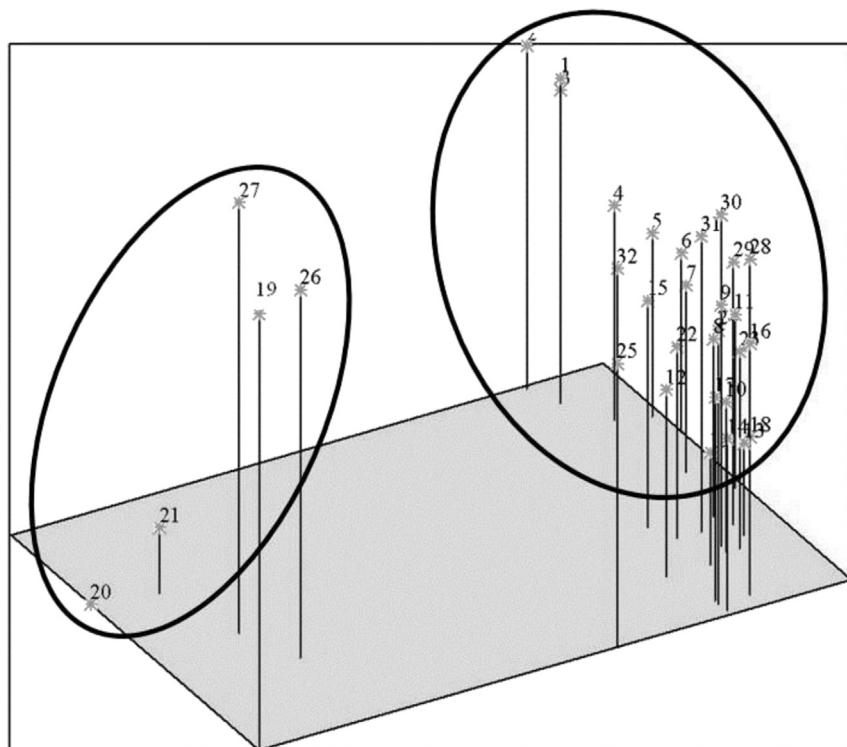

During the present study, seven markers were observed with unique to different *P. sumatrense* genotypes. These primers can potentially be used as molecular fingerprints to identify genotypes. Primers OPAB-09 (RLM 203), OPBB-01 (BL41-3, RLM 4-1 and TNAU 91), OPBB-04 (JK 36) and OPE-04 (RLM 186) amplified specific bands that were absent in other accessions (data not shown). Primer OPC-17 amplified three specific bands of about 150 bp (RLM 39 and RLM 186), 430 bp (RLM 190, RLM 203 and RLM 224) and 480 bp in (RLM 190, RLM 203 and RLM 224) and primer OPN-06 amplified two specific bands of 400 bp (RLM-37, RLM-161) and 900 bp (RLM-37). Primer OPN-06 can be used to identify RLM-37, a genotype with high Fe (32.20 ppm) and Zn (32.40 ppm) as has also been reported by Chandel et al. (2014). Based on the electrophoretic banding pattern of RAPD primers, pairwise genetic similarity among 32 genotypes for genetic diversity was estimated and a dendrogram was generated using UPGMA (Fig. 2). Cluster analysis indicated that accessions of *P. sumatrense* were in two groups: a

major group (Group I) and a minor group (Group II). Group I covered 28 genotypes with two sub-groups, 'A' with 27 genotypes and 'B' with only one genotype (TNAU 159). Subgroup 'A' was further divided into two sub-groups: 'C' containing 26 genotypes and 'F' with only one genotype (RLM-37). In the sub-group 'D', genotypes BL-2, BL-4, BL-6, and BL-8 were clustered together, as these genotypes are the pure line selections developed at Jagdalpur, Chhattisgarh, India. Two genotypes (DHLtMV 10-2, DHLtMV-36-3) had a higher level of similarity falling in the same group as they are from local collections in Bhubaneswar, India. Most of the genotypes collected from Rewa and Jabalpur, India were also clustered in a group. The minor group (Group II) contained four genotypes which were further divided into two sub-groups each comprising two genotypes (RLM-161 and RLM-162 in sub-group 'E' and RLM-203 and RLM-224 in 'F'). These four genotypes are pure line selections of locally collected landraces in Rewa, India. Jaccard's similarity coefficient is a measure of similarity for two sets of data with a range of 0%–100%. The higher the value of Jaccard's coefficient, the greater the similarity between the two genotypes or populations. According to Jaccard's similarity coefficient (Table 3), the highest similarity was observed between BL 41-3 and DHLtMV 10-2 (0.94), while the lowest was between RML 161 and RML 238 (0.29). It is evident from the results of the present analyses that there is a considerable amount of variability among the 32 genotypes originating from the four states in India. The similarity between genotypes collected from two states indicates the exchange of germplasm between them. In accordance with the present study,

**Table 3**

Jaccard's similarity coefficient among little millet genotypes using random amplified polymorphic DNA markers.

|           | BL-2 | BL-4 | BL-6 | BL-8 | BL-41-3 | DHLMV10-2 | DHLMV14-1 | DHLMV36-3 | DLM-89 | DLM-103 | DLM-36 | DLM-41 | DLM-37 | DLM-39 | DLM-41 | DLM-111 | DLM-118 | DLM-141 | DLM-161 | DLM-162 | DLM-181 | DLM-183 | DLM-186 | DLM-190 | DLM-203 | DLM-224 | DLM-238 | DLM-1367 | OLM-203 | TNAU-91 | TNAU-159 |      |
|-----------|------|------|------|------|---------|-----------|-----------|-----------|--------|---------|--------|--------|--------|--------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|---------|---------|----------|------|
| BL-2      | 1    |      |      |      |         |           |           |           |        |         |        |        |        |        |        |         |         |         |         |         |         |         |         |         |         |         |         |          |         |         |          |      |
| BL-4      | 0.89 | 1.00 |      |      |         |           |           |           |        |         |        |        |        |        |        |         |         |         |         |         |         |         |         |         |         |         |         |          |         |         |          |      |
| BL-6      | 0.88 | 0.92 | 1.00 |      |         |           |           |           |        |         |        |        |        |        |        |         |         |         |         |         |         |         |         |         |         |         |         |          |         |         |          |      |
| BL-8      | 0.83 | 0.82 | 0.88 | 1.00 |         |           |           |           |        |         |        |        |        |        |        |         |         |         |         |         |         |         |         |         |         |         |         |          |         |         |          |      |
| BL-41-3   | 0.81 | 0.79 | 0.84 | 0.87 | 1.00    |           |           |           |        |         |        |        |        |        |        |         |         |         |         |         |         |         |         |         |         |         |         |          |         |         |          |      |
| DHLMV10-2 | 0.82 | 0.78 | 0.84 | 0.87 | 0.94    | 1.00      |           |           |        |         |        |        |        |        |        |         |         |         |         |         |         |         |         |         |         |         |         |          |         |         |          |      |
| 2         |      |      |      |      |         |           |           |           |        |         |        |        |        |        |        |         |         |         |         |         |         |         |         |         |         |         |         |          |         |         |          |      |
| DHLMV14-1 | 0.79 | 0.75 | 0.78 | 0.85 | 0.85    | 0.88      | 1.00      |           |        |         |        |        |        |        |        |         |         |         |         |         |         |         |         |         |         |         |         |          |         |         |          |      |
| 1         |      |      |      |      |         |           |           |           |        |         |        |        |        |        |        |         |         |         |         |         |         |         |         |         |         |         |         |          |         |         |          |      |
| DHLMV36-3 | 0.71 | 0.69 | 0.72 | 0.75 | 0.79    | 0.81      | 0.82      | 1.00      |        |         |        |        |        |        |        |         |         |         |         |         |         |         |         |         |         |         |         |          |         |         |          |      |
| 3         |      |      |      |      |         |           |           |           |        |         |        |        |        |        |        |         |         |         |         |         |         |         |         |         |         |         |         |          |         |         |          |      |
| DLM-89    | 0.77 | 0.75 | 0.79 | 0.83 | 0.84    | 0.89      | 0.85      | 0.83      | 1.00   |         |        |        |        |        |        |         |         |         |         |         |         |         |         |         |         |         |         |          |         |         |          |      |
| DLM-103   | 0.69 | 0.66 | 0.68 | 0.75 | 0.76    | 0.76      | 0.78      | 0.80      | 0.81   | 1.00    |        |        |        |        |        |         |         |         |         |         |         |         |         |         |         |         |         |          |         |         |          |      |
| JK-8      | 0.77 | 0.75 | 0.79 | 0.82 | 0.84    | 0.87      | 0.85      | 0.80      | 0.89   | 0.84    | 1.00   |        |        |        |        |         |         |         |         |         |         |         |         |         |         |         |         |          |         |         |          |      |
| JK-36     | 0.66 | 0.63 | 0.62 | 0.68 | 0.67    | 0.69      | 0.71      | 0.70      | 0.73   | 0.77    | 0.73   | 1.00   |        |        |        |         |         |         |         |         |         |         |         |         |         |         |         |          |         |         |          |      |
| RLM-4-1   | 0.66 | 0.64 | 0.69 | 0.73 | 0.80    | 0.81      | 0.77      | 0.77      | 0.83   | 0.81    | 0.85   | 0.70   | 1.00   |        |        |         |         |         |         |         |         |         |         |         |         |         |         |          |         |         |          |      |
| RLM-37    | 0.66 | 0.55 | 0.57 | 0.61 | 0.60    | 0.64      | 0.69      | 0.66      | 0.68   | 0.67    | 0.67   | 0.68   | 0.68   | 1.00   |        |         |         |         |         |         |         |         |         |         |         |         |         |          |         |         |          |      |
| RLM-39    | 0.70 | 0.65 | 0.67 | 0.73 | 0.69    | 0.73      | 0.74      | 0.68      | 0.77   | 0.71    | 0.74   | 0.66   | 0.70   | 0.64   | 1.00   |         |         |         |         |         |         |         |         |         |         |         |         |          |         |         |          |      |
| RLM-41    | 0.76 | 0.72 | 0.75 | 0.78 | 0.81    | 0.84      | 0.83      | 0.81      | 0.88   | 0.84    | 0.86   | 0.80   | 0.83   | 0.73   | 0.80   | 1.00    |         |         |         |         |         |         |         |         |         |         |         |          |         |         |          |      |
| RLM-111   | 0.59 | 0.56 | 0.58 | 0.66 | 0.65    | 0.68      | 0.70      | 0.73      | 0.70   | 0.71    | 0.70   | 0.61   | 0.71   | 0.64   | 0.64   | 0.75    | 1.00    |         |         |         |         |         |         |         |         |         |         |          |         |         |          |      |
| RLM-118   | 0.66 | 0.65 | 0.66 | 0.73 | 0.72    | 0.75      | 0.75      | 0.74      | 0.77   | 0.80    | 0.80   | 0.74   | 0.82   | 0.73   | 0.69   | 0.84    | 0.74    | 1.00    |         |         |         |         |         |         |         |         |         |          |         |         |          |      |
| RLM-141   | 0.66 | 0.63 | 0.67 | 0.76 | 0.74    | 0.76      | 0.77      | 0.72      | 0.76   | 0.77    | 0.81   | 0.68   | 0.79   | 0.67   | 0.69   | 0.78    | 0.70    | 0.85    | 1.00    |         |         |         |         |         |         |         |         |          |         |         |          |      |
| RLM-161   | 0.36 | 0.37 | 0.37 | 0.39 | 0.34    | 0.35      | 0.38      | 0.35      | 0.35   | 0.37    | 0.36   | 0.36   | 0.35   | 0.33   | 0.34   | 0.34    | 0.32    | 0.38    | 0.40    | 1.00    |         |         |         |         |         |         |         |          |         |         |          |      |
| RLM-162   | 0.41 | 0.40 | 0.41 | 0.45 | 0.44    | 0.44      | 0.43      | 0.42      | 0.43   | 0.44    | 0.42   | 0.46   | 0.41   | 0.34   | 0.46   | 0.44    | 0.38    | 0.43    | 0.40    | 0.62    | 1.00    |         |         |         |         |         |         |          |         |         |          |      |
| RLM-181   | 0.71 | 0.66 | 0.69 | 0.75 | 0.74    | 0.79      | 0.77      | 0.72      | 0.79   | 0.75    | 0.79   | 0.73   | 0.74   | 0.67   | 0.74   | 0.81    | 0.68    | 0.75    | 0.72    | 0.35    | 0.51    | 1.00    |         |         |         |         |         |          |         |         |          |      |
| RLM-183   | 0.73 | 0.70 | 0.73 | 0.78 | 0.79    | 0.82      | 0.81      | 0.81      | 0.85   | 0.82    | 0.84   | 0.76   | 0.80   | 0.69   | 0.75   | 0.86    | 0.70    | 0.83    | 0.80    | 0.35    | 0.48    | 0.83    | 1.00    |         |         |         |         |          |         |         |          |      |
| RLM-186   | 0.67 | 0.64 | 0.64 | 0.69 | 0.68    | 0.71      | 0.75      | 0.73      | 0.74   | 0.73    | 0.74   | 0.68   | 0.72   | 0.72   | 0.68   | 0.74    | 0.69    | 0.77    | 0.74    | 0.36    | 0.40    | 0.70    | 0.84    | 1.00    |         |         |         |          |         |         |          |      |
| RLM-190   | 0.59 | 0.56 | 0.57 | 0.62 | 0.61    | 0.64      | 0.66      | 0.68      | 0.64   | 0.69    | 0.68   | 0.64   | 0.64   | 0.62   | 0.62   | 0.67    | 0.65    | 0.73    | 0.71    | 0.41    | 0.44    | 0.67    | 0.73    | 0.80    | 1.00    |         |         |          |         |         |          |      |
| RLM-203   | 0.49 | 0.47 | 0.45 | 0.47 | 0.43    | 0.46      | 0.47      | 0.47      | 0.49   | 0.47    | 0.48   | 0.46   | 0.46   | 0.48   | 0.51   | 0.48    | 0.53    | 0.49    | 0.53    | 0.50    | 0.49    | 0.51    | 0.54    | 0.63    | 1.00    |         |         |          |         |         |          |      |
| RLM-224   | 0.39 | 0.39 | 0.35 | 0.39 | 0.39    | 0.37      | 0.40      | 0.39      | 0.42   | 0.43    | 0.39   | 0.43   | 0.38   | 0.32   | 0.42   | 0.43    | 0.40    | 0.39    | 0.38    | 0.39    | 0.49    | 0.42    | 0.42    | 0.40    | 0.43    | 0.53    | 1.00    |          |         |         |          |      |
| RLM-238   | 0.66 | 0.64 | 0.65 | 0.72 | 0.69    | 0.71      | 0.75      | 0.74      | 0.76   | 0.73    | 0.67   | 0.68   | 0.78   | 0.70   | 0.77   | 0.68    | 0.29    | 0.39    | 0.73    | 0.79    | 0.77    | 0.65    | 0.49    | 0.43    | 1.00    |         |         |          |         |         |          |      |
| RLM-1367  | 0.74 | 0.70 | 0.73 | 0.79 | 0.78    | 0.80      | 0.76      | 0.76      | 0.83   | 0.80    | 0.84   | 0.72   | 0.76   | 0.66   | 0.75   | 0.83    | 0.69    | 0.78    | 0.74    | 0.33    | 0.43    | 0.79    | 0.81    | 0.72    | 0.68    | 0.49    | 0.41    | 0.81     | 1.00    |         |          |      |
| OLM-203   | 0.69 | 0.67 | 0.68 | 0.72 | 0.73    | 0.74      | 0.74      | 0.73      | 0.74   | 0.74    | 0.74   | 0.76   | 0.69   | 0.65   | 0.70   | 0.77    | 0.69    | 0.75    | 0.67    | 0.30    | 0.40    | 0.72    | 0.76    | 0.71    | 0.65    | 0.49    | 0.40    | 0.81     | 0.83    | 1.00    |          |      |
| TNAU-91   | 0.68 | 0.68 | 0.71 | 0.71 | 0.74    | 0.76      | 0.72      | 0.71      | 0.77   | 0.74    | 0.80   | 0.66   | 0.71   | 0.61   | 0.70   | 0.79    | 0.64    | 0.72    | 0.69    | 0.32    | 0.43    | 0.78    | 0.78    | 0.68    | 0.67    | 0.48    | 0.38    | 0.74     | 0.85    | 0.79    | 1.00     |      |
| TNAU-159  | 0.58 | 0.60 | 0.58 | 0.59 | 0.59    | 0.62      | 0.65      | 0.59      | 0.61   | 0.62    | 0.65   | 0.64   | 0.62   | 0.59   | 0.59   | 0.67    | 0.59    | 0.68    | 0.65    | 0.36    | 0.40    | 0.62    | 0.69    | 0.68    | 0.65    | 0.53    | 0.39    | 0.69     | 0.64    | 0.61    | 0.69     | 1.00 |




**Fig. 2.** Dendrogram showing relationship among little millet (*Panicum sumatrense*) genotypes based on random amplified polymorphic DNA analysis.

similar results have been reported in foxtail millet diversity using molecular markers (Kumari et al., 2011).

In the two-dimensional scaling, two groups of genotypes were formed (Fig. 3). Most of the genotypes followed similar grouping as in Fig. 1. Genotype RLM-141 showed different grouping in both

figures which may have been due to the low number of markers used in the study. This also confirmed the importance of a higher number of loci and their coverage of the entire genome for presenting consistent estimation of genetic relatedness among genotypes (Gupta et al., 2008).



**Fig. 3.** Two-dimensional scaling of little millet (*Panicum sumatrense*) genotypes based on random amplified polymorphic DNA analysis, where numbers represent serial no. of genotypes as mentioned in Table 1.

This is the first report involving molecular diversity analysis of a large set of little millet genotypes. Grouping of the genotypes according to their collection centers reflects the presence of a higher level of genetic diversity among genotypes collected from geographically distinct areas. The overall genetic diversity of a taxon has great implications for its long-term survival and evolution. Therefore, knowledge of the degree and pattern of genetic diversity is important for designing conservation strategies.

A high level of genetic diversity among *P. sumatrense* genotypes was observed using the RAPD markers. The findings can help in the identification of diverse parents for genetic improvement of *P. sumatrense* using hybridization programme. Such a high level of diversity is a reflection of adaptation to the environment, which is beneficial to propagation, resource conservation, the domestication of wild species and the screening of a specified geographic area.

### Conflict of interest

The authors declare that they have no competing interests.

### References

Arunachalam, V., Rengalakshmi, R., Kubera Raj, M.S., 2003. Ecological stability of genetic diversity among landraces of little millet (*Panicum sumatrense*) in south India. *Genet. Resour. Crop Evol.* 52, 15–19.

Baker, R.D., 2003. Millet Production. Guide A-414: Cooperative Extension Service, College of Agriculture and Home Economics. New Mexico University, Las Cruces, USA.

Birsa Agriculture University, 2015. Annual Report (2014–2015). <http://www.bauranchi.org>.

Chandel, G., Meena, R.K., Dubey, M., Kumar, M., 2014. Nutritional properties of minor millets: neglected cereals with potentials to combat malnutrition. *Curr. Sci.* 107, 1109–1111.

Demeke, T., Lynch, D.R., Kawchuck, L.M., Kozub, G.C., Armstrong, J.D., 1996. Genetic diversity of potato determined by random amplified polymorphic DNA analysis. *Plant Cell Rep.* 15, 662–667.

Ganesamurthy, K., 2015. Crop improvement section in progress report 2014–15. In: Maheswaran, M. (Ed.), Thirty Third Crop Scientists' Meet on Millets and Forages, 16th April 2015. Tamilnadu Agriculture University, Coimbatore, India, pp. 36–143. <http://agritech.tnau.ac.in/hrd/pdf/Millet%20program.pdf>. (Accessed 8 January 2018).

Gupta, S., Srivastava, M., Mishra, G.P., Naik, P.K., Chauhan, R.S., Tiwari, S.K., Kumar, M., Singh, R., 2008. Analogy of ISSR and RAPD markers for comparative analysis of Genetic diversity among different *Jatropha curcas* genotypes. *Afr. J. Biotechnol.* 7, 4230–4243.

Kumar, A., Jain, A.K., Singh, P., Lal, N., 2017. Screening of little millet germplasm against grain smut caused by *Macalpinomyces sharmae*. *Int. J. Curr. Microbiol. Appl. Sci.* 6, 2187–2196.

Kumari, R., Dikshit, N., Sharma, D., Bhat, K., 2011. Analysis of molecular genetic diversity in a representative collection of foxtail millet [*Setaria italica* (L.) P. Beauv.] from different agro-ecological regions of India. *Physiol. Mol. Biol. Plants* 17, 363–374.

Mall, T.P., Tripathi, S.C., 2016. Millets—the nutrimental potent ethno-medicinal grasses: a review. *World J. Pharmaceut. Res.* 5, 495–520.

M'Ribu, H.K., Hilu, K.W., 1994. Detection of interspecific and intraspecific variation in *Panicum* millets through random amplified polymorphic DNA. *Theor. Appl. Genet.* 88, 412–416.

Rohlf, F.J., 1998. NTSYS-PC Numerical Taxonomy and Multivariate Analysis System, Version 2.1. Exeter Publication, Setauket, NY, USA.

Saghai-Marof, M.A., Soliman, K.M., Jorgensen, R.A., Allard, R.W., 1984. Ribosomal DNA spacer-length polymorphism in barley: mendelian inheritance chromosomal location and population dynamics. *Proc. Natl. Acad. Sci. Unit. States Am.* 81, 8014–8018.

Saturni, L., Ferretti, G., Bacchetti, T., 2010. The gluten-free diet: safety and nutritional quality. *Nutrients* 2, 16–34.

Selvi, V.M., Nirmalakumari, A., Subramanian, A., 2015. Assessment of genetic diversity using morphometric traits in little millet (*Panicum sumatrense*). *Trends Biosci.* 8, 1–7.

Usha, R., Madhuprasad, V.L., Suresha, S.V., Jagadeeshwara, K., 2011. Little millet- a source of functional food for sustainable nutrition security. In: Proceedings of the 7th Asia Pacific Conference on Clinical Nutrition, Bangkok, Thailand, p. 449.