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Phosphorus (P) is an essential nutrient for plant growth since it is involved in cellular energy transfer,
respiration, and photosynthesis. The P status and P distribution were examined in different parts of the
wheat (Triticum aestivum) plant and root and shoot growth response in a split-root soil culture in acidic
soil (pH 5.2), collected from the acidic region of Bangladesh. KH,PO4 was used as the source of P for the
different levels of P application. Two recently developed wheat varieties (BARI-GOM 25 and BARI-GOM
26) were used as testing plants with three replications. The results showed that growth parameters like
plant biomass increased by up to 80% over the control P application. Likewise, P uptake by wheat
seedlings also increased by up to more than 8 times compared with the control P application. However,
no significant differences were observed between wheat varieties irrespective of growth and P uptake by
the wheat seedlings. Moreover, elevated P concentrations in the shoot of wheat plants probably provided
more P for shoot unloading of P and for P assimilation in the control roots, resulting in increased P
concentrations in the roots of wheat plants that indicated the translocation of P in the roots. These
findings indicated that added soluble P increased the absorption of nutrients under acidic soil conditions.
However, application of elevated P is efficient for both increasing shoot development and root growth
and plays a significant role in the phosphorus dynamics within wheat plants in a split-root system.
Copyright © 2018, Kasetsart University. Production and hosting by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Phosphorous (P) plays a key role in plant growth and is the
major plant growth-limiting nutrient despite its abundance in
soils in both inorganic and organic forms (Gyaneshwar et al.,
1999). It is absorbed by plants in orthophosphate (H,POz and
HPO3~) forms (Hinsinger, 2001). Phosphorus is a structural
component of many co-enzymes, phosphoproteins, phospho-
lipids (Ozanne, 1980) and a part of the DNA genetic memory of all
living things. It is involved in the transfer and storage of energy
which is used for growth and reproduction (Griffith, 1999).
Phosphorus is important in several physiological processes of
plants, especially in photosynthesis, carbon metabolism and
membrane formation (Wu et al., 2005). Low P availability is one of
the major factors limiting crop production in acidic soils. How-
ever, the concentration of inorganic P in soil solution is typically
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very low, due to the propensity of inorganic P to bind strongly to
soil surfaces or form insoluble complexes with cations (Talboys
et al., 2014). This means that inorganic P is often a limiting fac-
tor in plant growth and development and this has resulted in a
large number of developmental traits amongst plant species that
can enhance inorganic P uptake; physiologically these include the
modulation of root elongation (Sanchez-Calderon et al., 2005),
branching (Linkohr et al., 2002; Lopez-Bucio et al., 2002) and root
hair density (Ma et al., 2001). The root system may also act to
enhance inorganic P uptake by exuding protons (Hinsinger, 2001),
organic acid anions (Ryan et al., 2001) and phosphatases (Tadano
and Sakai, 1991) into the rhizosphere, or by the formation of
symbioses with arbuscular mycorrhizas or ectomycorrhizas (Péret
et al,, 2011; Smith et al., 2011). Kirkham and Erickson (1997)
studied a split-root system with wheat by applying different
nutrient solution in different root compartments. They reported
that wheat grown with roots between controlled and nutrient
solution was taller than wheat with roots both compartments are
in nutrient solution. Phosphorus is readily translocated within the
plants, moving from older to younger tissues as the plant forms
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cells and develops roots, stems and leaves (Schachtman et al.,
1998). Moreover, in inorganic P-deficient plants, the restricted
supply of P to the shoots from the roots via the xylem is supple-
mented by increased mobilization of stored P in the older leaves
and retranslocation to both the younger leaves and growing roots
(Jeschke et al., 1997). Therefore, understanding the mechanisms
controlling these traits is of great importance in the pursuit of
improved crop inorganic P uptake, and the root can be split into
two different compartments in pot experiments to determine the
nutrient dynamics, especially for P.

The objectives of the present study were to understand the
mechanisms involved in the utilization of inorganic P by wheat
plants under various split-root systems and to quantify how
translocated P affects the wheat plant within a split-root system
under different P-efficient conditions.

Materials and methods
Experimental design

Soil and plants

Acidic soil (pH 5.2) collected from the Thakurgaon district,
Bangladesh, was used as the experimental soil. The basic properties
of soil are provided in Table 1. BARI-GOM 25 and BARI-GOM 26
wheat varieties were used as testing plants.

The split-root experiment was conducted with the treat-
ments described in Table 2. The BARI-GOM 25 and BARI-GOM 26
varieties were compared. The treatments were replicated three
times. KH,PO4 was used as the P fertilizer. To avoid the in-
teractions between soil nutrients and added P, no basal nutrients
were added. The plants were grown for 28 d and they had to
depend on the reserve food in seeds and the added P for their
growth.

The soil was incubated at 30°C for 7 d then KH;PO4 as per P
doses was applied directly to the soil in each cup and mixed thor-
oughly before sowing. The total experiment was conducted in the
Research Laboratories, Department of Agronomy andAgricultural
Extension, Rajshahi University, Rajshahi, Bangladesh.

Construction of a split-root system

Pots having two compartments or chambers with a fixed
partition-wall at the middle of the pot were used for the treatment
(Fig. 1). Each compartment was filled with 500 g of experimental
soil. The soil was compacted. The whole split-root system with soil
and plant was monitored for 28 d.

Table 1
Properties of soils used in different experiments.

Soil Total Available P Exchangeable Available S Available Zn Organic

Crop management

Seed germination and seedling preparation

Seeds of uniform size were selected for germination. The seeds
of BARI-GOM 25 and BARI-GOM 26 were germinated in moist sand
in two separate trays in the dark at 25 °C for 70 h. The germinated
seeds were grown for 5 d in the separate trays to produce young
seedlings.

Cultivation of plants

Five slots were made on each side of the partition wall of the pot
to support the transplanted seedlings. Five-day-old healthy seed-
lings were transplanted. Each seedling had four seminal roots,
(6—7 cm long) after cutting off one-to-three uneven roots. A single-
seedling was put into each slot keeping two seminal roots in each
compartment. Then, the roots were covered with the same treated
soil and watered immediately after planting and 20 mL of water
was added to each compartment every day and watering was
stopped 3 d before harvesting.

Harvesting

The experimental plants were harvested 27 d after trans-
planting. The shoots were cut uniformly at 0.5 cm above the base
part of the stem. Then, the roots were cut 0.5 cm below the base
part and separated carefully into two halves as previously marked.
Soil from the two root halves was removed carefully so that roots
were not torn or left in the soil. Then the collected bulk soil was air-
dried and stored in a controlled room temperature (25 °C) until
analysis. The roots were washed with deionized (DI) water to
remove the adhered soil from roots. The washed roots were oven-
dried at 70 °C for 3 d. Shoots were also oven-dried at the same
temperature for the same time. After drying, the root and shoot
samples were weighed and stored for analytical experiments.

Laboratory analysis

Measurements of soil physical and chemical properties

Soil textural analyses were conducted using an abbreviated
version of the international pipette method (Olmstead et al., 1990).
The clay content was determined using a pipette method after
pretreatment with H,O; to remove organic matter (Gee and Bauder,
1986). The pH of the soil was determined before incubation in DI
water using a soil-to-solution ratio of 1:2.5. Organic carbon in the
soil samples was determined using the wet oxidation method
(Walkley and Black, 1934). Soil organic matter content was deter-
mined by multiplying the percentage of organic carbon by the
conventional Van-Bemmelen's factor of 1.724 (Piper, 1950). The
nitrogen content of the soil sample was determined by distilling
soil with alkaline potassium permanganate solution (Subbiah and
Asija, 1956). The distillate was collected in 20 mL of 2% boric acid

pH N (%) (ppm) K (Cmol/kg)  (ppm) (ppm) matter (%) solution with methyl red and bromocresol green indicator and
=2 005 102 02 195 059 0.85 tltfated .w1th 0.02 N sulphuric acid (H2504.) .(Podder et al,, 2912).
— Soil available S (measured as parts per million) was determined

ppm = parts per million. using the calcium phosphate extraction method with a
Table 2
The split-root system with different treatments.

Treatment Symbol Treatment P level

Compartment 1 Compartment 2 Compartment 1 Compartment 2

A OP/0P oP oP 0 mg P/kg 0 mg P/kg

B 10P/50P 10P 50P 10 mg P/kg 50 mg P/kg

C 50P/200P 50P 200P 50 mg P/kg 200 mg P/kg

OP = no P added; 10P = 10 mg P/kg added; 50P = 50 mg P/kg added.
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Fig. 1. Split-root experiments.

spectrophotometer at 535 nm (Petersen, 1996). The soil available K
was extracted with 1N NH40AC and determined using an atomic
absorption spectrometer (Biswas et al., 2012). The available P of the
soil was determined using a spectrophotometer at a wavelength of
890 nm. The soil sample was extracted using the Olsen method
with 0.5 M NaHCO3 as outlined by Huq and Alam (2005). Zn in the
soil sample was measured using an atomic absorption spectro-
photometer after extracting with diethylenetriaminepentaacetic
acid (Soltanpour and Workman, 1979).

Phosphorus determination in soil and plant tissue

The amounts of P in root, shoot, and soil were determined. After
digestion in a mixture of concentrated nitric and perchloric acids
(4:1), the concentrations of P in root and shoot materials were
determined using the vanadomolybdate method (Michelsen, 1957)
after digestion in a mixture of concentrated nitric and perchloric
acids (4:1). A colorimetric method—the molydovanado-phosphate
method (Association of Official Analytical Chemists, 1975)—for the
determination of phosphorous concentrations in digest solutions
was used. Briefly, phosphorous was assayed by adding 3 mL of
digested solution, 2 mL of reagent and 5 mL of DI water. The
absorbance reading was used at 470 nm (Igbal, 2014a).

Statistical analysis

Shoot and root parameters were analyzed using two-way
analysis of variance (Treatment x Variety), total P uptake and the
distribution of P in different plant parts was analyzed using one-
way analysis of variance with Genstat 11th edition for Windows
(Lawes Agricultural Trust, Norwich, UK). Results were considered

significant at the p < 0.05 level and highly significant at the
p < 0.001 level.

Results
Growth response of wheat plant in the split-root system

Plants typically respond to P limitation by reducing their total
plant biomass and diverting resources disproportionately towards
root growth (Zhu and Lynch, 2004; Zhu et al., 2005). In many soil
types, P is localized in the upper soil layers and immobilized with
other molecules (Chu and Chang, 1966). Predictably, under limiting
phosphorous conditions, plants that proliferate roots into these
upper layers outperform varieties with deeper root systems (Zhu
and Lynch, 2004; Zhu et al., 2005). The highly significant Treat-
ment (T) interaction for plant growth in this study indicated that
the plant growth responses of BARI-GOM 25 and BARI-GOM 26
seedlings were dependent on the level of added P (Table 3). In all
treatments, there were no significant differences between BARI-
GOM 25 and BARI-GOM 26 seedlings for any growth measurement.

Plant height is a genetic character of a variety but its potential
can be achieved by adequate crop management. The data on the
effect of different P levels on plant height is given in Fig. 2. The
results showed for the variety BARI-GOM 25 that the maximum
plant height (34.75 mm) was recorded in treatment C (50P/
200 P mg/kg), while it was lowest (28.79 mm) in treatment A
(control). Similarly, the results showed for the variety BARI-GOM 26
that the maximum plant height (35.89 mm) was recorded in

Table 3
Significance levels for the main and interactive effect of P and varieties on seedlings
growth.

Source of Plant
variation height

Shoot P concentration Root dry
dry in shoot weight
weight

P uptake
in root

stk sokk e sokk sokk

Treatment (T)
Variety (V) . ns o * *
Compartment (C) — - -
TxV > ns . ns ns
TxC _ _ _ Kook ook
CxV — — — ns ns
TxVxC — — — ns ns

ns, ** and *** represent p > 0.05, p < 0.01 and p < 0.001, respectively. — = no data
available.

40 -
BARI GOM 25

35

[ BARI GOM 26 N

30 -

25 A

Average Plant Height (cm)

OP/0OP 10P/50P

Treatment Applied (mg/kg)

50P/200P

Fig. 2. Effect of P application on average plant height of the wheat seedlings grown
under various level of P for 28 d.
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Table 4
Total Plant biomass, total shoot and root biomass in different plant parts of the split-
root system and distribution of biomass in shoot and two separate compartments.

Plant part Total plant biomass (g/pot)

[Variety Treatment A Treatment B Treatment C
BARI-GOM 25 1.17 1.85 2.22
BARI-GOM 26 1.24 1.91 2.25

Total biomass (g/pot) in different plant parts of the split-root system
BARI-GOM 25

Shoot 0.55 0.80 0.90
Compartment-I 0.30 0.45 0.61
Compartment-II 0.32 0.60 0.70
BARI-GOM 26

Shoot 0.57 0.83 0.91
Compartment-I 0.32 0.47 0.62
Compartment-II 0.35 0.61 0.71

Distribution of biomass (%) in shoot and roots grown in two separate soil
compartments (I and II)

BARI-GOM 25

Shoot 47.0 43.2 40.8
Compartment-I 25.6 243 27.7
Compartment Il 274 324 31.6
BARI-GOM 26

Shoot 46.1 433 40.7
Compartment [ 25.7 24.8 27.7
Compartment Il 28.2 31.9 31.6

treatment C (50P/200 P mg/kg), while it was lowest (30.73 mm) in
treatment A (control). Plant height was highly significantly affected
among all the various P applications and varieties of wheat plants. It
also increased with the increasing level of phosphorus application.
Hence, among the low levels of various phosphorous application,
phosphate had a gradually increasing effect on plant height with
increasing P applications, while at high levels, P resulted in
maximum plant height.

Like plant height, the plant biomass showed similar trends un-
der different P applications. Total plant biomass in BARI-GOM 26 of
treatment C increased 81% (2.25 g/pot) compared with the
controlled treatment A (1.24 g/pot). Similarly, treatment B
increased 54% (1.91 g/pot) compared with treatment A. Again, for
BARI-GOM 25, the total plant biomass in treatment C increased 89%
(2.22 g/pot) compared with the controlled treatment A (1.17 g/pot).
Similarly, Treatment B increased 58% (1.85 g/pot) compared with
treatment A. A similar trend was found in the shoot biomass and
root biomass results of both wheat plant varieties in this study

(Table 4), while the internal biomass distribution in the shoot and
root showed a different trend among all treatments (Fig. 3). The
shoot biomass was highest (47% of total plant biomass) in treat-
ment A of BARI-GOM 25 and in treatment B and treatment C in
decreasing order (43.2% and 40.8% of total plant biomass, respec-
tively). For root biomass, the trend was in increasing order in both
compartments among all treatments (Table 4). Similarly, in BARI-
GOM 26, the highest percentage of shoot biomass was in treat-
ment A (46.1% of total plant biomass) followed by treatment B and
treatment C in decreasing order (43.3% and 40.7% of total plant
biomass, respectively). For root biomass, the trend was an
increasing order in both compartments among all treatments
(Fig. 3). The inhibitory effect of increasing the P supply to whole
root systems on the development of cluster roots of wheat plant
(Triticum aestivum) has been well documented (Ma and Rengel,
2008; Pedas et al., 2011; Igbal, 2014b). In the current split-root
study in acidic soil, the percentage distribution differences in the
total root and shoot dry weights among the three P treatments
were due to the elevated P supply which directly interfered with
shoot root growth.

The root-shoot ratio is an important factor in understanding the
growth responses of plants under elevated P applications in acidic
soil. The root-shoot ratio of the wheat plants with and without
treatments at the various level of P supply (Table 5) showed an
increase with increasing P application in both varieties of wheat
plant. This was supported by Shane et al. (2003) who reported that
an increase in the phosphate supply in root halves influenced the
root-shoot ratio of wheat; because root growth increased more
than shoot growth. Similar results were observed in wheat plants
by Bingham and Bengough (2003) and Qifu et al. (2011).

The relationship between shoot biomass and average plant
height was analyzed to determine the effect of plant height on the
production of biomass of the wheat plant. A significant correlation
(R? = 0.97) between plant height and shoot biomass under elevated
P supply indicated that plant development was enhanced with the
application of P in soil (Fig. 4). Similarly, a significant correlation
(R? = 0.99) between plant height and root biomass under elevated P
application was observed. The increase in plant growth was largely
due to the increased absorption of nutrients from the soil solution
(Son and Smith, 1988). However, the elevated P played an impor-
tant role in the growth of the wheat plants in the split-root system
in acidic soil.

100 -
g 151
w
§ J
8 S0+F
2 ]
g :
= 251

0]
Treatment OP/OP  10P/50P  50P/200P  OP/OP  10P/50P  50P/200P
Variety BARI GOM 25 BARI GOM 26
Shoot £ Compartment II O Compartment I

Fig. 3. Distribution of plant biomass in different plant parts of the split-root system.
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Table 5
Root biomass, shoot biomass and root/shoot ratio of two wheat varieties across
different P applications.

Variety Treatment P rate Biomass Production Root-shoot
(mg/kg) (mg/plant) ratio
Shoot Root
BARI-GOM 25 T1 OP/OP 0.55 0.62 1.13
T2 10P/50P 0.80 1.05 131
T3 50P/200P  0.90 1.31 1.45
BARI-GOM 26 T1 OP/OP 0.57 0.67 117
T2 10P/50P 0.83 1.08 1.31
T3 50P/200P 0.91 1.33 1.46

OP = no P added; 10P = 10 mg P/kg added; 50P = 50 mg P/kg added.

P distribution and the translocation in wheat plant within a split-
root system

In general, plants grow better when partially soluble phos-
phate is applied in comparison with the soluble P source. Soil pH
influences the charge of the P species in solution as well as the
charge of the adsorbing particles in soils. The study was con-
ducted in acidic soil with pH 5.2 and P doses were applied
directly to the soil. The shoot and root P concentrations showed
an increasing trend under different P applications to the wheat
plants. Shoot and root P concentrations were highly significantly

affected among all the various P applications to wheat plants.
Again, similar trends in the total P uptake were found in both
BARI-GOM 25 and BARI-GOM 26. Total plant P concentration in
BARI-GOM 25 in treatment C increased more than eight times
(8.63 g/kg) compared with the control treatment A (1.0 g/kg).
Similarly, in treatment B, the total plant P concentration
increased more than three times (3.61 g/kg) compared with
treatment A. Again, for BARI-GOM 26, the total plant biomass in
treatment C increased nine times (9.09 g/kg) compared with the
control treatment A (1.06 g/kg). Similarly, in treatment B, the
increase was more than three times (3.74 g/kg) compared with
treatment A. A similar trend was recorded for the shoot biomass
and root biomass of both wheat plant varieties (Table 6); while
the internal P uptake by shoots and roots followed the same
trend among all treatments (Fig. 5). The highest percentages of P
uptake by shoots was in treatment C of BARI-GOM 25 (49% of
total plant P uptake) followed by treatment B and treatment A in
decreasing order (47.9% and 41.0% of total plant P uptake,
respectively). Root P uptake increased with increasing P supply in
both compartments (Table 6). Similarly, in BARI-GOM 26 the
highest percentage of P uptake by shoots was in treatment C
(48.3% of total plant P uptake) followed by treatment B and
treatment A in decreasing order (47.3% and 40.6% of total plant P
uptake, respectively). Again, root P uptake increased with
increasing P supply in both compartments (Fig. 5). The percent-
age distribution differences in the total root and shoot P uptake

1.0 - (A)
1 ¢ BARI GOM26
2 ool R2=0.9727 .
E | mBARI GOM25 -
& ) R2=0.9653 s
o 08+
7] i
=z
g ,
%z 07
o
a
0.6
| |
T e e S S S S S |
27 29 31 33 35 37
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1.6
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2 R2=0.999 e
& 12 | ®WBARIGOM2S P
2 R*=0.9918
o E
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Fig. 4. Relationship in wheat plants between (A) shoot dry weight and average plant height; (B) root dry weight and average plant height.
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Table 6
Total P uptake in different plant parts of the split-root system and distribution of P in
shoot and root two separate compartments.

Plant part Total P uptake (g/kg)

[Variety Treatment A Treatment B Treatment C
BARI-GOM 25 1 3.61 8.63
BARI-GOM 26 1.06 3.74 9.09

Total P uptake (g/kg) in different plant parts of the split-root system
BARI-GOM 25

Shoot 0.41 1.73 4.23
Compartment-I 0.29 0.49 143
Compartment-II 0.3 1.39 297
BARI-GOM 26

Shoot 0.43 1.77 439
Compartment-I 0.31 0.53 1.58
Compartment-II 0.32 1.44 3.12

Distribution of P (%) in shoot and roots grown in two separate soil
compartments (I and II)

BARI-GOM 25

Shoot 41.0 47.9 49.0
Compartment-I 29.0 13.6 16.6
Compartment-II 30.0 385 344
BARI-GOM 26

Shoot 40.6 473 48.3
Compartment-I 29.2 14.2 17.4
Compartment-II 30.2 385 343

among the three P treatments were due to the elevated P supply
which directly interfered with the shoot-root P status in this
split-root system study in acidic soil.

Mimura et al. (1996) and Jeschke et al. (1997) described a picture
of patterns of inorganic P movement in whole plants. In P-sufficient
plants, most of the inorganic P absorbed by the roots is transported
through the xylem to the younger leaves. Concentrations of inor-
ganic P in the xylem range from 1 mm in inorganic P-starved plants
to 7 mm in plants grown in solutions containing 125 pm inorganic P
(Mimura et al., 1996). There is also the significant retrained location
of inorganic P in the phloem from older leaves to the growing
shoots and from the shoots to the roots. In inorganic P-deficient
plants, the restricted supply of P to the shoots from the roots via the
xylem is supplemented by increased mobilization of stored P in the
older leaves and retranslocation to both the younger leaves and
growing roots. This process involves both the depletion of inorganic
P stores and the breakdown of organic P in the older leaves. A
curious feature of P-starved plants is that approximately one-half of

the inorganic P translocated from the shoots to the roots in the
phloem is then transferred to the xylem and recycled back to the
shoots (Jeschke et al., 1997).

Increasing the external P supply to the split roots from 0 mg P/
kg to 200 mg P/kg significantly increased the P concentration in
those roots and shoots, but had no significant effect on the P
concentration of the controlled roots. This lack of response of
controlled roots has been demonstrated in other split-root
studies, including barley (Drew and Saker, 1984), subterranean
clover (Scott and Robson, 1991), tomato (Burleigh and Harrison,
1999) and Hakea prostrata in the Proteaceae (Shane et al,
2003). In contrast with the results of split-root plants, the re-
sults in the current wheat plant split-root study and those of
others using foliar spray (Marschner et al., 1987) demonstrate
that P retranslocated in the phloem sap can result in increased
root P concentrations. In the current study, a very high P supply
(200 mg P/kg KH,PO4) to just one crown root of the wheat plant
significantly increased the P concentration of compartment-I
roots with regard to treatment B compartment II. It was ex-
pected that in treatment C, plants would be able to translocate P
from the roots in compartment I to those in compartment II.
Studies with barley (Greenway and Gunn, 1966; Clarkson and
Scattergood, 1982) indicated that P-stressed leaves absorb P
more rapidly than control leaves do, and they export much larger
amounts to the roots. Higher P concentrations in the shoots of
wheat plants in the acidic soil in the current study probably
provided more P for shoot unloading of P and for P assimilation in
the controlled roots, resulting in increased P concentrations in the
roots of the wheat plants. In contrast, the split-root technique in
acidic soil probably provides a more stable supply of P at a lower
concentration.

Considering that P is an essential and often limiting nutrient
for plant growth, it is surprising that many aspects of P uptake
and transport in plants are not thoroughly understood. The cur-
rent study investigated P uptake and P translocation in a split-
root system of wheat plants in acidic soil and found that the
added soluble P increases the absorption of nutrients from the
soil solution. However, added P is efficient both for increasing
shoot development and root growth. Moreover, no varietal dif-
ference was found in the various experiments. Again, elevated P
concentrations in the shoots of the wheat plants probably pro-
vided more P for shoot unloading of P and for P assimilation in
the controlled roots, resulting in increased P concentrations in the
roots of the wheat plants in a split-root system in acidic soil.
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Treatment OP/OP 10P/50P 50P/200P 0P/0P 10P/50P 50P/200P
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BARI GOM 25 BARI GOM 26
Shoot B Compartment II 3 Compartment I

Fig. 5. P distribution in different plant parts of the split-root system.
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Perhaps the next important leap in conceptual understanding in
this area will come from the integration of these techniques to
provide a comprehensive picture of the function of phosphate
transporters and how they control of their spatial and temporal
expression allows the plant to cope with changing environmental
conditions.
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