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a b s t r a c t

Brassinosteroid mimics have been shown to increase photosynthesis in plants and alleviate the effects of
heat stress. 7,8-Dihydro-8a-20-hydroxyecdysone (aDHECD) is a brassinosteroid mimic, but there has
been no reporting on the mechanism of aDHECD against heat stress. Therefore, the effect of aDHECD was
investigated on photosynthesis and seed set in rice subjected to heat stress. In this experiment, rice
plants were applied with water or 0.0001 mM aDHECD by foliar application before being subjected to
heat stress during the reproductive growth stage. Then, plants were exposed to either a normal tem-
perature regime of 30/26 �C day/night or to a high temperature regime of 40/30 �C day/night for 7 d. The
results showed that aDHECD increased the net photosynthetic rate under the normal temperature
regime. Under heat stress, aDHECD enhanced the net photosynthetic rate, stomatal conductance, tran-
spiration rate and stomatal limitation, while decreasing the intercellular CO2 concentration and effi-
ciency of water utilization. aDHECD also increased the total soluble sugar content in rice leaves under the
normal and high temperature treatments. The application of aDHECD also increased seed setting, seed
weight and the sugar and starch contents in the straw and seed under heat stress. The results indicated
that aDHECD is a brassinosteroid mimic that enhances photosynthetic performance, increases the car-
bohydrate contents in the straw and seed and improves rice seed set under high temperatures when it is
applied in the reproductive growth stage.
Copyright © 2018, Kasetsart University. Production and hosting by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

High temperature is one of the abiotic stresses which affect
biochemical and physiological processes and decrease productivity
in crop plants. Primarily, a high temperature reduces stomatal
conductance, which subsequently decreases gas exchange and
photosynthesis (Inz�e and Montagu, 2002; Mohammed and Tarpley,
2009). Rice is a major food crop in Thailand. However, the repro-
ductive stage of rice is most sensitive to high temperature (Krishnan
et al., 2011). High temperature decreases pollen germination result-
ing in a poor seed set (Cao and Zhao, 2008). Moreover, heat stress has
a significant impact on photosynthesis and can reduce the photo-
synthetic rate by about 40e60% in the reproductive stage (Oh-e et al.,
.
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2007). The reduction of photosynthetic performance can lead to a
decrease in rice yield (Oh-e et al., 2007).

Plant growth regulators are one of the alternative methods that
are widely used to increase agricultural production. Brassinoste-
roids (BRs) are a group of steroidal plant growth regulators that are
involved in major physiological processes in plants, including stem
elongation and pollen tube growth (Clouse and Sasse, 1998). BRs
also induce synthesis of ethylene, xylem differentiation, synthesis
of nucleic acid and proteins, activation of enzymes and photosyn-
thesis (Clouse and Sasse, 1998; Hayat and Ahmad, 2003; Khripach
et al., 2003; Sasse, 2003; Yu et al., 2004). At present, there are
many derivatives of BRs which show activity similar to natural BRs,
such as 24�epibrassinolide (EBR), and have been studied and used
extensively to increase the yield and to mitigate the effects of biotic
and abiotic stresses in various plants, including cucumber (Yu et al.,
2004), melon (Zhang et al., 2013), eggplant (Wu et al., 2014), tomato
(Ogweno et al., 2008) and rice (Thussagunpanit et al., 2015).
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Most natural BRs are produced in low quantities and are very
expensive (Serna et al., 2012). Therefore, Suksamrarn et al. (2002)
synthesized 7,8-dihydro-8a-20-hydroxyecdysone (DHECD)
through catalytic hydrogenation of 20-hydroxyecdysonewhichwas
obtained from Vitex glabrata stem bark (Werawattanametin et al.,
1986). The skeleton of the structure and functional groups of
DHECD are similar to those of castasteroneda type of BR. A pre-
vious study indicated that DHECD exhibited some biological ac-
tivities similar to the role of BRs in the plant (Homvisasevongsa,
2006). Moreover, DHECD could promote photosynthesis, anti-
oxidative enzyme activity, the percentage of rice pollen germina-
tion and seed setting under heat stress conditions (Sonjaroon et al.,
2016; Thussagunpanit et al., 2013). Moreover, BR mimic substances
have also been discovered and in recent studies, many derivatives
of BRs have been synthesized. Suksamrarn et al. (2002) reported
that the DHECD structure was changed to 7,8-dihydro-8a-20-
hydroxyecdysone by adding 5% Na2CO3 and MeOH which
changed the H bond at the C�5 position of DHECD. The aDHECD
structure has a cis nature at C�5 in the A/B ring (Fig. 1) whereas
DHECD possesses a trans-A/B ring. aDHECD has been shown to
reduce dwarfism in the BR-biosynthesis-deficient mutant det2 and
also downregulated the expression of the BR biosynthesis genes
DWF4 and CPD in Arabidopsis. Moreover, aDHECD induced
dephosphorylated BIL1/BZR1 accumulation which enhanced BR
signaling as a master transcription factor (Thussagunpanit et al.,
2017). Therefore, aDHECD is similar to BRs in their effects on
plants at the molecular level. However, there are only a few studies
on how aDHECD affects the actual physiological processes in plants
(Thussagunpanit et al., 2017). In particular, the effects of aDHECD
on photosynthesis and yield in plants under heat stress have not
been reported. Our current study focused on aDHECD application in
rice (Oryza sativa L. cv. PathumThani) under high temperature
stress. The objective of this study was to investigate the effect of
aDHECD on photosynthesis, the contents of sugar and starch and
the yield of rice under high temperature conditions.
Materials and methods

Plant material and brassinosteroid mimic treatments

Rice seedlings (Oryza sativa L. cv. PathumThani 1) were grown in
plastic potswith a 1:1mixture of clayandorganic substancewith 3 kg
dry substrate per pot and one plant per pot. The experiment was
conducted in a greenhouse at the Department of Botany, Kasetsart
University, Bangkok, Thailand (13�500N,100�340E). Prior to the treat-
ments, the seedlings were grown at 600 mmol/m2/s photosynthetic
Fig. 1. Structure of 7,8-dihydro-8a-20-hydroxyecdysone (aDHECD).
photon flux density (PPFD) at 30/25 �C (12 h day/12 h night) and
50e60% relative humidity. The water in the pot was controlled
throughout the experiment. Rice seedlings received chemical fertil-
izer in three periods: 0.48 g nitrogen (N) at 15 d after sowing, 6.57 g N
at 55d after sowing, and2.97gNat75dafter sowing, according to the
recommendations by Department of Agriculture (2005).

The experiment was conducted using a completely randomized
design with four replications. The seedlings were assigned to two
temperature treatments: normal temperature (30/25 �C for 12 h day/
12 h night) and high temperature (40/30 �C for 12 h day/12 h night).
Other abiotic factors were controlled at 600 mmol/m2/sPPFD and
50e60% relative humidity for 12 h day/12 h night. With a factorial
design of two factors (temperatures and application of aDHECD), this
experiments consisted of four treatments: application of water at
normal temperature (C), 0.001 mMof aDHECD at normal temperature
(aD), distilled water at high temperature (SC) and 0.001 mM aDHECD
at high temperature (SþaD). Prior to spraying, distilled water and
0.001 mM aDHECD solutions were mixed with 0.25% Tween-20 sur-
factant. The spray was applied at the rate of 20 mL per plant.

Rice plants were sprayed with either distilled water or aDHECD
at the normal temperature at 80 d after planting. Subsequently, all
treatments were transferred in their respective treatments for 7 d.
The photosynthetic gas exchange and total soluble sugar were
measured at 84, 86, 88 and 90 d after sowing and data on seed
setting were collected at harvest (120 d after sowing). Lastly, the
total soluble sugar and starch contents were analyzed in the straw
and rice seed after harvest.

Measurement of photosynthetic leaf gas exchange in rice

Gas exchange parameters were measured on rice leaves, using a
portable LI-6400 system (Li-cor Inc.; Lincoln, NE, USA). The gas
exchange measurement was performed during 0900e1100 h with
the artificial saturating photo photon flux density at 1400 mmol/m2/
s, the CO2 concentration at 400 ppm, the relative humidity at 65%,
the air flow rate into the assimilation chamber at 500 mmol/s and
the leaf area used in the measurements was 1.5 cm2. The net
photosynthetic rate (PN), stomatal conductance (gs), transpiration
rate (E) and intercellular CO2 concentration (Ci) were obtained from
the portable photosynthesis systems (LI-6400). The water use ef-
ficiency (WUE) was calculated from PN and E. The stomatal limi-
tation (LS) was calculated using the 1-(Ca/Ci) equation.

Determination of total soluble sugar and starch content in leaf,
straw and rice seed

The total soluble sugar and starch contents were measured,
using the anthrone method (Turakainen et al., 2004; Yemm and
Willis, 1954). For the total soluble sugar, 0.1 g of plant tissues
(fresh leaves, straw and rice seed) was homogenized in 2.5 mL of
80% ethanol for 10 min. Then, the supernatant was collected from
the extraction of the sample. The homogenization was repeated
two more times. After that, 4.5 mL of anthrone reagent was added
to the supernatant and incubated in hot water for 20 min. Finally,
the sample was subjected to spectrophotometry at 620 nm to
determine the total soluble contents from a glucose standard plot
and calculated on a fresh weight basis.

For starch content determination, the precipitate from the
extraction of the sugars was hydrolyzed by incubation with 50% (v/
v) perchloric acid overnight at room temperature. After that, 4.5 mL
of anthrone reagent was added to the supernatant and incubated in
hot water for 20 min. Finally, the sample was subjected to spec-
trophotometry at 620 nm to determine the sugars content from a
glucose standard plot and the starch content was calculated on a
fresh weight basis.
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Measurement of dry matter and grain yield

The rice plants were harvested at age 120 d. The rice yield was
determined as the number of spikelets per panicle, the grainweight
of filled seed and the percentage of filled seed. Then, the leaf and
culm in each treatment were dried at 80 �C for 7 d using the hot air
oven, and the dry matter was weighed.

Statistical analysis

The analysis of variance between treatments was performed
using the SAS statistical package (SAS Institute, 2003). All results
Fig. 2. Effects of 7,8-dihydro-8a-20-hydroxyecdysone (aDHECD) on rice leaves under high te
intercellular CO2 concentration (Ci); (D) transpiration rate (E); (E) water use efficiency (WU
lowercase letter are not significantly different at 0.05 levels according to Tukey's test. (C: unst
plant with aDHECD).
were presented as the mean ± standard error. Means differing at
the 0.05 level were considered significant. Tukey's test was applied
as a post hoc comparison for pairwise differences.

Results

Photosynthetic leaf gas exchange

Application of aDHECD significantly increased PN compared to
the control on day 0 before the exposure to heat stress (Fig. 2A).
Under heat stress, PN decreased by 52.1% on day 5 and 56.9% on
day 7 compared to the control treatment (Fig. 2A). From day 3 to
mperature regime: (A) net photosynthetic rate (PN); (B) stomatal conductance (gs); (C)
E); (F) stomatal limitation (Ls). Data are mean ± SE, with n ¼ 5. Times with the same
ressed control plant, aD: plant with aDHECD, SC: stressed control plant, SþaD: stressed
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day 7, aDHECD significantly improved the PN compared with the
stressed control by 14.7%, 43.7% and 48.8%, respectively (Fig. 2A).
The gs reduced under heat stress from day 5 to day 7 by 66.3% and
80.3%, respectively (Fig. 2B). Application of aDHECD significantly
improved gs, compared to the stress control treatment throughout
Fig. 3. Effects of 7,8-dihydro-8a-20-hydroxyecdysone (aDHECD) on the total soluble
sugar content of rice leaves under normal and high temperature regimes. Data are
mean ± SE, with n ¼ 5. Times with the same lowercase letter are not significantly
different at 0.05 level according to Tukey's test. (C: unstressed control plant, aD: plant
with aDHECD, SC: stressed control plant, SþaD: stressed plant with aDHECD).

Fig. 4. Effects of 7,8-dihydro-8a-20-hydroxyecdysone (aDHECD) on rice under high temper
panicle; (D) percentage of filled seed. Data are mean ± SE, with n ¼ 5. Columns with the sam
unstressed control plant, aD: plant with aDHECD, SC: stressed control plant, SþaD: stresse
the experiment (Fig. 2B). Heat stress increased Ci compared with
the control plant treatment from day 3 to day 7, whereas aDHECD
application lowered Ci compared to the stressed control plant on
day 3 and day 7 (Fig. 2C). The E was reduced under heat stress
(Fig. 2D), while aDHECD significantly improved E compared to the
stressed control plant treatment from day 5 to day 7 by 47.7% and
71.4%, respectively (Fig. 2D). Rice exposed to high temperature
had improved WUE on day 7 (Fig. 2E), whereas aDHECD reduced
theWUE from day 5 to day 7 under heat stress (Fig. 2E). Moreover,
the stomatal limitation (Ls) suddenly reduced after exposure of
the rice to heat stress from day 3 to day 7. Application of aDHECD
resulted in a higher LS than the stressed control plant from day 3
to day 7 (Fig. 2F).
Total soluble sugar in rice leaf

Under normal temperature, the application of aDHECD
significantly increased the total soluble sugar content compared
to the control plants from day 3 to day 7, by 22.1%, 11.9% and
12.88%, respectively (Fig. 3). Under the high temperature, the
sugar content in rice leaves reduced from day 3 to day 7 when
compared to the control plants in the normal temperature, by
24.38%, 37.8% and 36.6%, respectively (Fig. 3). Plants in the
aDHECD application had a higher total soluble sugar content than
the SC treatment from day 3 to day by 7, 20.4%, 35.3% and 32.7%,
respectively (Fig. 3).
ature regime: (A) dry straw mass; (B) weight filled seed; (C) number of filled seed per
e lowercase letter are not significantly different (p > 0.05) according to Tukey's test. (C:
d plant with aDHECD).
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Dry matter and grain yield

Under normal temperature, application of aDHECD significantly
increased the dry straw mass, weight of filled seed, number of filled
seeds per panicle and the percentage of filled seeds compared with
thecontrol groupby1.5,1.2,1.4and1.1 times, respectively (Fig. 4AeD).
The rice yield was reduced under high temperature (Fig. 4AeD).
aDHECDsignificantly improvedall riceyieldparameters, compared to
the SC treatment, by 2.6 times for the dry straw mass, 1.8 times for
filled seedweight,1.5 times for the number of filled seeds per panicle
and 1.9 times for the percentage of filled seeds.

Total soluble sugar and starch content in straw and seed

Application of aDHECD significantly increased the straw sugar
content by 1.4 times the control under normal temperature
(Fig. 5A). The straw and seed had starch contents 1.5 and 1.1 times
that of the control treatment when aDHECDwas applied (Fig. 5C,D).
Under the high temperature conditions, the sugar contents in the
straw and seed and seed starch were lower than the control
treatment at normal temperature by 1.5, 1.3 and 1.2 times,
respectively (Fig. 5A,B,D). Application of aDHECD significantly
improved the sugar and starch contents in the straw and seed
compared with the SC treatment, with increases of 1.8 times for the
sugar content in straw, 1.1 times for the sugar content in seed, 1.4
times for the starch content in straw and 1.1 times for the starch in
seed under heat stress (Fig. 5AeD).
Fig. 5. Effects of 7,8-dihydro-8a-20-hydroxyecdysone (aDHECD) on rice under high tempera
seed; (C) starch content in straw; (D) starch in seed. Data are mean ± SE, with n ¼ 5. Colum
Tukey's test. (C: unstressed control plant, aD: plant with aDHECD, SC: stressed control plan
Discussion

These results showed that the photosynthetic gas exchange pa-
rameters were reduced when the rice was exposed to high temper-
ature stress. These suggested that when rice is exposed to heat stress,
stomatal closure decreased the uptake of CO2 into the leaves.
Reduction of the solubility of CO2 relative to O2 within the leaf tissue
results in decreased availability of CO2 as a substrate for CO2-
concentrating mechanisms (Li et al., 2007; Salvucci and Crafts-
Brandner, 2004; Singh and Shono, 2005). Application of aDHECD
increased PN, gs, E and Ls values, while decreasing Ci andWUE values
under high temperature (Fig. 2). aDHECD could improve gs which is a
measure of the stomatal opening. The increase in gs involved
increasing PN (Zhang et al, 2013). On the other hand, Ci is one of the
factors affecting photosynthetic processes (Whiteman and Koller,
1967). In the current study, aDHECD application reduced Ci under
high temperature when compared with stress-controlled plants
(Fig. 2C). Thus, the reduction in the intercellular space CO2 found in
this study indicated that rice leaves could use more of the CO2 for
carbon dioxide fixation in the Calvin cycle (Hola, 2011). Moreover, the
stomatal conductance was also related to the transpiration rate (E).
The results showed that the reduction of gs coincidedwith a decrease
in E under heat stress (Fig. 2D). Thus, the value of E reversed with gs
(Fig. 2B,D). The increase in WUE indicated that the plants used less
water due to a reduced transpiration rate. It has been reported that
increasing the CO2 concentration within the leaf enables effective
stomatal control which decreases the transpiration rate and
ture regime: (A) total soluble sugar content in straw; (B) total soluble sugar content in
ns with the same lowercase letter are not significantly different (p > 0.05) according to
t, SþaD: stressed plant with aDHECD).
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consequently increases WUE (Xu and Zhou, 2008). Moreover, the
results showed that rice exposed to heat stress had a lower LS value
(Fig. 2F). The decrease in LS leads to an increase in the CO2 concen-
tration which can lead to a reduction in Rubisco activity because the
amount of Rubisco required to maintain the same assimilation rate
decreases (Drake et al., 1997; Woodrow, 1994). aDHECD could in-
crease LS which showed adaptation in the rice leaves under high
temperature. All of the photosynthetic parameters suggested that the
exposure to aDHECD increased the photosynthetic performance in
rice under heat stress.

aDHECD increased the total soluble sugar content in rice leaves
under heat stress (Fig. 3). This result was consistent with Vardhini
and Rao (1998) who demonstrated that the application of BR on
peanut plants could elevate the total soluble sugar content as a
result of an increased photosynthetic rate. The application of
aDHECD increased the photosynthetic rate which might have
resulted in increased starch accumulation. In previous studies on
other BRs, the BRs have been shown to improve the yield of wheat
(Holâ et al., 2010), soybean (Zullo and Adam, 2002) and rice (Ramraj
et al., 1997). Moreover, DHECD, another BR-mimic, also increased
rice yield under heat stress (Thussagunpanit et al., 2015). In the
current study, aDHECD increased the dry straw mass, the number
of fertile seeds, the number of filled seeds per panicle and the
percentage of filled seeds under heat stress. The increased yield in
plants was a consequence of the increase in photosynthesis which
led to transfer of the carbon partition from the plant biomass to the
harvested organ (Richards, 2000). The results indicated that
aDHECD has similar effects as BRs and DHECD, which can also in-
crease the yield of rice. In addition, the study of the total soluble
sugar and starch contents in the rice straw and seed showed that
the application of aDHECD significantly improved the sugar and
starch contents in the straw and seed under heat stress. The high
sugar and starch contents resulted from the high rates of PN in the
aDHECD treatment. A previous study showed enhanced sink
strength and phloem uploading which led to flux sugar from the
source to the sink organs (Sasse, 2003). Moreover, BRs increased
sucrose transport to the rice endosperm which subsequently
increased the yield (Wu et al., 2008). Therefore, improvement in the
rice seed set, grain weight, and the sugar and starch contents in
seed resulted from the increased sugar and starch contents in the
straw dry matter which was caused by improving photosynthesis
through using aDHECD.

In conclusion, aDHECD is a BR mimic which has similar effects
on plants to natural BRs. The current study demonstrated that the
foliar application of aDHECD significantly improved the photo-
synthetic rate, stomatal conductance, transpiration rate and sto-
matal limitation, while decreasing the intercellular CO2
concentration and efficiency of water utilization under heat stress.
aDHECD also increased the total soluble sugar content in rice leaves
under heat stress, as a result of photosynthetic improvement.
aDHECD increased the seed setting and seed weight of rice under
high temperature conditions. Moreover, the application of aDHECD
significantly improved the sugar and starch contents in the straw
and seed under heat stress. The application of aDHECD increased
the photosynthetic rate which affected the sugar content in the
leaves and led to starch accumulation in the rice under heat stress.
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